
An object-oriented approach to the modelling of

free-surface flows

V. Kutija and M. G. Murray

ABSTRACT

V. Kutija (corresponding author)

M. G. Murray

Water Resource Systems Research Laboratory,

School of Civil Engineering and Geosciences,

University of Newcastle upon Tyne,

Newcastle upon Tyne NE1 7RU,

UK

E-mail: Vedrana.Kutija@ncl.ac.uk;

Michael.Murray1@virgin.net

Over the past 40 years many hydraulic modelling systems for free-surface flows have been

developed and successfully used in research and engineering practice. These systems were, in

general, developed using sequential programming techniques while object-oriented programming

approaches have only been used in the development of their visual parts. This paper outlines the

approach used in the development of the NOAH modelling systems (Newcastle Object-oriented

Advanced Hydroinformatics), developed entirely within the object-oriented paradigm. This novel

approach has made NOAH modelling systems computationally highly efficient and yet easy to

maintain and extend. NOAH 1D and NOAH 2D are designed to model free-surface flows in one

and two dimensions, respectively. NOAH 1D is based on the full de Saint-Venant equations while

NOAH 2D is based on the Shallow Water equations. Beside the basic ideas behind the

development of NOAH modelling systems this paper also presents their main features and

discusses general benefits of the application of the object-oriented programming approach in the

development of numerical codes.

Key words | finite differences, finite volumes, free-surface flows, object-oriented approach,

object-oriented numerics

NOTATIONS

A Cross-sectional area (m2)

A1 Approximation coefficient

A2 Approximation coefficient

Ac Area of a cell

bs Top width/storage width (m)

b Boussinesq coefficient

b(p) Source sink terms

B1 Approximation coefficient

B2 Approximation coefficient

C1 Approximation coefficient

C2 Approximation coefficient

D1 Approximation coefficient

D2 Approximation coefficient

di Degree of a node i (number of connected

channels)

e Channel incidence index

f(p) Flux vector in x

f(qk) Transformed numerical flux vector

g Gravity acceleration constant (9.81 m/s2)

g(p) Flux vector in y

h Water depth (m)

i Node number

io Bottom slope

j Space step index (J-point position)

K Conveyance (m3/s)

k Cell side index

L Index for the cell on the left side of the interface

L k Length of cell side k

l Wave speed (m/s)

m Number of side in a cell

n Time step index

n Normal vector

p Conservative vector

doi: 10.2166/hydro.2007.101

81 Q IWA Publishing 2007 Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

Q Flow (m3/s)

Qe Discharge in a channel e incidence to the node i,

at a Q-grid point closest to the node i

Qi External point discharge at a node i

q Transformed conserved physical vector

qL Lateral inflow (m3/s/m)

R Index for the cell on the right side of the interface

So Bed slope

Sf Bed friction

t Time (s)

T Transformation matrix

T21 Inverse transformation matrix

t Time weighting coefficient

t k Angle between outward normal vector n and x

axis

u Local cell normal velocity (m/s)

v Local cell tangent velocity (m/s)

vx X cell velocity (m/s)

vy Y cell velocity (m/s)

x X coordinate (m)

xn A local co-ordinate normal to the cell side

y Y coordinate (m)

p Start region

ABBREVIATIONS

1D One-Dimensional

2D Two-Dimensional

GEA Generalised Elimination Algorithm

GIS Geographic Information Systems

GUIs Graphical User Interfaces

HLL Harten, Lax and van Leer

LAN Local Area Network

OMT Object Modelling Technique

OO Object-Oriented

OOD Object-Oriented Design

OON Object-Oriented Numerics

OOSE Object-Oriented Software Engineering

PC Personal Computer

NOAH Newcastle Object-oriented Advanced

Hydroinformatics

TCP/IP Transmission Control Protocol / Internet

Protocol

UML Unified Modelling Language

INTRODUCTION

Most of the hydrodynamic models used currently in

engineering practices for simulation of free-surface flows

have been developed incrementally over the last four

decades. They are mainly based on numerical algorithms

developed over the same period and programmed using

sequential programming techniques. The object-oriented

(OO) approach, adopted in this work, is radically different

from the traditional sequential programming approach used

in those numerical algorithms. Paradoxically, this ‘new’

style of problem solving is closer to the ways we address

problems in real life than the classical programming

techniques ever were (Abbott 1994).

The implementation of an object-oriented paradigm is

relatively new within commerce and industry (Budd 1991).

Although the object-oriented approach was first conceived

in the 1960s it was originally little used (Graham 2001). In

the past, programs had to be as short as possible due to the

cost and limitations of available memory. That gave the

advantage to sequential programming, as object-oriented

codes are always longer. In the late 1980s and early 1990s

with the advent of the cheap personal computer (PC)

hardware and software markets changed. The object-

oriented programming approach came to the forefront as

it provided the means to code the higher levels of

complexity required to produce functional user-friendly

software while the sequential programming approach was

not able to provide the same level of flexibility (Larsen &

Gavranovic 1994).

That change has prompted developments of hydroinfor-

matic modelling systems over the last two decades.

