Detection, integration and persistence of aeromonads in water distribution pipe biofilms
A.-M. Bomo, M. V. Storey and N. J. Ashbolt

ABSTRACT

The occurrence of Aeromonas spp. within biofilms formed on stainless steel (SS), unplasticized polyvinyl chloride (uPVC) and glass (GL) substrata was investigated in modified Robbins Devices (MRD) in potable (MRD-p) and recycled (MRD-r) water systems, a Biofilm Reactor (BR) and a laboratory-scale pipe loop (PL) receiving simulated recycled wastewater. No aeromonads were isolated from the MRD-p whereas 3–10% of SS and uPVC coupons (mean 3.85 CFU cm⁻² and 12.8 CFU cm⁻², respectively) were aeromonad-positive in the MRD-r. Aeromonads were isolated from six SS coupons (67%) (mean 63.4 CFU cm⁻²) and nine uPVC coupons (100%) (mean 6.50 x 10² CFU cm⁻²) in the BR fed with recycled water and from all coupons (100%) in the simulated recycled water system (PL). Mean numbers of aeromonads on GL and SS coupons were 5.83 x 10² CFU cm⁻² and 8.73 x 10² CFU cm⁻², respectively. No isolate was of known human health significance (i.e. Aeromonas caviae, A. hydrophila or A. veronii), though they were confirmed as Aeromonas spp. by PCR and fluorescence in situ hybridization (FISH). Challenging the PL biofilms with a slug dose of A. hydrophila (ATCC 14715) showed that biofilm in the PL accumulated in the order of 10³–10⁴ A. hydrophila cm⁻², the number of which decreased over time, though could not be explained in terms of conventional 1st order decay kinetics. A sub-population of FISH-positive A. hydrophila became established within the biofilm, thereby demonstrating their ability to incorporate and persist in biofilms formed within distribution pipe systems. A similar observation was not made for culturable aeromonads, though the exact human health significance of this remains unknown. These findings, however, further question the adequacy of culture-based techniques and their often anomalous discrepancy with direct techniques for the enumeration of bacterial pathogens in environmental samples.

Key words | Aeromonas spp., biofilm, drinking water, pathogen accumulation, recycled water, water distribution pipes

INTRODUCTION

Bacteria belonging to the genus Aeromonas have long been known to cause disease in fish, reptiles and amphibians (Hazai et al. 1978). In more recent years, however, their role as opportunistic pathogens implicated in human illnesses such as gastroenteritis, wound infections, septicaemia and soft tissue conditions, has gained increasing interest (Deodhar et al. 1991; Janda et al. 1994; Baloda et al. 1995; Percival & Walker 1999; Essers et al. 2000). Since 2003, various public water utilities in the United States have started a screening survey for the presence of Aeromonas in their distribution pipe water (EPA 2003). The motile mesophilic aeromonads implicated in human illnesses include A. caviae, A. veronii (biotype sobria) and A. hydrophila (Deodhar et al. 1991; Janda & Abbot 1998). Strains of A. hydrophila are capable of causing infections in both fish and humans, whilst the non-motile A. salmonicida is known solely as a fish pathogen (Lunder & Håstein 1990).
Aeromonads occur widely in nature and have been isolated from soils, foods and many types of water, both fresh and marine (Hazan et al. 1978; Nakano et al. 1990; Ashbolt et al. 1995). Aeromonads are also found in high numbers in raw sewage and sewage effluents, and are capable of growing in natural waters in the presence of sufficient nutrients and temperatures (Rippey & Cabelli 1985; Poffe & Op de Beeck 1991). It has been proposed therefore that the presence of elevated numbers of aeromonads may be indicative of faecal pollution and nutrient-rich (eutrophic) conditions (Araujo et al. 1991; Poffe & Op de Beeck 1991). Furthermore, a positive correlation has been reported between freshwater eutrophication and the presence of potentially virulent aeromonads, mainly A. hydrophila and A. veronii (Ashbolt et al. 1995). Araujo et al. (1991) have observed that A. caviae predominate in sewage and in waters with a high degree of faecal pollution, whereas, in less polluted waters (fresh or marine), A. caviae and A. hydrophila were equally distributed, with A. sobria the dominant species in non-polluted waters. Potentially virulent aeromonads have also been isolated from drinking water supplies (Kühn et al. 1997a), which may represent strains that cause wound infection (Gold & Salit 1993), but appear unlikely to be important gastrointestinal strains (Havelaar et al. 1992; WHO 2002; Borchardt 2003). Nonetheless, aeromonads have been isolated from biofilms in water distribution systems (Holmes & Nicolls 1995; Walker et al. 1995; Chauret et al. 2001), increasing their persistence over many years (Kühn et al. 1997b) and making them a potential health risk for consumers of distribution pipe water, particularly the immunocompromised.

