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ABSTRACT

The comprehensive and systematic management of watersheds is essential for reducing the adverse

environmental impacts arising from anthropogenically caused erosion and subsequent

sedimentation. This paper describes a computational methodology that is designed to serve as a

watershed decision support system and is capable of controlling environmental impacts of non-point

source pollution resulting from erosion. In the decision process, the methodology also accounts for

other inseparable objectives such as economics and social dynamics of the watershed. This decision

support tool was developed by integrating a comprehensive hydrologic model known as SWAT and

state-of-the-art multiobjective optimization technique within the framework of a discrete-time

optimal-control model. Strength Pareto Evolutionary Algorithm (SPEA), a multiobjective optimizer

based on evolutionary algorithms, has been used to generate Pareto optimal sets. For demonstration

purposes, the tool was applied to the Big Creek watershed located in Southern Illinois. Results

indicate that the methodology is highly effective and has the potential to improve comprehensive

watershed management.

Key words | erosion and sedimentation, evolutionary algorithms, multiobjective evaluation, Pareto

optimality, watershed management

INTRODUCTION

Soil erosion is a natural phenomena that involves the

processes of detachment of sediment particles from a

larger soil mass and subsequent transport and deposition

of those particles on land surfaces and in water bodies.

Most river reaches are naturally balanced with respect

to sediment inflow and outflow (Morris & Fan 1998).

Today, however, human activities such as deforestation,

cultivation, overgrazing, construction and other practices

have increased erosion beyond its natural rate. These

aggravated rates are responsible for many on-site and

off-site impacts. Ritter & Shirmohammadi (2001) indicate,

for example, that erosion is the source of 99% of the total

suspended loads in the waterways of the United States.

The same authors estimate that approximately five billion

tons of soils eroded every year in the United States

reach small streams. This sediment has a tremendous

cost associated with it in terms of stream degradation,

disturbance to wildlife habitat, and direct costs for

dredging, levees and reservoir storage losses. Sediment is

also an important vehicle for the transport of soil-bound

chemical contaminants from nonpoint source areas to

waterways. According to the U.S. Department of

Agriculture (USDA), soil erosion is the source of 80% of

the total phosphorus and 73% of the total nitrogen loads

in U.S. waterways (Ritter & Shirmohammadi 2001).

Attempts that target reduction of sediment yield from a

watershed could therefore prevent a significant amount of

nutrients from entering water bodies. Proper management

of activities in a watershed is the primary key to reducing

these adverse impacts, especially those arising from

anthropogenic activity.

Any attempt to control erosion and sediment yield

should emphasize the three critical stages of these pro-

cesses: detachment of soil particles, transport of the
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detached soil particles and deposition. These three stages

of erosion are, in one way or another, affected by

environmental factors such as geology, slope, climate,

drainage density and patterns of human disturbance.

While humans have little or no control over some of

these factors, other imbalances can be positively

impacted with proper planning and management.

Mechanisms that aid in reducing levels of soil distur-

bance and degree of detachment (e.g. tillage practices),

that cut long steep slopes and reduce transporting

capacity of surface runoff (e.g. structural measures), and

that do not expose the soil to the direct impact of

falling precipitation (e.g. vegetation) are some available

management techniques. While many researchers agree

that there is no single dominant factor that explains the

wide variability of erosion, using data from 61 gage

stations in Southern Kenya, Dunne (1979) demonstrated

that land use is a dominant factor explaining variability

in sediment yield. This finding indicates that the role of

vegetation in reducing erosion and sedimentation is

multi-faceted. Vegetation can absorb kinetic energy of

the falling rain and reduce its detaching potential.

Through its root system, vegetation can bind soil masses

together and increase the soil’s resistance to detachment.

Vegetation also increases soil roughness and reduces

transporting capacity of overland flow. These aspects

are likely to be the reasons why Morris & Fan (1998)

concluded that ‘land use improvement is the best and

probably the only feasible method’. This study explores

the potential role of vegetation and management combi-

nations in addressing the global scale threat posed by

erosion. Emphasis herein is specifically placed upon

agriculturally dominated watersheds.