Numerical codes for simulation of free-surface flows have

been wrapped up into graphical user interfaces (GUIs) that

made their use easier. However, the numerical cores have

mainly not been redeveloped. Even when new numerical

codes have been developed they have not used the object-

oriented paradigm, the main reasons being relative satis-

faction with the models in current use and the belief that the

object-oriented approach is not suitable for coding of

numerical algorithms.

However, over the last few years some object-oriented

notions have been explored in different modelling systems

in the hydroinformatics field. The first class of these

82 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

developments considers whole models as objects, wrapping

the sequentially programmed numerical codes as objects,

and coupling them with other models also wrapped up as

objects (Gijsbers et al. 2002). The second class of develop-

ments introduced objects on a conceptual level, considering

different parts of the system like objects. Neither of these

developments went as far as applying an object-oriented

approach to the smaller parts of the systems like discretisa-

tion cells or grid points where the basic calculations are

performed (Kutija 1998). Work presented in this paper has

taken that route, building up completely object-oriented

numerical algorithms for free-surface flows.

The Newcastle Object-oriented Advanced Hydroinfor-

matics (NOAH) modelling systems are NOAH 1D, NOAH

2D and three ancillary tools developed as spin-offs using

many of the class structures and techniques developed while

researching the two main NOAH modelling systems. NOAH

1D is a modelling system for networks with predominantly

free-surface flows while NOAH 2D is a modelling system for

two-dimensional free-surface flows. The three ancillary tools

are: NOAH Hydraulic Assistant, a steady-state free-surface

model for a single channel, NOAH Rainfall Runoff, a

hydrological model based on the ARNO model algorithm

(Todini 1996) and NOAH Gibberish Controller, a script

based model connectivity tool.

In this paper the basis of the object-oriented analysis

and design of NOAH modelling systems are presented with

the aim of showing how, contrary to adopted opinion, the

OO approach is suitable for the development of numerical

algorithms for simulation tools. Prior to this, the description

of the used numerical algorithms and a short introduction

into OO analysis is given.

GOVERNING EQUATIONS AND SOLUTION

ALGORITHMS

The NOAH 1D modelling system for flow in networks with

predominantly free-surface flows is based on the de Saint-

Venant equations for one-dimensional, depth-averaged,

nearly horizontal free-surface flows:

Continuity:

›h

›t
þ

1

bs

›Q

›x
¼ qL ð1Þ

Momentum:

›Q

›t
þ

›

›x

bQ2

A

 !
þ gA

›h

›x
2 i0

� �
þ gA

QjQj

K2
¼ 0 ð2Þ

for flow in channels. At each node of the network there is a

continuity equation:

di

X
Qe þ Qi ¼ 0 ð3Þ

In NOAH 1D these partial differential equations are solved

using the method of finite differences on a staggered

discretisation grid (with alternated discharge (Q points)

and water depth points (h points) along the channels). At

the nodes the water level compatibility condition is

implemented which results in a single water depth point

situated at each node. Water depth situated at a node is also

common for all first discretisation points in channels

incident to that node. The numerical scheme used is the

Abbott–Ionescu scheme (Cunge et al. 1980; Abbott &

Minns 1998).

Upon application of the Abbott–Ionescu scheme to the

continuity equation (1) we get the following set of linear

algebraic equations:

A1nþ1
j Qnþ1

j21 þ B1nþ1
j hnþ1

j þ C1nþ1
j Qnþ1

jþ1 ¼ D1nþ1
j ð4Þ

with

A1nþ1
j ¼ 2

u

2Dx
; B1nþ1

j ¼ 2
bnþ1=2

sj

Dt
; C1nþ1

j ¼
u

2Dx

and

D1nþ1
j ¼

bnþ1=2
sj

Dt
hn

j 2
ð1 2 uÞ

2Dx
Qn

jþ1 2 Qn
j21

� �
þ qnþ1=2

at all the water depth points (h points). Similarly, upon

applying the same finite difference scheme to the momen-

tum equation (2) we get the following set of equations:

A2nþ1
j hnþ1

j21 þ B2nþ1
j Qnþ1

j þ C2nþ1
j hnþ1

jþ1 ¼ D2nþ1
j ð5Þ

83 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

with

A2nþ1
j ¼ 2

bQnþ1=2
j bnþ1=2

sj

DtAnþ1=2
j

2
u

2Dx
gAnþ1=2

j 2
b Qnþ1=2

j

� �2
bnþ1=2

Tj

Anþ1=2
j

� �2

0
B@

1
CA;

B2nþ1
j ¼

1

Dt
þ gAnþ1=2

j

Qn
j

��� ���
Knþ1=2

j

� �2
;

C2nþ1
j ¼ 2

bQnþ1=2
j bnþ1=2

sj

DtAnþ1=2
j

þ
u

2Dx
gAnþ1=2

j 2
b Qnþ1=2

j

� �2
bnþ1=2

T j

Anþ1=2
j

� �2

0
B@

1
CA

and

D2nþ1
j ¼

Qn
j

Dt
2

bQnþ1=2
j bnþ1=2

sj

DtAnþ1=2
j

hn
jþ1 þ hn

j21

� �

2 gAnþ1=2
j 2

b Qnþ1=2
j

� �2
bnþ1=2

Tj

Anþ1=2
j

� �2

0
B@

1
CA

�
1 2 uð Þ

2Dx
hn

jþ1 2 hn
j21

� �
þ gAnþ1=2

j i0

at all the discharge points (Q points).