Biofilms provide an advantageous environment for bacteria in otherwise oligotrophic environments, offering them an increased flux of nutrients that increases both their chances of survival and regrowth potential. Biofilms that form on pipe surfaces within a distribution system may therefore act as a reservoir for microbial pathogens to persist for prolonged periods of time and even recolonize the bulk water environment (Szewzyk et al. 2000). Emerging waterborne pathogens such as Helicobacter pylori (Mackay et al. 1998), enterohaemorrhagic E. coli (EHEC) (Szewzyk et al. 1994), Salmonella typhimurium (Armon et al. 1997) and Campylobacter spp. (Buswell et al. 1998) have been shown to persist within biofilms formed in experimental laboratory systems and may therefore have the potential to accumulate and persist within pipe biofilms formed within a distribution system. Though cultural forms of these pathogens have not been isolated from municipal water distribution systems, the opportunistic pathogens aeromonads have (van der Kooij & Hijnen 1988; Gavriel et al. 1998; Szewzyk et al. 2000). Biofilms can therefore act as a reservoir for aeromonad growth, providing an environment in which they can accumulate and persist. Problems may then arise in distribution systems through detachment of biofilm from the pipe surface, either by continuous erosion of small portions of biofilm or more rapid and massive loss of biofilm by sloughing (Characklis 1990). Such biofilm detachment could contribute to bacterial contamination of the bulk water and thereby present a potential health risk to consumers. Thus, knowledge of biofilm growth and pathogen accumulation in distribution pipe systems should be an important objective for good water distribution management strategies.

Despite the ubiquitous isolation of Aeromonas from the bulk water phase of distribution systems worldwide, a limited amount of work has focused on the direct examination of aeromonads in biofilms formed within distribution pipe systems (Holmes & Nicolls 1995; Walker et al. 1995; Chauret et al. 2001). The purpose of this study was therefore to investigate various methods that can be used to screen for aeromonads in biofilms from different water sources and to investigate the integration and persistence of A. hydrophila biofilms in a laboratory-scale simulated non-potable water distribution system.

MATERIALS AND METHODS

Potable water biofilm study

Field studies were carried out at a biofilm sampling site (BSS) located within the Rouse Hill Development Area (RHDA), New South Wales (Storey & Ashbolt 2001), the site of Australia’s first full-scale dual reticulation (potable
and recycled water) system. Biofilms were collected from two different types of devices within the BSS; modified Robbins Devices (MRDs) and a Biofilm Reactor® (BR®) (AWT, Environment, Science and Technology, Sydney, Australia) described in greater detail elsewhere (Storey & Ashbolt 2002). The MRDs were 150 mm in diameter and contained removable unplasticized polyvinyl chloride (uPVC) coupons and grade 304 bright annealed stainless steel (SS) coupons placed in a helical pattern over the length of the device (1.2 m). Care was taken not to compromise the hydraulic integrity of the device through the overlapping of coupons.

MRDs were connected in-line within cement-lined potable (MRD-p) and recycled (MRD-r) water distribution pipes, whilst the BR®, also containing SS and uPVC coupons, was connected to the recycled water distribution pipe. The BR® was a modified Couette device, or ‘annular reactor’, which was configured to produce similar hydraulic conditions to those that would be encountered within the distribution system (Reynold’s number, Re~10³). The concentration of free and total chlorine was measured in all devices at 10 min intervals by Dulcotest® CGE 2 mg l⁻¹ sensors (ProMinent® Dosiertechnik, GmbH, Heidelberg, Germany) fitted in an in-line sensor housing (ProMinent® GmbH), while pH was measured by Dulcotest® sensors (ProMinent® GmbH). The hydraulic demand was measured by MAGFLO® electromagnetic flow meters Type MAG 3100 fitted with a MAG 3100 signal converter and SENSOR-PROM® memory unit (Danfoss Instrumentation Aust. Pty. Ltd), while water temperature was measured by Type A stainless steel thermocouples (Pyrosales Pty. Ltd, Sydney).

Biofilms were allowed to accumulate on coupon surfaces in each device for a period of 10 weeks. After this time, coupons were removed from MRDs and the BR® and placed in sterile stomacher bags containing 30 ml of ¹⁄₂ strength Ringers solution. Biofilms were then removed from coupon surfaces using a combination of sonication and stomaching as described elsewhere (Storey & Ashbolt 2002). Both techniques resulted in a greater than 3-log removal of biofilm bacteria from coupon surfaces, whilst at the same time, not having any measurable effect on the viability of biofilm bacteria (Storey 2002).

Recycled water biofilm study

Both the MRD-p and MRD-r within the BSS were serviced with potable water only throughout the duration of this study. In order to study biofilms formed in recycled wastewater, a laboratory-scale pipe loop (PL) system receiving simulated recycled wastewater was constructed (Storey & Ashbolt 2002). The PL consisted of 100 mm uPVC piping designed in a U-configuration that permitted the re-circulation of water by a peristaltic pump. The device, which resembled a MRD, had a total volume of 60 litres, and contained SS and glass (GL) coupons that could be removed from the PL throughout the duration of the experiment. For each experimental run, the PL was inoculated with diluted primary effluent (10% in potable water) (total organic carbon, TOC: 68 mg l⁻¹, total nitrogen, TN: 40.3 mg l⁻¹; total phosphate, TP: 24.8 mg l⁻¹). Diluted effluent was then re-circulated throughout the system at a linear velocity equivalent to that within the field (1 cm sec⁻¹) for a period of 21 days to precondition coupon surfaces with water containing equivalent nutrient levels to those expected in recycled wastewater. For the remainder of each experimental period, the PL was connected directly to tap water (temperature: 22–25°C) supplemented with sterile (autoclaved) primary effluent (0.05–0.1%) and operated in a single pass flow through the system. After 8 weeks of biofilm accumulation, coupons were removed from the PL and the biofilm removed from coupons using methods described previously.