Land use management decisions should not only

account for a singular objective of reducing environ-

mental impacts of erosion, but also should integrate the

feasibility of the designed policy from the socioeconomic

perspective of the watershed. With regard to an agri-

cultural watershed with multiple landowners, a likely

stakeholder concern may be the economic benefit that

he/she may generate from his/her farm. A systematic

method of including this individual owner’s perspective

into a decision support system is crucial for successful

implementation of the policy. To address this critical

socioeconomic factor, a farm-scale policy that integrates

both economic and environmental objectives is adopted

in this investigation. The methodology designed here

searches for the ‘best’ land use and management combi-

nation that can generate maximum benefit for the farm

owner, and at the same time, minimizes erosion and

sediment yield from the farm. In this way, all stake-

holders in the watershed contribute to the common

goal of reducing adverse impacts of erosion from their

commonly owned watershed, while preserving their

private goals of maximizing farm income.

Effectiveness of this computational methodology is,

however, directly influenced by the capability of the model

used to estimate erosion and sediment yield for a given

land use and management alternative and its ability to

account for the various environmental factors that may

affect the processes of erosion. Fortunately, over the last

three decades, advances in hydrological science and

engineering, as well as computer capabilities, have stimu-

lated the development of a wide variety of mathematical

simulation models for such estimates. Some of these

models integrate Geographic Information System (GIS)

technology, thus improving their data management,

retrieval and visualization capabilities. The most compre-

hensive simulation techniques are process-based (physi-

cally based), distributed models such as SHE (Abbott et al.

1986), AGNPS (Young et al. 1987), ANSWERS-2000

(Bouraoui & Dillaha 1996) and Soil and Water Assessment

Tool, or SWAT (Arnold et al. 1999). These models have

replaced traditional lumped, empirical models that relate

management and environmental factors to runoff and

sediment yield through statistical relations. Distributed

models are able to capture the spatial and temporal

heterogeneity of environmental factors such as soil, land

use, topography and climate variables. This not only

makes their resulting estimates more accurate, but also

allows policies to be designed on small and more practical

scales such as the farm-scale, which has been adopted in

this study. SWAT, as mentioned above, is a particularly

comprehensive distributed model that is interfaced with

Arcview© GIS. Hydrological models themselves, however,

are useful only for evaluating what-if scenarios and testing

potential management alternatives. They are unable

directly to solve water resources management and control
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problems that require the explanation of a range of avail-

able alternatives.

A comprehensive decision-making framework for

watershed management requires the integration of a

hydrological simulation model and a suitable optimization

technique that is capable of solving complex control prob-

lems. This integrative method, referred to here as a

discrete-time optimal control methodology, has been

increasingly popular in water resources related fields and

has provided solutions for large-scale problems in areas of

reservoir management (Yeh 1985; Unver & Mays 1990;

Nicklow & Mays 2000), bioremediation design and

groundwater management (Wanakule et al. 1986; Yeh

1992; Minsker & Shoemaker 1998), design and operation

of water distribution systems (Cunha & Sousa 2000;

Sakarya & Mays 2000) and watershed management,

(Muleta & Nicklow 2001; Nicklow & Muleta 2001).

Nicklow (2000) provides a comprehensive review of the

benefits of the approach, which include a reduced need for

additional simplifying assumptions about the problem

physics in order to reach an optimal policy and a decrease

in size of the overall optimization problem. Furthermore,

if the developer is able to incorporate existing simulation

procedures that have been widely accepted in engineering

practice, the optimal control model attempts to improve

the practical utility of the approach. When applied to a

typical nonpoint source pollution reduction problem, the

approach allows the direct determination of land-use

patterns and tillage practices that solve the following

formulation:

minimize: annual average sediment yield and maximize

annual average economic benefits on a farm

scale

subject to: (i) water quality and hydrological relationships

that govern erosion and sedimentation

processes

(ii) crop management constraints, such as

feasible crops according to season and

cropping sequence.