When all these equations obtained for each channel are

coupled with the nodal continuity equations and boundary

conditions they form a system of equations with equal

number of equations as unknowns. So the obtained system

of equations is characterised by a nearly banded matrix of

the system and it is traditionally solved by a classical looped

algorithm (Cunge et al. 1980, pp 117–121). However, in

NOAH 1D the solution for this system of equations is

obtained by the Generalised Elimination Algorithm (GEA)

(Kutija 1994) which is an extension of a computationally

very efficient branched network algorithm (Cunge et al.

1980) developed from the double sweep algorithm for

systems of equations characterised by diagonal matrices

(Abbott & Minns 1998). The GEA analyses network

complexity and adapts its procedures to the network.

According to GEA, for each discretisation point of each

channel a localised calculation is performed that transforms

coefficients A1, B1, C1 D1, A2, B2, C2 and D2 of Equations

(4) and (5) into another set of coefficients that leads to the

final solution of the system of equations. Similarly, in the

double-sweep algorithm this localised calculation is

initiated at one end of a channel and it proceeds according

to a predefined algorithmic structure from one discretisa-

tion point to another (Abbott & Minns 1998). In order to

perform this localised calculation, for each grid point, one

only needs to know values of the coefficients at that point

and values of the already transformed coefficients in the

preceding point. For more details on the GEA please see

Kutija (1994).

The governing equations for the NOAH 2D modelling

system are the shallow water equations for two-dimensional

depth averaged flow:

›h

›t
þ

›ðhvxÞ

›x
þ
›ðhvyÞ

›y
¼ 0

›ðhvxÞ

›x
þ

› hv2
x þ gh2=2

� �
›x

þ
›ðhvxvyÞ

›y
¼ ghðSox 2 SfxÞ

›ðhvyÞ

›y
þ
›ðhvxvyÞ

›x
þ
› hv2

y þ gh2=2
� �

›y
¼ ghðSoy 2 SfyÞ

9>>>>>>>>>=
>>>>>>>>>;
: ð6Þ

In NOAH 2D these equations are solved using the method

of finite volumes with shock capturing schemes (Erduran

et al. 2002). For that purpose the domain is subdivided into

cells and flow conditions which, within each cell, are given

by a vector [h, hvx, hvy]
T often denoted by p ¼ [p1, p2, p3]T.

In terms of the conservative vector p Equations (6) can be

rewritten as

›p

›t
þ
›fðpÞ

›x
þ
›gðpÞ

›y
¼ bðpÞ ð7Þ

where

fðpÞ ¼ hvx;hv2
x þ gh2=2;hvxvy

h i

gðpÞ ¼ hvy;hvxvy;hv2
y þ gh2=2

h i
bðpÞ ¼ 0; ghðSox 2 SfyÞ; ghðSoy 2 SfyÞ

� 	
The method of finite volumes is based on the integration of

the conservation equations over each cell covering the

whole model domain. The result of the integration of the set

of Equations (7) over each cell gives us the following set of

84 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

ordinary differential equations for change of p at each cell

with respect to time:

Ac
dp

dt
¼ 2

Xm
k¼1

T21ðukÞfkðqkÞLk þ

V

ð
bðpÞdV ð8Þ

where T(u k) is the transformation matrix which can be

obtained by rotating the coordinate axes, T21(u k) is the

inverse transformation matrix, qk is the transformed

conserved physical vector obtained by multiplying p by

the transformation matrix and fk(qk) is the transformed

numerical flux vector. We have

TðuÞ ¼

1 0 0

0 cosu sinu

0 2sinu cosu

2
6664

3
7775 and

T21ðuÞ ¼

1 0 0

0 cosu 2sinu

0 sinu cosu

2
6664

3
7775

q ¼ TðuÞp ¼ ½h; hu; hv�T; fðqÞ ¼ ½hu; hu2 þ gh2=2; huv�T

with u, v local components of velocity in the normal

and tangential directions to the cell boundary respectively

given by

u ¼ vxcosuþ vysinu; v ¼ 2vxsinuþ vycosu:

In order to solve Equations (8) one should first solve

numerical vector fluxes f(q) across each cell interface. In

the local coordinates (x n being a local coordinate normal to

the cell side), the Riemann problem can be written as

›q

›t
þ
›fðqÞ

›xn
¼ 0 ð9Þ

with the initial state given by

qðxn;0Þ ¼
qL; xn , 0

qR; xn . 0

8<
:

where qL and qR are the values of the transformed

conserved physical vector to the left and right of the cell

interface, respectively. Upon the solution of the Riemann

problem for each of the cell interfaces Equations (8) are

solved for components of the vector p.