Biofilm characterization and enumeration and identification of aeromonads

Biofilm homogenates were characterized by total protein (NanoOrange® Protein Quantitation Kit) and carbohydrate (Phenol-sulfuric) content, heterotrophic plate counts (HPC on R2A agar) and total bacteria (LIVE/DEAD BacLight® Bacterial Viability Kit) as described elsewhere (Storey & Ashbolt 2002). Results were expressed per cm² of biofilm coverage on coupon surfaces. The numbers of aeromonads in biofilm homogenates were determined using methods described in Ashbolt et al. (1995). Appropriate volumes of biofilm homogenate were membrane-filtered (0.45 µm nitrocellulose filter,
Millipore) and filters placed on mAeromonas Agar Base (CM833, Oxoid Ltd, UK) supplemented with 5 mg l⁻¹ ampicillin. The plates were incubated at 37°C and colonies enumerated after 24 h. Presumptive aeromonad colonies were picked from the primary isolation plates, re-streaked on to Tryptone Soya Agar (TSA) (Oxoid Pty. Ltd, UK) and incubated for 48 h at 37°C. Oxidase-positive isolates were then chosen for further identification using biochemical testing, PCR and fluorescence in situ hybridization (FISH).

Presumptive aeromonad isolates were identified using the eight biochemical tests (esculin hydrolysis, Voges-Proskauer, H₂S production, arabinose fermentation, salicin fermentation, gluconate oxidation and production of gas from glycerol and glucose) described by Popoff & Veron (1976), Poffe & Op de Beeck (1991) and Ashbolt et al. (1995).

For PCR analysis, isolates were grown overnight in nutrient broth and DNA extracted from 1 ml of the cell suspension using QIAamp® DNA Mini Kit (Qiagen Pty Ltd, Victoria, Australia). PCR was run using species-specific forward primers for *A. hydrophila* (5’ GAA AGG TTG ATG CCT AAT ACG TA 3’) and *A. veronii* (5’ GAG GAA AGG TTG GTA GCT AAT AA 3’) (Dorsch et al. 1994). A general forward *Aeromonas* genus primer (5’ GAG TTT GAT CCT GGC TCA G 3’) (Dorsch et al. 1994). A general forward *Aeromonas* genus primer (5’ GAT CCT AAT ACG TA 3’) and *A. veronii* (5’ GAG GAA AGG TTG GTA GCT AAT AA 3’) (Dorsch et al. 1994). A general forward *Aeromonas* genus primer (5’ GAG TTT GAT CCT GGC TCA G 3’) (Dorsch et al. 1994) was used in combination with all three forward primers. All PCRs were run under the following conditions: 94°C for 2 min, 92°C for 15 sec, cycled 30 times at 45°C for 15 sec, then at 72°C for 20 sec, 45°C for 45 sec, 72°C for 5 min and 25°C for 1 min. The reaction mixtures in all tubes (40 µl capillary tubes) contained 2 µl of DNA, 20 ng primer and 0.25 mmol l⁻¹ dNTP, 4 µl of 10 × reaction buffer and 2.5 mmol l⁻¹ of MgCl₂. Distilled water was added to the tubes to reach a final volume of 40 µl. One unit of Taq polymerase (Red Hot® DNA Polymerase, ABgene, Surrey, UK) was added last to each tube. PCR products were analysed by agarose gel electrophoresis (1%) that included a molecular weight standard (100 bp DNA ladder, N3231S, Biolabs Inc., New England). All primers were purchased from Genset Pacific Pty. Ltd, Lismore, Australia.

Confirmation of presumptive aeromonad isolates to genus level was performed by FISH using a CY3-labelled rRNA-targeted oligonucleotide probe (5’-CTA CTT TCC CGC TGC CGC C-3’) complementary to a region of the 16S rRNA of all sequenced aeromonads except for *A. schubertii* (Kampfer et al. 1996) (Genset SA, Paris, France). Cells were fixed in 3% paraformaldehyde at 4°C for 1–3 h and washed in PBS. Ten microlitres of the fixed cell suspension were added to wells on microscope slides that had been pretreated with chlorinated organopolysiloxane in heptane (Sigma SL2) (Sigma Chemical CO, St Louis, USA). The cell suspension was air-dried and the cells hybridized using the conditions as described by Manz et al. (1992) and Kampfer et al. (1996). Samples of 10 µl hybridization solution (35% formamide, 0.9 mol l⁻¹ NaCl, 20 mmol l⁻¹ Tris pH 7.2, 0.01% SDS, 5 ng probe) were applied to each well on the slide and incubated for 1.5 h at 46°C in a humidified chamber. The probe was removed from the slide by adding 2 ml of prewarmed washing buffer (20 mmol l⁻¹ Tris, 0.01% SDS, 40 mmol l⁻¹ NaCl, 5 mmol l⁻¹ EDTA) to the slide and immersing the slide in washing buffer for 20 min at 46°C. Slides were counterstained with DAPI (1 µg ml⁻¹) and mounted in Citiflour AF2 (Citiflour Ltd, London, UK). Homogenates from the BSS were also pooled together and mixed well for FISH analyses as described above. All slides were examined by epifluorescence microscopy (EFM) (Leitz Laborlux S®, Leitz Corp., Germany).