There have been minimal applications of this type of

integrative modelling technique for comprehensive

watershed management. Dorn et al. (1995) and Harrell &

Ranjithan (1997) used a similar technique to determine

the optimal design of storm water detention ponds to

achieve sediment removal requirements on a watershed

scale. Sengupta et al. (2000) developed a spatial decision

support system capable of evaluating the effect of

proposed watershed conservation policies by linking the

Agricultural Non-Point Source Pollution (AGNPS) model

and a linear programming model known as GEOLP.

GEOLP is an enhanced version of an economic farm

model developed by Kraft & Toolhill (1984) and was used

to maximize annual farm income, rather than control

nonpoint source pollution. Nicklow & Muleta (2001) pre-

sented an application of this methodology in which SWAT

and a genetic algorithm were coupled for purposes of

watershed management under consideration of a single

objective of minimizing sediment yield from a basin. In

this paper, the methodology is expanded for solution to a

typical multiobjective problem involving both nonpoint

source pollution and economic goals. The methodology is

designed to yield directly the land use pattern that simul-

taneously minimizes sediment yield and maximizes net

farm-level profits from a watershed, subject to specified

constraints. The particular approach used here interfaces

SWAT with an evolutionary multiobjective global search

strategy known as SPEA (Zitzler & Thiele 1999) to locate

non-dominated Pareto optimal solutions. Capabilities of

the methodology and resulting integrative model are

demonstrated through an application to the Big Creek

watershed, a Southern Illinois watershed placed on the

303(d) list by the Illinois Environmental Protection

Agency (ILEPA) as a result of its excessive sediment

yield.

PROBLEM FORMULATION

For the multiobjective problem being studied, the vector of

decision variables is represented as seasonal cropping and

tillage practices that define an agricultural landscape. The

important state variables under consideration are sedi-

ment yield and economic benefit that occur in response

to the applied land-use pattern. The problem can be

expressed mathematically as
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(1)

(yt)

T
Min Z =

T

t=1
∑

and

(2)

(∂Pt)

T
Min Z =

T

t=1
∑

subject to the transition constraints

yt = f(Cs,Xs,Ts,t,s) (3)

Pt = f(Cs,Xs,Ts,M,t,s) (4)

and crop management constraints, expressed in functional

form as

g(Cs,Xs,Ts,t,s)≤0 (5)

where Z represents the functions to be minimized; yt is

annual sediment yield; Pt is the net annual economic

benefit to be maximized; T is the number of years in the

simulation horizon; Cs and Ts represent crops planted and

tillage practices implemented during season s of year t; Xs

is a generic term that represents all other hydrological and

hydraulic factors that may affect sediment yield and crop

yield during season s of year t, and M is an average market

price for crop C over the decision period T.

WATERSHED AND CROP GROWTH SIMULATION
MODEL

The transition constraints provided in the current problem

formulations are best solved using a comprehensive water-

shed simulation model and crop growth model. With

respect to the variety of models available, distributed

models are better suited to solve watershed management

problems than empirical and lumped routing models

because of their use of spatially dynamic parameters. The

USDA’s watershed management model, SWAT, represents

a prime example of one such model. SWAT is a

continuous-time (e.g. long-term yield) simulator

developed to assist water resource managers in routine

assessment of water supplies and the effects of nonpoint

source pollution in large river basins (Arnold et al. 1998;

ASCE 1999). The model operates on a daily time interval

and allows a watershed to be subdivided into natural

sub-watersheds, upon which distributed routing of flows is

based. In addition, each sub-watershed can be further

subdivided into a number of Hydrological Response Units

(HRUs), defined by a unique combination of land use and

soil type heterogeneity. All factors such as soil type,

land management practice and climate are considered

homogeneous on an HRU scale.

While SWAT can be used to study more specialized

processes such as bacteria transport, the minimum data

required for execution are commonly available from

government agencies, thus boosting its practical utility.

