EDITORIAL

Does Endothelium-Derived Nitric Oxide Have a Role in Cytokine-Induced Hypotension?

Carl F. Nathan, * Dennis J. Stuehr

Early studies of mammalian nitrogen oxide biosynthesis began with the rationale that endogenously formed nitrogen oxides could generate N-nitrosamines and, thus, initiate carcinogenesis (1). Since then, our understanding of the biologic consequences of nitrogen oxide biosynthesis has expanded considerably. Following its initial discovery in macrophages (2), nitrogen oxide biosynthesis has been demonstrated in endothelial cells (3,4), neutrophils (5,6), brain cells (7-9), Kupffer’s cells (10), hepatocytes (11), an adenocarcinoma cell line (12), and the adrenal gland (13). Investigators using 15N in studies of macrophages and endothelial cells (14,15) confirmed that nitrogen oxides are formed from one of the two equivalent guanidino nitrogens of L-arginine. The primary products of this enzymatic oxidation are nitric oxide and L-citrulline (3,4,11,16-18). Nitric oxide is bioactive but decomposes rapidly in aerated solutions to form mixtures of nitrite and nitrate.

The biologic effects of endogenously generated nitric oxide depend in part on the flux of nitric oxide reaching the target cell. When nitric oxide is produced in small amounts, many of its effects are mediated through activation of soluble guanylate cyclase (19,20). This signal transduction pathway plays a central role in the dynamic control of vascular resistance, platelet function, and excitatory synaptic transmission (3,4,8,9,21). When produced in larger amounts, nitric oxide inhibits synthesis of DNA and protein by unknown mechanisms and inhibits oxidative phosphorylation by reacting with iron-sulfur metalloenzymes of the mitochondrial electron-transport chain (17,22-24). Macrophage-derived nitric oxide can mediate tumor cell cytostasis (17,24) and is involved in macrophage-mediated killing or inhibition of a variety of microbial pathogens (25-27).

Evidently, the enzymes responsible for nitric oxide synthesis may constitute a family containing at least two distinct types (table 1). Both type I and type II nitric-oxide synthase are soluble and utilize L-arginine and reduced NADPH (NADPH) as substrates. The type I enzyme is induced in cells within 4-18 hours after exposure to a discrete set of immunostimulators (microbial products and cytokines) (11,12,28-30), while expression of the type II enzyme appears to be constitutive; that is, it requires no induction. Once induced, the type I enzyme synthesizes nitric oxide at a constant rate (29) for relatively long periods (5-36 hr) and, in cell-free systems, requires no added divalent metal ions. In contrast, the type II enzyme synthesizes nitric oxide within seconds in response to ligand-receptor-coupling events at the cell surface, displays a strict dependence on calcium ions and calmodulin, and is sensitive to calmodulin inhibitors (7-9,13). The type I enzyme requires tetrahydrobiopterin as a cofactor (31,32), but the type II enzyme apparently does not (9,13). N6-monomethyl-L-arginine is far more potent than N6-nitro-L-arginine in inhibiting the type I enzyme, whereas with the type II enzyme, the opposite is true (Gross SS, Stuehr DJ, Griffith O: unpublished data). Recent evidence suggests that the type I enzyme contains an NADPH-dependent flavin-adenine dinucleotide flavoprotein1; it is not known whether this is also true for the type II enzyme. So far, only cells of mouse or rat origin have been shown to express the type I enzyme.

In this issue of the Journal, Kilbourn and Belloni (33) report the provocative observation that mouse brain endothelial cells can release nitrogen oxides in response to cytokines. Their findings are novel in two ways.

First, the prolonged release of nitrogen oxides from endothelial cells in response to cytokines seems to lead to the accumulation of larger amounts of nitrogen oxides than endothelial cells were previously believed to make. Second, the results suggest that endothelial cells can activate their nitric-oxide synthase, not only by means of the rapid response to agonists that is characteristic of endothelial cells, neutrophils, and cerebellar cells, but also via

Endothelial cells are now known to express cytokine receptors and to respond to cytokines in culture (34-36). The prolonged release of nitrogen oxides from these cells may be mediated by cytokines. The cytokines that induce the synthesis of nitric oxide in these cells are not yet known. The observation that endothelial cells can release nitrogen oxides in response to cytokines suggests that these cells may play a role in the development of hypotension in sepsis, endotoxemia, and other conditions in which cytokines are released.

Table 1. Nitric-oxide synthases: evidence for an enzyme family

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>Macrophages</td>
<td>Cerebellar cells</td>
</tr>
<tr>
<td></td>
<td>Hepatocytes</td>
<td>Endothelium</td>
</tr>
<tr>
<td></td>
<td>Tumor cells</td>
<td>Neutrophils</td>
</tr>
<tr>
<td>Mode of activation</td>
<td>Inducible</td>
<td>Constitutive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agonist triggered</td>
</tr>
<tr>
<td>Inhibited by</td>
<td>Trifluoperazine</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>N6-L-arginine analogues*</td>
<td>NMA > NNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNA > NMA</td>
</tr>
<tr>
<td>Dependent on</td>
<td>Calmodulin</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Tetrahydrobiopterin</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Flavine-adenine dinucleotide</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

*NMA = N6-methyl-L-arginine; NNA = N6-nitro-L-arginine.

*Correspondence to: Carl F. Nathan, M.D., Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, New York, NY. We thank Drs. Nyon-Soo Kwon, Steven Gross, and Roberto Levi for helpful comments and communication of results prior to publication.