Integration and persistence of *A. hydrophila* within biofilms

Biofilms were allowed to accumulate on the coupons in the PL for 8 weeks using experimental conditions described previously. The loop was then slug-dosed with a suspension (1 × 10⁸ CFU ml⁻¹) of *A. hydrophila* (ATCC 14751). The bacterial cells were allowed to accumulate in the biofilm by re-circulating the cell suspension in the loop for a period of 24 h, after which time the loop was operated in a single pass mode. On days −1, 0, 1, 2, 3, 6, 10, 20 and 30, GL and SS coupons were removed from the system. Duplicate coupons of each material were
removed on each sampling day, one for analyses of biofilm homogenate using the same parameters and methods as described earlier, the second for FISH. Hybridization conditions were the same as described previously. Each hybridization was performed with the CY3-labelled Aeromonas probe and a general CY3 labelled bacterial probe (EUB 338) (Giovannoni et al. 1988). In addition, negative controls were undertaken to confirm probe specificity and measure amounts of background fluorescence. Coupons were counterstained with DAPI (1 µg ml⁻¹), mounted in Citiflour AF2 (Citiflour Ltd, London, UK) and examined by EFM. For statistical evaluation 40–60 fields of view per probe and coupon were enumerated, with results expressed as cells cm⁻².

Water samples were also taken from the pipe loop on the same days as biofilm was collected from the system and analysed for the occurrence of culturable aeromonads using methods described previously.

Statistical analyses

All bacterial counts were log10 transformed prior to their analysis. In an attempt to account for the inherently heterogeneous biofilm coverage and composition on coupon surfaces (Storey & Ashbolt 2002), aeromonad numbers from the BR® device were normalized against total biofilm protein and total carbohydrate content. Comparisons of results were carried out using analysis of variance (ANOVA) with Tukey Kramer HSD test for multiple comparisons with statistically significant differences for P<0.05. Linear regression was carried out on the data from the integration and persistence study to determine whether first order kinetics (Equation 1) could be used to describe the declining aeromonad numbers observed within coupon biofilms.

\[
\frac{dC}{dt} = -kC \\
C(t) = (C_0)e^{-kt}
\] (1)

All statistical analyses were undertaken using JMP v. 3.2.2 (SAS Institute, Cary, NC, USA).

RESULTS

General water quality in different systems

Total and free chlorine were measured in the MRD-p at concentrations of 0.24 ± 0.14 mg l⁻¹ and 0.04 ± 0.14 mg l⁻¹, respectively. Within the MRD-r, total and free chlorine were measured at 0.19 ± 0.12 mg l⁻¹ and 0.05 ± 0.03 mg l⁻¹, respectively. Water pH was recorded at 7.9 ± 0.26 in the MRD-p and 7.8 ± 0.42 in the MRD-r. Water temperature was 21.5°C and 22.4°C in MRD-p and MRD-r, respectively. The hydraulic demand in the MRD-p was 1.1 ± 0.92 l sec⁻¹ and 0.46 ± 0.53 l sec⁻¹ in the MRD-r, equating to linear velocities of 6.2 ± 5.2 cm sec⁻¹ and 2.6 ± 3.0 cm sec⁻¹, respectively.

Quantification of aeromonads in different systems

No aeromonads were detected in biofilms formed in the MRD-p, whereas from a total of 30 coupons investigated for the two substrata in the MRD-r, aeromonads were isolated from one SS coupon (3.3%) and three uPVC coupons (10%) (detection limit of 25 CFU cm⁻²) (Table 1). On the Aeromonas-positive coupons, the numbers of aeromonads were still relatively high when compared with the total viable count of bacteria (0.02%). Aeromonads were isolated from biofilms formed on six SS coupons (67%) and nine uPVC coupons (100%) in the BR® (Table 1). Due to the very low numbers of aeromonads observed in both MRDs, comparisons of differences between substrata (SS and uPVC) were only undertaken for the BR®. Here a significantly higher (P = 0.03) number of aeromonads were culturable from uPVC compared with SS coupons. Aeromonads were recovered from biofilms formed on all coupons in the PL (Table 1). A comparison of pooled biofilm homogenates from four SS and four GL coupons in the PL showed no significant (P>0.05) difference in the number of aeromonads between substrata. Neglecting different substrata and combining all the aeromonad results due to water quality (potable water vs. recycled wastewater) showed that there was significantly more aeromonad growth in biofilms formed within the PL compared with the BR® (P = 0.005).
Table 1 | Average numbers of Aeromonas in biofilm and characterization of biofilm homogenates (HPC, total bacterial counts, total protein and total carbohydrate) from different water systems and substrata