SWAT inputs can be divided into the following categories:

hydrology, weather, sedimentation, soil temperature, crop

growth, nutrients, pesticides and applied agricultural

management techniques. Weather variables that drive the

hydrological model include daily precipitation, maximum

and minimum air temperature, solar radiation, wind speed

and relative humidity. For watersheds lacking adequate

weather data, a stochastic weather generator can be used

for all or several variables and is based on monthly climate

statistics that are calculated from long-term measured

data from a weather station that is geographically near the

watershed. In addition, weather data can be permitted to

vary according to specific sub-watersheds, depending on

data availability.

SWAT is designed to simulate major hydrological

components and their interactions as simply, and yet

realistically, as possible (Arnold & Allen 1996). Hydrologi-

cal processes that are modelled include surface runoff,

estimated using the SCS curve number or Green–Ampt

infiltration equation; percolation, modelled with a layered

storage routing technique combined with a crack

flow model; lateral subsurface flow; groundwater flow

to streams from shallow aquifers; potential evapo-

transpiration by the Hargreaves, Priestley–Taylor and

Penman–Monteith methods; snow melt; and transmission

losses from ponds. For additional detailed information,

the reader is referred to Arnold et al. (1998).
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Sediment yield is computed for each HRU using the

Modified Universal Soil Loss Equation (MUSLE).

Whereas the original Universal Soil Loss Equation

(USLE) uses rainfall as an indicator of erosive energy, the

MUSLE uses the quantity and rate of runoff to simulate

erosion and sediment yield. The substitution results in

a number of benefits including increased prediction

accuracy, elimination of the need for a sediment delivery

ratio, and the computation of sediment yield on a single

storm basis. The MUSLE can be expressed as

y = 11.8V(qp)0.56KCP(LS) (6)

where y is the sediment yield from an HRU in tons; V is the

surface runoff column for the HRU in m3; qp is the peak

flow rate for the HRU in m3/s; K is a soil erodibility factor;

C is a crop management factor, which accounts for crop

rotations, tillage methods, crop residue treatments, and

other cultural practice variables; P is an erosion control

factor; and LS is the slope length and steepness factor

(Yang 1996; Arnold et al. 1999). A quick observation of the

MUSLE reveals a range of possibilities for reducing sedi-

ment yield from watersheds. As described earlier, these

include the minimization of erosive potential of rainfall

using alternative ground covers, the usage of tillage

practices that cause less soil disturbance, the reduction of

long, steep slopes through construction of terraces and

check dams, and the proper choice of land use and

management combinations. Land use and tillage practices

in particular play a significant role in reducing erosive

power of rainfall by binding the soil and reducing soil

mobility and by increasing roughness to retard transport.

Within SWAT, crop growth is simulated over a daily

time step, and crop management factor values in the

MUSLE are calculated for all days that runoff occurs,

thus accounting for stage of crop growth and improving

accuracy of model results. Using crop-specific input

parameters that are included in the model as a database,

one can simulate a variety of annual and perennial crops.

Agricultural management practice options include tillage

techniques, planting and harvesting dates of crops,

fertilizer and pesticide types, application dates and

dosages, and cropping sequences. The model also provides

an estimate of crop yield and accounts for crop yield

reduction that may arise due to stresses such as the lack of

sufficient precipitation and/or fertilizer. This crop yield

estimate, along with information on production expenses

and market price of the crops, helps in predicting

economic implication of a decision policy. In addition,

SWAT operates on an Arcview© GIS platform, which

greatly assists in the generation of model input parameters

and visualization of model output. Finally, SWAT and its

source code are public domain and available online free

of charge (http://www.brc.tamus.edu/swat/). It is a

well-supported model and is widely used in solving broad

water resources problems ranging from nonpoint

source pollution control to climate change studies. These

numerous features make SWAT a comprehensive mech-

anism for assessing both environmental and economic

effects of alternative land management practices, and as

such, a suitable tool for solving the transition constraints

of the current optimization problem.

MULTIOBJECTIVE EVALUATION

Multiobjective optimization, without loss of generality,

can be defined as a technique for simultaneously minimiz-

ing or maximizing several non-commensurable and often

conflicting objectives. Although single-objective optimiz-

ation problems may have a unique optimal solution, this is

not the case for many realistic multiobjective optimization

problems (MOPs). Typically, MOPs have no unique,

perfect solution but rather a set of non-dominated, or

non-inferior, alternative solutions, also known as the

Pareto-optimal set.