The only Riemann solver implemented in NOAH 2D is

the HLL scheme introduced by Harten, Lax and van Leer

(Toro 1997, p 297). According to this solver the initial step

difference between the transformed conservative vectors qL

and qR on the two sides of the cell interface is interfaced by

another constant state, often called the star region,

separated from the two other initial states by two waves

as shown in Figure 1 as lmax and lmin.

Firstly flow conditions in the star region have to be

found using the method of characteristics:

�u* ¼
�uL þ �uR

2
þ

ffiffiffiffiffi
ghL

q
2

ffiffiffiffiffi
ghR

q
ffiffiffiffiffi
gh*

q
¼

�uL 2 �uR

4
þ

ffiffiffiffiffi
ghL

p
þ

ffiffiffiffiffi
ghR

p� �
2

:

There, the wave speeds can be given as follows:

lmin ¼ minðl1; lst1Þ; lmax ¼ maxðl3; lst3Þ

where

l1 ¼ �uL 2

ffiffiffiffiffi
ghL

q
; l3 ¼ �uR þ

ffiffiffiffiffi
ghR

q

l*1 ¼ �ust 2

ffiffiffiffiffi
gh*

q
l*3 ¼ �ust þ

ffiffiffiffiffi
gh*

q
:

And finally, vector flux over the cell interface can be

obtained as

fð �qL; �qRÞ ¼

fð �qLÞ if lmin $ 0

fð �qRÞ if lmax # 0

fð �q*Þ Otherwise

2
6664 ð10Þ

with

fð �q*Þ ¼
lmaxfð �qLÞ2 lminfð �qRÞ

lmax 2 lmin
þ
lmaxlminð �qR 2 �qLÞ

lmax 2 lmin
:

lmin lmax
D

E

0

f (qL)

q*

t

–xL

C

A

B

f (qR)

xR

x

f (q*)

qR
qL

Figure 1 | The structure of the HLL Riemann Solver.

85 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

Due to the explicit nature of the used finite volumes

solution it is clear how all the calculations can be related

to locations. For each cell interface, the localised flux

vector across the cell interface is calculated. Then for

each cell vector p is updated taking into account all

the localised flux vectors transformed into original

coordinate system.

Although solution algorithms used in NOAH 1D and

NOAH 2D originate from different numerical methods they

have both been successfully coded using object-oriented

techniques. The only requirement for the solution algorithm

seems to be its ability to be split into parts of calculations

that can be performed locally using local data and no

knowledge of the whole algorithm. This was much simpler

to implement in the case of NOAH 2D due to the explicit

nature of the used solution algorithm which does not

require a defined algorithm structure.

OBJECT-ORIENTED APPROACH

Implementation of an object-oriented approach starts with

a good analysis of the problem to be solved. There are many

different methods available now which can aid object-

oriented analysis and design. Most are graphical and

conceptual, some are languages in their own right and a

few have been converted into development tools that can

automate code creation.

During the early 1990s, approximately fifty different

object-oriented analysis methods were developed

(Muller 1997) and there was an attempt to control and

structure the development of OO languages during the

1980s. A number of different systems were proposed:

Booch (Booch 1991); Object Modelling Technique (OMT)

(Rumbaugh et al. 1991). By 1995, the Unified Method

version 0.8 using Booch and OMT was developed. In turn

this led to the Unified Modelling Language (UML)

versions 0.9 and 0.91 with the addition of OOSE

and 1997 saw the publication of UML (Jacobson et al.

1999) version 1.0 by the Object Management Group

(http://www.omg.org). Muller (1997) describes this genesis

in four parts: Fragmentation; Unification; Standardisation;

Industrialisation. The industrialisation took place with

the development of such software as Rational Rose

(http://www.rational.com/products/rose/index.jsp) which

can now generate the object classes and units automati-

cally as a program is designed, leaving the programmer to

merely fill in the detail.

Most of these tools are written for standard commerce

problems involving large systems, databases and different

businesses, and their strength is to promote and standardise

known accepted methods for general use and the unknown

is not allowed.

The above mentioned tools are well suited for analysis

and design of outer layers of hydroinformatics systems like

GIS, databases, visualisation, etc., but not for the numerical

cores. Standardised tools do not provide the means to

capture all the structures and interdependences of a

numerical algorithm.

DYNAMIC SYSTEMS AND OBJECT-ORIENTED

APPROACH

According to Rumbaugh et al. the object-oriented approach

is very well suited for modelling time-dependant processes

(Rumbaugh et al. 1991, pp 84–92). In order to design an

object-oriented model of a dynamic system one should:

† identify states that are changing in time (properties or

attributes of objects)

† identify continuous and discreet events that can change

the states (methods)

† place the whole system in a timing loop at a fine scale.

It is very easy to detect similarities between this

approach and the numerical algorithms for the solution of

free surface flows.

Identify states

In free-surface flows states are obviously values of the

dependent variables (Q – discharge, h – water depth in

one-dimensional case; h – water depth, ux and uy –

velocities in x and y direction, respectively, in two-

dimensional case) at the discrete points within the domain.