<table>
<thead>
<tr>
<th>Water source</th>
<th>Sampling device</th>
<th>Material</th>
<th>Number of coupons investigated</th>
<th>Aeromonads (CFU cm⁻² ±1SD)</th>
<th>Heterotrophic plate counts (HPC) (CFU cm⁻² ±1SD)</th>
<th>Total bacterial counts (cells cm⁻² ±1SD)</th>
<th>Total protein concentration (µg cm⁻² ±1SD)</th>
<th>Total carbohydrate concentration (µg cm⁻² ±1SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable water</td>
<td>MRD-p SS</td>
<td>6 ND</td>
<td>5.18 × 10² (± 9.25 × 10^2)</td>
<td>2.18 × 10⁶ (± 6.11 × 10⁵)</td>
<td>4.27 ± 3.31</td>
<td>4.51 ± 2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRD-p uPVC</td>
<td>6 ND</td>
<td>2.24 × 10³ (± 6.89 × 10⁴)</td>
<td>2.03 × 10⁶ (± 3.49 × 10⁴)</td>
<td>5.53 ± 3.26</td>
<td>4.75 ± 3.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRD-r SS</td>
<td>30 ND</td>
<td>3.85 × 10⁰ (± 2.11 × 10¹)</td>
<td>1.19 × 10³ (± 1.72 × 10³)</td>
<td>1.56 × 10⁶ (± 1.01 × 10⁶)</td>
<td>5.33 ± 2.56</td>
<td>7.26 ± 3.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRD-r uPVC</td>
<td>30 ND</td>
<td>1.28 × 10¹ (± 5.98 × 10¹)</td>
<td>6.21 × 10³ (± 8.17 × 10³)</td>
<td>2.09 × 10⁶ (± 2.42 × 10⁶)</td>
<td>6.17 ± 2.80</td>
<td>7.18 ± 3.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR-r SS</td>
<td>9</td>
<td>6.34 × 10¹ (± 1.53 × 10²)</td>
<td>3.95 × 10³ (± 4.05 × 10³)</td>
<td>1.17 × 10⁶ (± 2.60 × 10⁶)</td>
<td>12.87 ± 4.22</td>
<td>11.85 ± 4.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR-r uPVC</td>
<td>9</td>
<td>6.50 × 10² (± 1.26 × 10³)</td>
<td>1.11 × 10⁴ (± 4.05 × 10³)</td>
<td>4.82 × 10⁵ (± 9.02 × 10⁵)</td>
<td>12.71 ± 4.74</td>
<td>12.29 ± 5.11</td>
<td></td>
</tr>
<tr>
<td>Recycled water</td>
<td>PL GL</td>
<td>18 ND</td>
<td>3.04 × 10² (± 1.01 × 10³)</td>
<td>4.71 × 10⁵ (± 1.52 × 10⁵)</td>
<td>9.66 × 10⁶ (± 3.25 × 10⁶)</td>
<td>68.99 ± 23.19</td>
<td>33.69 ± 8.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL SS</td>
<td>18</td>
<td>8.75 × 10² (± 6.9 × 10¹)</td>
<td>3.74 × 10⁵ (± 2.80 × 10⁵)</td>
<td>7.94 × 10⁶ (± 3.12 × 10⁵)</td>
<td>138.34 ± 26.43</td>
<td>61.82 ± 16.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL GL</td>
<td>5.83 × 10² (± 2.4 × 10²)</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td></td>
</tr>
</tbody>
</table>

ND, Not detected or numbers below detection limit of 25 CFU cm⁻².

*Pooled biofilm homogenate from four coupons. Comparison of aeromonad numbers on SS and GL in PL were based only on pooled biofilm homogenates.

Characterization of biofilm from different systems

There were significantly more total (P<0.05) and culturable bacteria (P<0.0001) recovered from biofilms formed in the BR® than from the two MRDs (Table 1), though no such difference was observed between MRDs. These findings were also supported by a general trend of higher total biofilm protein and carbohydrate content in the BR®, although these differences could not be supported statistically (P>0.05). A comparison of substrata showed that significantly more (P = 0.02) culturable bacteria were present in biofilm from uPVC than from SS coupons, although this observation could not be supported by the total number of bacterial cells or total biofilm protein and carbohydrate content. Furthermore, there was significantly more (P<0.0001) biofilm biomass recovered from the PL than any other device and significantly (P=0.02) more total and culturable bacteria on GL than SS coupons. In contrast, the opposite was observed for total biofilm protein and carbohydrate content (Table 1).

Normalizing aeromonad counts from each coupon in the BR® device against the corresponding total protein and total carbohydrate concentrations from each coupon (CFU aeromonads µg per protein cm⁻² and CFU aeromonads µg per carbohydrate cm⁻², respectively) did not show any significant differences between substrata (SS and uPVC).
Identification of aeromonads

Biofilm homogenates from potable water systems

Only half of a total of 40 presumptive aeromonad colonies isolated from potable water systems grew on TSA agar, even after an extended incubation time (>48 h). Of the isolates, 13 were oxidase-positive and these isolates were therefore used for further identification by biochemical testing, FISH and PCR. Of the eight biochemical tests undertaken, only the test for H₂S gas production provided a positive result (61.5% positive). Three positive controls (A. hydrophila ATCC 14715, A. caviae ATCC 15468 and A. veronii-sobria ATCC 9071) were used and each performed as expected for each test, yet isolate speciation based on eight phenotypic characteristics was inconclusive. Seven of 13 (54%) of the atypical phenotype isolates were confirmed as aeromonads by FISH and 7 of 13 (54%) by PCR, with a 70% agreement between both techniques. Further testing with species-specific primers confirmed that the Aeromonas isolates were not of human health significance (i.e. not A. hydrophila, A. veronii-sobria or A. veronii-veronii).