For an m-dimensional minimization problem

F(x) = (f1(x), . . ., fm(x)) subject to constraints gi(x)≤0, i = 1,

. . ., k, x∈V, Veldhuizen & Lamont (2000) defined Pareto

dominance and Pareto optimality as follows:

• A vector u = (u1, . . ., um) is said to dominate another

vector v = (v1, . . ., vm) if u is partially less than v, i.e.

∀i∈{1, . . ., m}, ui≤vi ` ∃ i∈{1, . . ., m}: ui <vi.

• A solution x∈V is said to be Pareto optimal with

respect to V if there is no x′∈V for which

v = F(x′) = (f1(x′), . . ., fm(x′)) dominates

u = F(x) = (f1(x), . . ., fm(x)).
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These Pareto optimal solutions may have no clearly

apparent relationships other than that they form a

set of solutions whose corresponding vectors are non-

dominated with respect to all other comparison vectors,

the comparison vectors being the m-dimensional

functional values. A decision maker then implicitly

chooses an acceptable solution (or solutions) by selecting

one or more from the Pareto-optimal set based on his/her

own additional criteria. When applied to the two objective

non-point source pollution problem discussed here, x is a

vector of land use patterns and tillage operations over the

decision period (T), and F(x) is a vector of the minimiz-

ation function Z given in Equations (1) and (2), where

f1(x) is mean annual sediment yield (Equation (1)) and f2
(x) is mean annual net profit (Equation 2). Transition

equations and system constraints given in Equations (3)–

(5) are analogous to gi (x). For any decision policy to be a

member of Pareto optimal set, the vector of decision

variables chosen (i.e. land covers and corresponding

tillage practices) should result in a mean annual sediment

yield and mean annual dollar values that are at least as

good as those obtained by any other alternative policies

investigated and should be better than those alternatives

in at least one of the two objectives.

Traditionally, there have been many methods of

solving MOPs including those which find a single optimal

solution in one simulation run (Deb & Horn 2000). These

methods, however, need to be used repeatedly with hopes

of finding a different Pareto-optimal solution each time.

Moreover, they have difficulties in solving problems

having a non-convex search space. Alternatively,

evolutionary algorithms (EAs), search and optimization

algorithms inspired by the process of natural evolution

and that work on populations of candidate solutions, are a

natural choice for multicriteria evaluation since they can

generate a number of Pareto-optimal solutions in one

simulation run. Current evolutionary approaches include

evolutionary programming (EP), evolutionary strategies

(ES), genetic algorithms (GAs) and genetic programming

(GP). For details of these techniques, the reader is referred

to Back et al. (2000). Candidate solutions in EAs are

evaluated and assigned fitness values based on their rela-

tive performance, represented through objective func-

tions. Proportional to their fitness value, better individuals

are then given the opportunity to reproduce themselves

with the philosophy that the new generation could better

fit the environment than the parents from which the new

individuals were created. Offspring produced are modified

by means of mutation and/or recombination operators in

order to control premature convergence. To apply this

logic to MOPs, the key is the conversion of the multiple

performance measures, such as objective function values,

into a scalar fitness measure.

Based on techniques of mapping multiple perform-

ance values to a single fitness value, usually termed as

fitness assignment, Fonseca & Fleming (2000) grouped

current EA approaches to solving MOPs into plain

aggregation approaches, population-based non-Pareto

approaches and Pareto-based approaches. As the name

implies, aggregation methods numerically combine the

objectives into a single objective function that can be

optimized using single function optimization techniques.

A weighted-sum approach is the classical example of this

technique. The shortcoming of the method, however, lies

in the assignment of relative importance of the multiple

objectives. In population-based non-Pareto approaches,

different objectives affect the selection of different parts of

the population. The Vector Evaluated Genetic Algorithm

(VEGA) (Schaffer 1985) is a typical example of algorithms

that adopt this technique. In VEGA, selection is carried

out for each objective function separately. Pareto-based

techniques make use of Pareto dominancy criteria for

fitness evaluation and population ranking.

