CORRESPONDENCE

Bispecific Antibody That Binds Carcinoembryonic Antigen and Ricin Toxin A Chain Cytotoxic for Gastrointestinal Tract Tumor Cells

Monoclonal antibodies have many attractions as targeting agents for site-specific delivery of drugs (1). An alternative approach to chemical conjugation is to use a bispecific antibody with dual binding activity to link a toxic moiety to a binding moiety with targeting specificity. This approach is being explored with drugs (2), drug-carrier conjugates (3), and ribosome-inhibiting toxins (4, 5). With such bispecific antibodies, the toxic and targeting moieties could be administered separately, with the smaller size of the separate components giving potentially advantageous tissue penetration. It would also be possible to prelocalize the antibody, giving considerable flexibility in the design of schedules for optimum localization of the toxic moiety. However, it is important to examine in vitro whether a monovalent form of an antibody against a selected tumor-associated antigen can deliver sufficient toxin of choice to an appropriate intracellular compartment to kill cells of the proposed type of target tumor. In this study, a bispecific antibody with specificities for carcinoembryonic antigen (CEA) and the A chain of ricin toxin (RTA) has been produced and examined for its ability, in the presence of RTA, to mediate selective target-cell damage against CEA-expressing gastrointestinal tract tumor cells.

Bispecific antibodies can be produced by chemical conjugation of antibody fragments (5), but fusion of two hybridomas or a hybridoma with immune spleen cells (2, 6-8) can produce hybridomas giving a continual supply of antibody. Hybridoma to hybridoma fusion was used in the present study, and selection of heterohybrids using a fluorescence-activated cell sorter was found to be a rapid and convenient method of isolating hybrid hybridomas. From a fusion of an anti-RTA hybridoma (designated 596/192) and an anti-CEA hybridoma (NCRC-23), a hybrid hybridoma designated 636, which was found to secrete high levels of antibodies binding to CEA and RTA, was selected and recloned twice.

The maximum yield of bispecific antibody from hybrid hybridomas is 50% of the total immunoglobulin synthesized, but lower proportions of bispecific antibody are produced if heterologous heavy and light chain reassociations occur (9). In the present study, we separated antibodies using agarose-encapsulated hydroxyapatite (IBF Biotechnics, Life Science Laboratories, Luton, UK): anti-RTA reactivity eluted at about 0.087 M phosphate, both anti-CEA and anti-RTA reactivities eluted at about 0.087 M, and binding activity for CEA alone eluted at approximately 0.158 M. Antibody fractions were then tested for their ability to bridge between CEA and RTA in a flow cytometric test. Latex beads with CEA covalently coupled to the surface (10) were mixed with putative bispecific antibody and RTA labeled with fluorescein; bound fluorescence was quantitated by flow cytometry. A positive reaction was seen in the intermediate fractions from the column, but not in the early or late fractions or the parent antibodies.

Purified 636 bispecific monoclonal antibody acted synergistically with RTA to achieve highly significant cytotoxicity (table 1) at an RTA concentration as low as 4 × 10⁻⁹ M against CEA-expressing MKN-45 gastric carcinoma cells. These results compare with those of independent experiments performed with chemically prepared conjugates between RTA and a different CEA-specific antibody (228). In those experiments, the most active conjugates killed 50% of MKN-45 cells at a concentration of about 1.5 × 10⁻⁹ M RTA (11). The specificity of the cytotoxic effect delivered by bispecific antibody 636 was demonstrated by the lack of increased damage to 791T cells by RTA in the presence of bispecific antibody (table 2), although this cell line is highly sensitive to RTA delivered as an immunotoxin following conjugation to an appropriate antibody (12).

Thus, monovalently bound, anti-CEA bispecific antibody can deliver RTA to an appropriate intracellular compartment to kill gastrointestinal tract tumor cells. Further experiments, in xenograft systems, are planned to investigate the effect of bispecific antibody on the biodistribution and tumor localization of RTA preparations, particularly deglycosylated forms such as recombinant products, which do not have rapid hepatic

Table 1. Cytotoxicity mediated by RTA chain and bispecific antibody 636

<table>
<thead>
<tr>
<th>Antibody</th>
<th>% cytotoxicity ± SE at antibody concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 μg/mL</td>
</tr>
<tr>
<td>636 (bispecific)</td>
<td>12.6 ± 2.8</td>
</tr>
<tr>
<td>Anti-RTA (monospecific)</td>
<td>12.6 ± 3.8</td>
</tr>
<tr>
<td>Anti-CEA (monospecific)</td>
<td>12.6 ± 3.8</td>
</tr>
</tbody>
</table>

*Cytotoxicity was assessed by inhibition of incorporation of [³⁵Se]selenomethionine as described in Embleton et al. (12). RTA concentration = 250 ng/mL.
†P < .01 by Student's t-test.
‡P < .05 by Student's t-test.
clearance. These experiments will also indicate whether RTA delivered to an epithelial tumor by bispecific antibody can exert a therapeutic effect.

References

(1) **BYERS VS, BALDWIN RW:** Therapeutic strategies with monoclonal antibodies and immunotoxins. Immunology 65:329-335, 1988

(2) **Coryvalan JRF, Smith W:** Construction and characterization of a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids. Cancer Immunol Immunother 24:127-132, 1987

(6) **WEBB KS, Ware JL, PARKS SF, et al:** Evidence for a novel hybrid immunotoxin recognizing ricin A-chain by one antigen-combining site and a prostate-restricted antigen by the remaining antigen combining site: Potential for immunotherapy. Cancer Treat Rep 69:663-672, 1985

(9) **MILSTEIN C, Cuello AC:** Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunol Today 5:259-304, 1984

(10) **ROBINS RA, Austin EB, Day J, et al:** Antibody-antibody and antibody-antigen interactions studied by flow cytometry. Proteids Biol Fluids. In press

R. A. ROBINS*
M. J. EMBLETON
M. V. FIMM
D. S. BETTS
A. CHARLESTON
A. J. MARKHAM
R. W. BALDWIN
Cancer Research Campaign Laboratories
Nottingham University
Nottingham, England
Kim Cox is a Project Manager. Kim Cox is a Nurse.

Most people don’t think of nurses in managerial terms. That’s too bad. Because the nurse’s role within the medical organization is, in many ways, similar to that of a manager in business. The nurse is a planner of treatment programs. A coordinator of staff and systems. A person in a position of responsibility, who must think quickly and creatively, make critical decisions, and assume primary responsibility for the success of each project.

What differentiates the nurse is that each project is, ultimately, a human life.

At the Warren Grant Magnuson Clinical Center of NIH, we are committed to the advancement of the nursing profession. Ours is a 540-bed hospital in the Washington, D.C. area, staffed by over 700 excellent nurses like Kim Cox. As the research hospital for the National Institutes of Health, our mission, given us by Congress, is the future of human health. And that future depends significantly on the progress of nursing today.

It’s no longer enough to appreciate the quality of nursing care in our hospitals. We must recognize and respect the quality of management the nurse devotes to it. Our aim is to make everyone understand that.

If you’re a nurse who wants to further your profession as well as your career, we’d like to have you on our team. Call Maureen Estrin, RN, BSN, collect at (301) 496-2849.