Twenty sub-samples of pooled biofilm homogenates were also screened for aeromonads using FISH. Within each sub-sample, aeromonads were detected in 49% of biofilms sourced from the MRD-r, and 35% from biofilm homogenates sourced from the MRD-p.

Biofilm homogenates from recycled wastewater

Only PCR and FISH were used to identify aeromonads cultured from the recycled water system. Twenty-one presumptive Aeromonas colonies were picked and restreaked on to TSA agar. All isolates showed good growth on the TSA plates and were used in further identification. Nine of 21 (43%) of the isolates were confirmed as aeromonads by PCR and 10 of 21 (48%) by FISH, with a 76% agreement between both techniques.

Integration and persistence of A. hydrophila in biofilms

Background levels of aeromonads were detected in biofilms prior to seeding the simulated recycled water distribution system (PL) with A. hydrophila. FISH-positive aeromonads were detected in the order of 10³–10⁴ cm⁻² on SS and GL substrata, respectively, at day −1, whilst culturable aeromonads were in the order of 10² cm⁻² on both GL and SS substrata. After seeding, biofilms accumulated between 10³ and 10⁴ culturable and FISH-positive A. hydrophila cm⁻² (Figure 1a and b). CFU numbers for culturable aeromonads initially declined rapidly, then more gradually (days 3–30). At the end of the experimental period, there was no statistically significant (P>0.05) difference in culturable aeromonad numbers recovered from biofilms on day -1 and day 30 on both GL and SS substrata. No significant differences (P>0.05) in biofilm
biomass (HPC, total bacterial counts, total protein and total carbohydrate) were observed between sampling days or between substrata (SS and GL) (data not shown).

Throughout the experiment, aeromonads were determined in higher numbers by FISH than by standard culture techniques (Figure 1a and b). FISH-positive cells remained at high levels until day 10, followed by a more gradual decline. On day 30, aeromonads appeared to establish themselves within biofilms formed on SS coupons; the number of FISH-positive aeromonads was significantly higher \((P<0.0001)\) than that found prior to seeding the system (day −1). No such observation, however, was made for GL coupons.

A line of regression (Figures 2 and 3) was fitted to the persistence data to ascertain whether the reduction of *A. hydrophila* during the experimental period could be described in terms of 1st order kinetics. With the FISH method, the log-linear correlation factor \((r^2)\) was 0.57 for GL (Figure 2a) and 0.50 for SS coupons (Figure 2b), whilst for the culture-based method, \(r^2\) was 0.70 for GL (Figure 3a) and 0.57 for SS coupons (Figure 3b). The gradual decline observed between days 10 and 20 by FISH (Figure 1a and b) contributed most to the log-linearity with a correlation factor of 0.55 for GL and 0.23 for SS coupons. For the remainder of the period (days 0–10 and days 20–30) numbers of aeromonads persisted at relatively stable levels. The same pattern was observed with the culture-based data, with the highest log-linear correlation for the time period with a gradual decline (days 3–30 for GL, days 1–20 for SS) (Figure 1a and 1b).

Before seeding the PL, no aeromonads were detected in the bulk water \(<1\text{ CFU }100\text{ ml}^{-1}\). After seeding, numbers of aeromonads increased to \(1 \times 10^8\text{ CFU ml}^{-1}\) in the bulk water, although they were not detected after day 6 (detection limit 1 CFU 100 ml\(^{-1}\)).

DISCUSSION

Quantification of aeromonads from different distribution systems

Despite a lack of conclusive evidence suggesting that the presence of *Aeromonas* in drinking water is directly attributed to outbreaks of disease, their potential health implications are gaining increasing interest (Szewzyk *et al.* 2000; WHO 2002; EPA 2003). Results from the present study showed that aeromonads were isolated from biofilms formed in potable and recycled water environments, thereby indicating their potential to colonize and subsequently compromise both systems. Results
obtained in this study are also consistent with other studies of drinking water distribution pipe biofilms where aeromonads have been detected (Holmes & Nicolls 1995; Walker et al. 1995; Szewzyk et al. 2000; Chauret et al. 2001).

Differences in the number of aeromonads were observed both between and within systems investigated. The total absence of aeromonads from the MRD-p may have been attributed to the higher mean hydraulic demand and shear \((Re = 7.6 \times 10^3)\) compared with the MRD-r \((Re = 3.1 \times 10^3)\) and BR\(^\circledast\) \((Re = 6.6 \times 10^2)\) (Storey 2002), given that all were serviced from the same water source. This finding warrants further investigations, as aeromonads are routinely isolated from potable water distribution pipe systems (Holmes & Nicolls 1995; Kuhn et al. 1997b) that are likely to encounter similar hydraulic conditions. Whilst there was no significant difference in chlorine concentration between the MRD-p, MRD-r and BR\(^\circledast\) devices, a slightly elevated temperature observed within the MRD-r and BR\(^\circledast\) may have contributed to the growth of aeromonads observed in this study. Increasing levels of *Aeromonas* in drinking water systems have been found to correlate with higher temperatures (Chauret et al. 2001), although this study referred to seasonal temperature patterns rather than the small elevations in temperatures we observed in our study.