The calculation (grid) points/cells will become objects

with their main properties being the dependent variables

placed at the grid points/cells. In the case of staggered grids

86 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

http://www.omg.org
http://www.rational.com/products/rose/index.jsp

there will be different classes of objects as, in different grid

points, we have different dependent variables (discharge

and water depth).

Identify events

Events that change the above-defined states are, in

principle, all continuous but because we have already

defined a numerical method that will be used to approxi-

mate real events, our events can easily be defined as discrete

calculations of one time step. Methods for each class of

objects introduced above will be defined as parts of the

chosen solution algorithms at the level of one discretisation

point or cell. This decomposure of the solution algorithms

to the point/cell level will be straightforward in the cases

where explicit numerical schemes are used. However, in the

cases of implicit numerical schemes all the dependent

variables at one time step are solved simultaneously. Hence,

algorithms for the solution of sets of simultaneous equations

also have to be decomposed down to the equation/variable

level. The GEA in NOAH 1D will be used as an example

later in this paper.

Timing loop

The timing loop is not an issue at all as we have already

subscribed to it by the choice of the numerical procedure

related to the initial-boundary value problems; solution of

consecutive time steps on an open domain. At each time

step a procedure is triggered that makes all objects, defined

as discrete points/cells, update their state. Each of these

objects have methods that do basic operations, i.e.

calculate the coefficients of the discretised equation,

calculate fluxes at the cell interfaces and update flow

variables at cell centres. If one was to use an explicit

numerical scheme (like NOAH 2D) that would be

sufficient, as there is no need for an algorithmic structure

(Abbott & Minns 1998). On the other hand, for implicit

schemes that require a definite algorithmic structure (like

the GEA used in NOAH 1D), a control object has to be

defined, which would encapsulate the solution algorithm.

The control object has firstly to analyse the network

topography and define the solution order in which

instances of point/cell objects have to be triggered to

perform the basic operations. Then the time loop takes

control and this solution order is followed at each time

step. This will also be covered later in more detail.

OBJECT-ORIENTED DESIGN OF NUMERICAL

ALGORITHMS IN THE NOAH MODELLING SYSTEMS

Within the numerical engine of NOAH systems there is a

strict division of work. Objects that control the order in

which computation is performed know the network com-

plexity but do not know either the details of the used

numerical algorithms or their implementations. On the

other hand, calculation is done at the level of localised

objects that are not aware of the overall complexity of the

system or the order of computation.

This division allows for considerable flexibility in the

introduction of new algorithms (or parts of them) and

in the reconfiguration of a system. For example, localised

calculations at the level of CellCentre objects in NOAH

2D would not be affected by the size of the domain

(number of cells). Equally a new type of CellSide object

could be introduced based on another Riemann solver

and that would not in any way influence the overall

solution order.

In both models the top level (overall control) acts as a

hub that controls and organises the general calculation

solution structure. In NOAH 1D this is the solving order for

the channels and nodes and in NOAH 2D the solving order

for the cell interfaces and cell centres. This system of

delegated control (from the top down) enables different

representations to be easily constructed. The top level

understands how to control the general calculation struc-

ture but does not know how it is really implemented. This

reduces the complexity of the main hub and allows for

much more efficient implementation.

In NOAH 1D objects related to channels and pipes are

named edges while ones related to nodes or junctions are

called vertices (following the GEA algorithm). Basic

calculation objects in NOAH 1D are situated at the

discretisation points (grid points). They are named J-points

as the letter j is used as an index through the discretisation

points in the used solution algorithm.

87 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

Organisation and control

In NOAH 1D organisation and control has, in principle,

been split into two levels: one being the overall control

executed on the level of the whole system and the

other being the local control executed on the level of

edges. The overall control in NOAH 1D is performed by

the central NetworkControl object that has a list of all the

vertices in the network with all the incident edges. This

object analyses the network topography and defines the

solution order (according to GEA) according to which

edges and vertices have to be triggered to perform the

localised operations.

The local control level does not know the overall

calculation order or anything about how the model is

generally connected and structured but does know how

to control its own small part. Good example of this localised

control is the ConnectionEdge object (see Figure 2). From

its limited number of properties it is clear that that object

‘has’ only a limited amount of information about the overall

network and even less about the solution algorithm.

Figure 3 shows objects associated with the Connectio-

nEdge object during the model set-up. At that point in time

ConnectionEdge is related to the PhysicalEdge object,

which contains data about edge geometry. Edge geometry

is defined by at least two cross sections situated at the ends

of the edge but it can also contain many more cross sections

at irregular distances along the edge. This information is

stored in instances of the CrossSection class of objects.

Basic calculation objects in NOAH 1D are called

J-points. Each J-point object is made up of three objects:

a Physical point object, an Approximation point object

(either of Q-point or h-point type) and a Solution point

object (see Figure 4). Due to the use of a staggered grid, at

each discretisation point there is either a discharge (Q) or

water depth (h) dependent variable. Hence, there are two

types of J-point objects: Q-point objects and h-point objects.

More details about the roles of the components of J-point

objects are presented later.