Received February 22, 1990; accepted February 23, 1990.

Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, New York, NY.

Stuehr DJ, Kwon NS, Cho JC, et al.: manuscript submitted for publication.
the slow process used by macrophages, hepatocytes, and tumor cells. This hypothesis raises important questions: Is the same enzyme system regulated in two ways? Alternatively, are these the first cells found to contain both type I and type II nitric-oxide synthases? Still other explanations could be considered. For example, cytokines might induce cells in the mouse brain cell cultures to slowly release an autacoid that triggers endothelial cell type II nitric-oxide synthase in the conventional manner.

As Kilbourn and Belloni point out, their findings have a therapeutically important implication. If endothelial-derived nitric oxide accounts for the vascular leak syndrome that accompanies experimental administration of certain cytokines, then blocking the production of nitric oxide may permit such cytokines to be given in higher doses with less toxicity.

However, several points need clarification or qualification. The authors do not indicate whether their endothelial preparations could, in fact, release nitrogen oxides rapidly in response to agonists like histamine, acetylcholine, bradykinin, thrombin, adenosine diphosphate, or calcium ionophores. Thus, it remains to be demonstrated that a single cell population bears the hallmarks of two different mechanisms for regulating nitric-oxide synthase or of two different nitric-oxide synthases. To our knowledge, there is no sound basis for the assertion that endothelial cells are the main source of nitrogen oxides in vivo, especially when one considers the potential contribution of the liver (11).

Finally, the introduction should not be misconstrued as suggesting that all the agents shown to induce endothelial cell nitrogen oxide release also induce a hypotensive vascular leak syndrome. In fact, the principal agent effective in this study, interferon-γ (IFN-γ), does not produce this toxic effect, even though it almost certainly causes the production of one or more of the other cytokines that synergize with IFN-γ in vitro to induce nitrogen oxide synthesis.

A very recent, important observation appears to go hand in hand with the findings of Kilbourn and Belloni—profound hypotension induced by injection of tumor necrosis factor in dogs was reversed by administration of NG-monomethyl-l-arginine and restored with l-arginine (34). However, two dissimilarities have not been explained. Hypotension began 20 minutes after injection of tumour necrosis factor without endothoxin (34), while endothelial cells only began to release nitrogen oxides 8 hours after exposure to cytokines, and only in the presence of endotoxin. This, together with the discrepancy between the in vitro observations reported by Kilbourn and Belloni and clinical experience with IFN-γ, emphasizes that mouse brain endothelial cell cultures model only some aspects of the processes leading to cytokine-induced hypotension in humans.

Nonetheless, the reports by Kilbourn and Belloni (33) and by Kilbourn et al. (34) provide a strong impetus for further studies of the inhibition of nitric-oxide synthases in experimental animals (35,36) and humans (37), with both substrate analogues (13,17) and other kinds of inhibitors (9). 1

References

(2) Stuehr DJ, Marletta MA: Mammalian nitrite biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738-7742, 1985

Rees DD, Palmer RMJ, Moncada S: Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378, 1989

It All Boils Down to Oncology Overview

To give you the essence of a current cancer topic, each ONCOLOGY OVERVIEW distills the world's recent biomedical research. That's crucial because of the overwhelming wealth of cancer research reports now available.

Sometimes the information you need most appears in journals you don't normally see. Maybe you've never even heard of some of them. Indeed, you may find it hard enough to keep up with the best-known journals.

Abstracts of 248 key journal articles were among the selections in the ONCOLOGY OVERVIEW covering Mammography. A leading researcher in the field selected the most significant abstracts from more than 3,000 sources, and contributed an editorial commentary on the status and future of the field.

Every year select cancer topics are summarized in separate overviews. The 150 to 500 abstracts in each issue are conveniently divided by category and indexed by author and keyword. Prices range from $2–12.00.

Turn to ONCOLOGY OVERVIEWS for the best available resource on cancer research findings involving a single topic.

ONCOLOGY OVERVIEWS are one of NCI's well-rounded family of computerized cancer databases, scientific journals and publications. They're all part of the mission to reduce cancer deaths by one half by the year 2000.

ONCOLOGY OVERVIEW

The National Cancer Institute
The World's Foremost Cancer Authority

For ordering information, write to:
National Cancer Institute
OO, Bldg 82, Rm ADV,
Bethesda, MD 20892
Most people don’t think of nurses in managerial terms. That’s too bad. Because the nurse’s role within the medical organization is, in many ways, similar to that of a manager in business. The nurse is a planner of treatment programs. A coordinator of staff and systems. A person in a position of responsibility, who must think quickly and creatively, make critical decisions, and assume primary responsibility for the success of each project.

What differentiates the nurse is that each project is, ultimately, a human life.

At the Warren Grant Magnuson Clinical Center of NIH, we are committed to the advancement of the nursing profession. Ours is a 540-bed hospital in the Washington, D.C. area, staffed by over 700 excellent nurses like Kim Cox. As the research hospital for the National Institutes of Health, our mission, given us by Congress, is the future of human health. And that future depends significantly on the progress of nursing today.

It’s no longer enough to appreciate the quality of nursing care in our hospitals. We must recognize and respect the quality of management the nurse devotes to it. Our aim is to make everyone understand that.

If you’re a nurse who wants to further your profession as well as your career, we’d like to have you on our team. Call Maureen Estrin, RN, BSN, collect at (301) 486-2849.

National Institutes Of Health
Clinical Center
Nursing Department
9000 Rockville Pike, Bethesda, Maryland 20892