The higher numbers of *Aeromonas* in the BR\(^\circledast\) compared with the MRDs was consistent with a higher biofilm biomass in the BR\(^\circledast\). Although *Aeromonas* are known to grow under nutrient-limited conditions (Van der Koij & Hijnen 1988; Walker et al. 1995), more biofilm biomass and greater nutrient availability is likely to favour an increased growth of this genus. This was also seen in the more nutrient-rich model recycled water distribution system (PL) where *Aeromonas* were detected on 100% of coupons investigated and the biofilm biomass was significantly higher than in devices supplied with drinking water.

Within the BR\(^\circledast\) device, a significantly higher number of aeromonads was found on uPVC than on SS coupons. Assanta et al. (1998) also observed a higher number of *Aeromonas* cells on plastic substrata (polybutylene) compared with SS. Higher numbers of *Aeromonas* also correlated with higher numbers of HPC on uPVC than on SS. Other studies have, however, not found any apparent relationship between the presence of *Aeromonas* and HPC in distribution pipe biofilms (Gavriel et al. 1998; Chauret et al. 2001).Whilst there were minor differences in total protein and total carbohydrate concentrations between the two substrata, total numbers of bacteria were higher on SS than on uPVC \((10^6 \text{ vs. } 10^5 \text{ cells cm}^{-2}, \text{respectively})\).
Our total bacterial counts were, however, in the same range as reported in other studies of biofilms on SS and uPVC (10^4–10^6 cells cm^-2) (Pedersen 1990; Percival et al. 1998), although Pedersen (1990) did not find any differences in total bacterial counts on SS compared with PVC.

Significantly more culturable and total bacteria were observed on GL substrata compared with SS in the model-recycled water system (PL). Despite this, no significant differences were observed between Aeromonas numbers and substrata, confirming that a relationship between general bacterial counts and Aeromonas numbers might not exist (Gavriel et al. 1998; Chauret et al. 2001). The opposite was, however, observed in the BR®. Other studies on biofilm development in specific waters have not found significant differences in bacterial numbers on either glass or asphalt-coated mild steel, nor glass or Teflon (van der Kooij et al. 1995; Walker et al. 1995). The concentration of total protein and total carbohydrate was also inconsistent with the other biofilm-biomass results, indicating the need for further investigations of biofilm formation and substrata in specific waters.

Due to the highly heterogeneous nature of biofilm coverage on a substratum surface, microorganism numbers may be described in terms of the total amount of biofilm biomass covering the surface area of interest (Storey & Ashbolt 2002). Carbohydrates are traditionally thought to be the major component of biofilms (Ford et al. 1991; Lazarova & Manem 1995), although Storey & Ashbolt (2002) have shown that total protein content is a better index of biofilm biomass for the systems they examined. Results from the BR® in our study showed that, by using normalized aeromonad numbers when comparing substrata (uPVC vs. SS), no significant difference in aeromonad numbers was observed, whereas the situation was opposite using un-normalized Aeromonas numbers. This indicates that the number of aeromonads is a function of the amount of biofilm biomass, which can also be dependent on the nature of the substrata. This confirms that biofilm biomass can be a useful measure of potential pathogen incorporation into biofilms, although discrimination between carbohydrate and protein as a better index of biomass could not be made in this study.

Identification of aeromonads

Of the aeromonad-positive isolates, none was identified through biochemical testing as being of human health significance (i.e. A. hydrophila, A. caviae or A. veronii sobria) although PCR and FISH confirmed them as aeromonads. This lack of agreement between phenotypic and genotypic identification of aeromonads has also been reported elsewhere (Dorsch et al. 1994; Ashbolt et al. 1995). This anomaly may therefore indicate that many species of the genus Aeromonas have not yet been identified. This may be attributed to the complicated taxonomy of this genus with regard to species identification at both biochemical and molecular levels (Janda 1991; Millership 1996). The 70% agreement observed between PCR and FISH techniques for isolates from potable water systems could be explained in part by the fact that cells with very low ribosome number, which are often associated with oligotrophic potable water environments, were stained negative by FISH probing but positive by PCR. The slightly higher (76%) agreement between PCR and FISH for isolates from the more nutrient-rich recycled wastewater, however, may indicate that other factors are also involved, such as low target accessibility, ineffective probe labelling and non-optimal hybridization conditions (Amann et al. 1995). Furthermore, non-specific amplification and thereby an incorrect amplification of DNA can be a problem with PCR. Based on the results obtained in the current study, the disagreement between PCR and FISH methods indicates that the use of either technique alone could lead to loss of important information.

Integration and persistence of A. hydrophila in a biofilm environment

Challenging the recycled wastewater biofilms with a slug dose of A. hydrophila demonstrated that such a potential pathogen readily incorporates into a biofilm where it may remain infectious for prolonged periods of time. In a colonization study undertaken with A. hydrophila in drinking water biofilms, Walker et al. (1995) observed that A. hydrophila was incorporated into biofilms and could remain viable for a further 7 days. The extended longevity of A. hydrophila observed in our study indicates that a
more nutrient-rich environment such as that found in recycled wastewater can prolong the survival of introduced bacterial cells.