Figure 5 shows objects associated with the Connectio-

nEdge object at the run time. The ConnectionEdge is, at

that time, linked into the SolutionEdge, which creates the

VirtualEdge, and all the J-point objects needs for

the calculation of that channel. The SolutionEdge controls

the order in which the J-point objects perform their

localised calculations.

Although not directly connected to the localised control

it is interesting to point out at this point that the Physical

point objects in Figure 5, in principle, do not coincide with

the CrossSection objects from Figure 3. Physical point

objects are situated at calculation points so they are either

CrossSection objects defined by the user or interpolated

cross sections. All different types of cross sections available

in NOAH 1D are classes from the same family, decendants

form the TCross-Section class (see Figure 6).

This way of organising cross-sectional object classes

reduced the code by deriving all of them as descendants of the

same parent class. All the cross-sectional objects need to have

Figure 2 | ConnectionEdge object properties and methods.

Figure 3 | ConnectionEdge object during the model set-up phase.

88 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

their position (chainage) as a property and have methods to

calculate their cross-sectional area, top width and convey-

ance for a given depth as these values are needed in Equations

(4) and (5). Even the interpolated cross sections (Physical

point objects of Figures 4 and 5) are members of the same

family of object classes.

As NOAH 2D uses only an explicit algorithm,

organisation and control of the computation is much

simpler than in NOAH 1D. In NOAH 2D overall control

is very simple and it is done by the object which contains

lists of all cells (CellCentre objects) and all cell interfaces

(CellSide objects) in the domain. At each time step that

object triggers firstly all the CellSide objects to calculate

Riemann fluxes across them and then all the CellCentre

objects to update their state variables. As the algorithm

organisation is very simple there is no need for local

control but that could be easily changed if an implicit

Riemann solver would be implemented.

Calculation objects in NOAH 1D

J-point objects introduced in Figure 4 consist of three objects:

a Physical point object, an Approximation point object and a

Solution point object The Physical point object contains data

about interpolated cross sections and it is able to return cross-

sectional dimensions such as cross-sectional area, top width

and conveyance for a given water depth. The Approximation

point object contains the appropriate dependent variable

(Qor h) as a state variable and the approximation coefficients.

For example, the Q-point Approximation object has a

discharge state variable and coefficients A2, B2, C2 and D2

from Equation (5). The h-point Approximation object has the

Figure 4 | J-point objects within a channel containing one Approximation point object,

one Solution point object and one Physical point object.

Figure 5 | SolutionEdge, VirtualEdge and J-point objects.

89 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

water depth state variable and coefficients A1, B1, C1 and D1

from Equation (4). The Solution point object contains the

transformation equations by which coefficients A1 to D2

from Equations (4) and (5) are transformed locally as a part of

the GEA algorithm. As seen from Figure 6 these three objects

are closely linked together using pointers. They also have

pointers to the appropriate objects in the neighbouring

J-points. These pointers enable the calculation object to

access data in the neighbouring points.

The split of a J-point object into three separate objects

enables the replacement of the numerical scheme or the

solution algorithm for the system of simultaneous equations

with the minimal disturbance to the rest of the code. Each

J-point object performs a small, local, part of the overall

computation and it is not aware of the whole algorithm. It

only performs its calculations when prompted by the

control objects.

At the vertices of the network SolutionVertex objects

are situated (see Figure 7). They can be seen as modified

h-point objects as they have one h-point Approximation

object and one Solution point object and as many Physical

point objects as there are incident edges.

The amount of direct connections (pointers) between

various objects in Figures 4 and 7 might look abundant but

that choice was made at the design stage in order to ensure

efficient calculation. It is important to take into account

Figure 6 | TCross-Section object class diagram.

90 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

that all the methods are executed on the level of individual

object instances and if there is no connection provided

to another object then no information from that object can

be received. Following indirect connections through poin-

ters to the SolutionEdge object would not be so computa-

tionally efficient.

Calculation objects in NOAH 2D

Figure 8 shows a few cells within a NOAH 2D domain.

Each cell has links to its neighbouring cells and, if

appropriate, external boundaries. Neighbouring cells share

cell sides. At the calculation level cells are organised in such

a way that each cell contains a CellCentre object and a

number of CellSide objects. While the CellCentre object is

associated only with one cell the CellSide objects are shared

between two neighbouring cells. In that way fluxes across

the cell interfaces (CellSides) have to be calculated only

once and used in two cells.

Within a CellSide object the vector flux across the cell

interface in local coordinates fð �qL; �qRÞ is calculated using

Equation (10). Within the CellCentre objects the state

variables are components of the conservative vector p;

water depth h, momentum per unit width hvx and hvy in x

and y direction, respectively. At each time step they are

being updated using the explicit solution of Equation (8).

FEATURES OF NOAH MODELS

The NOAH models are completely coded in Delphi 5.

Their numerical parts were developed together with the

Figure 7 | SolutionVertex object. An example of a SolutionVertex object at a vertex where three edges meet containing one Approximation point object, one Solution point object

and three Physical point objects.

Figure 8 | NOAH 2D cells.

91 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

GUIs but care was taken so that the numerical parts could

also be run separately in order to facilitate possible

inclusion into other modelling systems. A distinctive

feature of a NOAH GUI is the object inspector on the

left-hand side of the screen that allows the user to browse

through the object instances describing the physical entity

within the network. This feature offers an overview of the

physical model and enables easy inspection and editing of

the model structure.

In general, NOAH 1D’s simulation results correspond

well with commercial modelling systems built using the

same governing equation and similar numerical methods.

Results of NOAH 2D are the same as published results for

the HLL scheme (e.g. Erduran et al. 2002).

The main consequence of NOAH’s OO background is

its unrivalled speed of calculation. A small example was set

to illustrate this using NOAH 1D. A series of networks,

involving a simple channel, a series of concatenated

channels, a branched network, a looped network with

only a few loops and a strongly looped network were

modelled. All the networks have 12 ten-kilometre long

channels and a space step of 100 m which in total gives

1200 discretisation points. A flow event of the duration of

one day was simulated for all these networks. The time step

of 100 s was used which gives 864 time steps. All the

simulations were performed on two desktop computers:

first, a Pentium 3 (Windows NT, 512MB/1 GHz) and

second, a Pentium 4 (Windows XP, 512MB/2.8 GHz). The

times needed for these simulations are given in Table 1.

It must be pointed out here that NOAH 1D compu-

tational efficiency results from the use of a very efficient

numerical algorithm and from its object-oriented structure.

Due to the use of a computationally more demanding

numerical solution in NOAH 2D this modelling system

does not show such computational efficiency.

NOAH 1D allows a variety of computational speeds to be

used (the above results are achieved with the fastest option).

When interested in tracing some event one can run just one

time step at a time or choose some intermediate speed. All the

runs, no matter what the chosen speed, are accompanied with

the real-time graphing of the time series of discharges and

water levels at chosen points. It is also possible to animate

water level changes in longitudinal and cross-section views

during a model run. This is made possible by the OO structure

of the numerical algorithm that allows interaction with the

individual objects. The same feature allows the setting up of

watches on the chosen objects and records when their state

variable (discharge or water depth) achieves its maximum or

exceeds a defined value.

Another feature facilitated by the object-oriented

structure is the ability to add new cross-sectional types

(see Figure 5) with the minimum extension of the existing

code. A special consequence of this is NOAH 1D’s ability to

deal with drainage systems and the receiving waters at the

same time as it allows an extensive variety of cross sections.

NOAH 1D’s computational efficiency together with the

extensive batching facilities enabled our colleagues to

undertake research into effects of channel geometry and

roughness on the flood frequency curves using a syntheti-

cally generated series of 10 000 years of rainfall records.

During the development period a series of ancillary

tools and technologies emerged. Hydraulic Assistant, a

steady state and backwater curve generator, was developed,

originally as a test program to validate the object model for

different cross-section types (see Figure 5). However, it soon

became apparent that this test code was a useful teaching

model and hydraulic design aid. Hydraulic Assistant has

subsequently become a project in its own right. NOAH

Rainfall Runoff is another spin-off using the object-oriented

numerical (OON) approaches developed for the main

NOAH 1D and 2D models. Unlike the Hydraulic Assistant

code that reuses other NOAH 1D the rainfall runoff model

uses the same numerical techniques and ideas to build a

generic object framework capable of implementing a range

of different rainfall–runoff algorithms.

Table 1 | Computational times for the Example networks

Pentium 3 (1GHz) Pentium 4 (2.8GHz)

25 s 5 s

25 s 6 s

27 s 6 s

30 s 6 s

38 s 8 s

92 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

NOAH Gibberish is again different from the previous two

tools and is made up of two separate parts. The first is the

NOAH Gibberish scripting language which is a text based

command type instruction set that allows data and instruc-

tions to be passed between models and via a central

controlling hub. The NOAH Gibberish Controller acts as

the central hub between different modelling systems allowing

data to be collated and the simulation progress controlled.

The text scripts are sent across the LAN or Internet using

TCP/IP. All that is required for any model to join the NOAH

Gibberish system is for the modelling system to have a

TCP/IP socket (available in most modern compilers) and the

ability to interpret the scripts. NOAH Gibberish was

originally designed to enable NOAH 1D and NOAH 2D to

communicate and interact with each other at a sub-time step.

NOAH Gibberish is currently implemented in NOAH 1D

using OON techniques that couple directly into the solver

and approximation objects that make up the J-points.

DISCUSSION

The main reason why NOAH 1D is computationally efficient

is the absence of decisions during run time (e.g. no time

consuming ‘if’ statements). All decisions are made during the

initial set-up and objects are assigned direct pointers to the

objects that will later supply them with their required

information. For example, a discretisation point has to be

able to calculate its cross-sectional area, top width and

conveyance for any given water level. Classically, there would

have been a subroutine that would calculate these values but

each time it would have to check the type of cross section.

In a NOAH 1D set-up the physical point object (within

a J-point) contains all the cross-sectional information.

Appropriate physical point objects are created at the start

of the computation. Once within the time loop the other

parts of the J-point, or neighbouring J-points, just take the

required information from the physical point objects with-

out needing to check the cross-section type.