Detection of aeromonads by FISH in the pipe loop demonstrated a maximum of 3–4 log increase compared with those detected by standard culturing techniques. Towards the end of the experiment, 1-log higher aeromonad numbers were observed with FISH compared with culturing. The higher and more stable *A. hydrophila* numbers observed with the FISH method indicates that relatively high numbers of *Aeromonas* cells persisted in the biofilm even after the majority of cells had ceased to be culturable. Prolonged persistence of *A. hydrophila* in different water environments using direct count methods compared with culturing techniques has also been observed in other studies (Wai et al. 2000; Rahman et al. 2001; Mary et al. 2002). At the conclusion of the experiment (day 30), a significantly higher number of FISH-positive aeromonad cells was detected on SS coupons compared with the background noise found on day −1. This could indicate that a minor population of the introduced *A. hydrophila* managed to establish themselves within the biofilms.

Establishment of introduced bacteria within laboratory-grown biofilms has also been reported elsewhere (Stewart et al. 1997; Buswell et al. 1998). Consistent with the results obtained in our study, the work of Buswell et al. (1998) also showed that bacterial persistence within biofilms increased when bacteria were enumerated by direct staining techniques and not culture-based detection methods. The use of traditional plating techniques carries the inherent risk of underestimating bacterial numbers because of the widely appreciated limitations of methods that rely on the culturability of bacteria (Amann et al. 1995). To overcome such limitations, the application of molecular techniques such as FISH is invaluable. The human health significance of the more persistent aeromonads in a non-culturable form, however, still remains to be addressed in relation to the concept of active or viable but non-culturable (VBNC) states of bacteria. Several studies have demonstrated the existence of a VBNC state of *Aeromonas* in different waters, but the resuscitation from this state and possible public health significance is controversial and warrants further investigations (Allen-Austin et al. 1984; Rose et al. 1990; Morgan et al. 1991; Wai et al. 2000; Rahman et al. 2001; Mary et al. 2002).

Biofilm detachment, either by continuous erosion of small portions of biofilm or more rapid and massive loss of biofilm by sloughing (Characklis 1990), can contribute to bacterial contamination of the bulk water and thereby present a potential health risk to consumers. In our study, biofilm biomass remained relatively constant throughout the experimental period, indicating that loss of activity and culturability rather than erosion of biofilm from coupon surface accounts for the declining numbers of *A. hydrophila* cells. Declining numbers of aeromonad cells as detected with FISH, however, can also be explained in terms of lower ribosome (copy) numbers in the bacterial cells and thereby a lower hybridization signal. An attempt to treat coupons used for FISH with the probe active count (PAC) method described by Kalmbach et al. (1997) was therefore carried out. However it did not strengthen hybridization signals for the cells nor result in a higher detection of cells (results not shown). The role of erosion in the loss of cells therefore cannot be ruled out altogether, indicating that a minor degree of biofilm erosion may explain the decline of *A. hydrophila* numbers.

First-order kinetics did not adequately describe the behaviour of *A. hydrophila* observed in our study. The declining numbers could be explained in terms of a stable plateau or latency followed by a rapid decline that was further followed by a more constant, gradual decline. Such deviation from true first-order kinetics has also been observed in a study of the persistence of enteric virions within biofilms, which better fitted a bi-phasic pattern (Storey & Ashbolt 2001).

CONCLUSIONS

In summary, this study has shown that *Aeromonas* can incorporate and persist in biofilms in distribution pipe systems serviced with different water sources. Whilst the exact human health significance of this remains unknown, this phenomenon could imply a potentially increased concern for consumers of distribution pipe water, particularly
recycled waters, given their larger incidence of biofilm-producing nutrients as well as aeromonad numbers. Integration and persistence of *A. hydrophila* in biofilms was shown to deviate from conventional 1st order kinetic decay, suggesting their potential for longer persistence within a water distribution system. Traditional culturing techniques should be supported with molecular techniques such as PCR and FISH, for both species identification and enumeration purposes, given the often anomalous relationship observed between the two in this study.

ACKNOWLEDGEMENTS

Sean Blasdall (School of Civil and Environmental Engineering, UNSW, Australia) is acknowledged for his assistance with the PCR work and Dr Matthias Dorsch for assistance with *Aeromonas* primers. Sydney Water Corporation (SWC) is acknowledged for financing and constructing the BSS. The Cooperative Research Centre for Water Quality & Treatment is gratefully acknowledged for assistance with the PCR work and Dr Matthias Dorsch (School of Civil and Environmental Engineering, UNSW, Australia) is acknowledged for his.

REFERENCES

ABBREVIATIONS

BR® Biofilm Reactor®

BSS biofilm sampling site

FISH fluorescence *in situ* hybridization

GL glass

MRD modified Robbins device

MRD-p MRD in potable water

MRD-r MRD in recycled water

PCR polymerase chain reaction

PL pipe loop

Re Reynolds number

SS stainless steel

uPVC unplasticized polyvinyl chloride