The other reason for the computational efficiency is the

avoidance of need to search for values as members of the

arrays. All the procedures are executed along the linked lists

and any member of the list has direct pointers to the other

objects from which it needs information during the run-time.

CONCLUSION

A use of object-oriented approach in design and implemen-

tation of numerical codes within the NOAH modelling

system has resulted in unexpected benefits. These are, in the

first place, easier maintenance and extendibility, and in the

case of NOAH 1D, exceptional computational efficiency.

The adopted approach has enabled inclusion of a variety of

unusual user-friendly features and it has also opened up a

possibility to build complex modelling systems by inte-

gration of self-standing systems on the level of their internal

objects.

ACKNOWLEDGEMENTS

Initial development of the NOAH 1D modelling system

from April 1999 to December 2000 was supported by the

EPSRC, grant no GR/M44378, while the initial develop-

ment of the NOAH 2D Modelling System was supported by

the EU grant EVK1-CT-1999-000021 from January 2001 to

December 2001.

REFERENCES

Abbott, M. B. & Minns, A. W. 1998 Computational Hydraulics,

2nd edn. Ashgate Publishing, Aldershot, UK.

Abbott, M. B. 1994 The question concerning ethics, or: The

metamorphosis of the object. In Hydroinformatics ‘94

(ed. A. Vervey, T. Minns, V. Babovic & C. Maksimovic),

pp. 3–8. Balkema, Rotterdam.

Booch, G. 1991 Object-Oriented Design with Applications.

Benjamin/Cummings, New York.

Budd, T. 1991 An Introduction to Object-Oriented Programming.

Addison-Wesley, Reading, MA.

Cunge, J. A., Holly, F. M. & Verwey, A. 1980 Practical Aspects of

Computational River Hydraulics. Pitman, London.

Erduran, K. S., Kutija, V. & Hewett, C. J. M. 2002 Performance of

finite volume solutions to the shallow water equations with

shock-capturing schemes. Int. J. Numer. Methods Fluids 40,

1237–1273.

Gijsbers, P. J. A., Moore, R. V. & Tindall, C. I. 2002 HarmonI T:

towards OMI, an open modelling interface and environment

to harmonise European developments in water related

simulation software. In Proceedings of the 5th International

Conference on Hydroinformatics, Cardiff, UK, vol 2 (ed. I. D.

Cluckie, D. Han, J. P. Davis & S. Heslop). IWA Publishing,

London, pp. 1268–1275.

93 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

Graham, I. 2001 Object-Oriented Methods Principles & Practice, 3rd

edn. Addison-Wesley, Reading, MA.

Jacobson, I., Booch, G. & Rumbaugh, J. 1999 The Unified Software

Development Process. Addison-Wesley, Reading, MA.

Kutija, V. 1998 Use of object-oriented programming in modelling of

flow in open channel networks. In Proceedings of

Hydroinformatics 98 Conference, Copenhagen, vol. 1. Balkema,

Rotterdam, pp. 633–640.

Kutija, V. 1994 A generalised method for the solution of flows in

networks. J. Hydraul. Res. 33 (4), 535–554.

Larsen, L. C. & Gavranovic, N. 1994 Hydroinformatics: further

steps into object orientation. J. Hydraul. Res. 32 (extra issue),

195–202.

Muller, P. A. 1997 Instant UML. Wrox Press, Birmingham, UK.

Rumbaugh, J. et al. 1991 Object-Oriented Modelling and Design.

Prentice Hall, Englewood Cliffs, NJ.

Todini, E. 1996 The ARNO rainfall-runoff model. J. Hydrol. 175,

339–382.

Toro, E. F. 1997 Riemann Solvers and Numerical Methods for Fluid

Dynamics. Springer, Berlin.

94 V. Kutija and M. G. Murray | An object-oriented approach to modelling of free-surface flows Journal of Hydroinformatics | 09.2 | 2007

Downloaded from https://iwaponline.com/jh/article-pdf/9/2/81/392860/81.pdf
by guest
on 22 January 2019

	An object-oriented approach to the modelling of free-surface flows
	NOTATIONS
	&?tpt=-5pt;ABB&?show [nucBreak];REVIATI&?show [/nucBreak];ONS
	INTRODUCTION
	GOVERNING EQUATIONS AND SOLUTION &?tul=0;ALG&?show [nucBreak];ORIT&?show [/nucBreak];HMS
	OBJECT-ORIENTED APPROACH
	DYNAMIC SYSTEMS AND OBJECT-ORIENTED &?tul=0;APP&?show [nucBreak];RO&?show [/nucBreak];ACH
	Identify states
	Identify events
	Timing loop

	OBJECT-ORIENTED DESIGN OF NUMERICAL &?tul=0;ALG&?show [nucBreak];ORIT&?show [/nucBreak];HMS IN THE NOAH MOD&?show [nucBreak];EL
	Organisation and control
	Calculation objects in NOAH 1D
	Calculation objects in NOAH 2D

	FEATURES OF NOAH MODELS
	DISCUSSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	References