Motivated by the diversity of algorithms and the lack

of comparative performance studies of the different

approaches, Zitzler et al. (2000) provided a systematic

comparison of six multiobjective EAs from the three

classes. The basis of the empirical study was formed by a

set of well-defined, domain-independent test functions

that allow investigation of independent problem features.

Test functions having features that pose difficulties for

EAs with regard to convergence to the Pareto-optimal

front (Deb 1999) (i.e. convexity, non-convexity, discrete

Pareto fronts, multimodality, deception and biased search

spaces) were used in the comparison study. As such, the

authors were able to compare systematically the

approaches based on different kinds of difficulties and

determine more exactly where certain techniques are
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advantageous or have trouble. The conclusions of their

comparison study included a clear hierarchy of algorithms

with respect to the distance to the Pareto-optimal front.

The Strength Pareto Evolutionary Algorithm (SPEA) was

ranked first and outperformed all other algorithms on five

of the six test functions, and was ranked second on the

sixth-test function that incorporated deceptive features.

Based on this comprehensive comparison study and

inspired by the excellent performance of SPEA on these

carefully chosen test functions, SPEA has been integrated

into the solution methodology for the multiobjective

watershed management problem.

SPEA (Zitzler & Thiele 1999) is an algorithm that

makes use of both well-established techniques and new

concepts in finding Pareto-optimal solutions. Specifically,

it incorporates concepts such as elitism, niching and

clustering, and Pareto dominancy. The algorithm begins

with initial solution alternatives, P, that are randomly

generated, and objective function evaluation is performed

for each of these decision policies. Based on the definition

of Pareto dominance, non-dominated solutions are sought

from these initial solutions and are copied to temporary

storage P′. The fitness of each individual in P, as well as P′,
is then calculated. The fitness assignment is a two-stage

process. First, fitness of individuals in the external, non-

dominated set P′ is evaluated. The number of individuals

in P that are dominated by an individual i in P′, denoted

here as n, are counted, and the fitness value (fi) for

individual i in P′ is then determined according to

fi = (7)
N + 1

n

where N is the total number of individuals in P. This

process is repeated for all individuals in P′. Afterwards, to

determine fitness of individuals in P, say for individual j,

fitness values of all individuals in P′ that dominated indi-

vidual j will be added and a value of one is added to this

total to ensure that members of P′ have better fitness than

members of P:

(8)fi .fj = 1 +
i,i≥j
∑

Based on their fitness values, individuals from P and P′ are

ranked and selected according to a user-defined scheme

until the mating pool is filled. Problem-specific crossover

and mutation operators are then applied. On subsequent

generations (iterations), dominance is checked within P′,
and those solutions that are dominated are removed. If the

number of solutions (Pareto optimal set) stored in P′
exceeds a user specified maximum number of niches (N′),
P′ is pruned by clustering. For this study, an average

linkage method was used for clustering. Unless the con-

vergence criteria is satisfied, another iteration begins by

searching for non-dominated solutions and copying them

to P′. Figure 1 presents the structure of SPEA. For further

detail of the algorithm, including fitness assignment and

the clustering approach, the reader is referred to Zitzler &

Thiele (1999).

Equations (1) and (2) are the objective functions to be

minimized and represent the mean annual sediment yield

and mean annual economic benefit generated from a farm

field, respectively. The functions implicitly depend on a

particular landscape and climate conditions through the

governing dynamics of water quality and hydrological

phenomena. The transition constraints, Equations (3) and

(4), represent the laws that govern water quality, hydro-

logical processes, crop growth and subsequent crop yield,

and market conditions and are used to describe the stage-

by-stage response of the watershed system and economics

according to an imposed land-use pattern. The transition

equations for the current problem are comprised of rela-

tionships for water and sediment continuity, the soil loss

equation, plant growth model, and many others solved by

SWAT. Equation (5) defines a feasible range for decision

policies. These policy constraints, together with the tran-

sition constraints, define the feasible solution space for

this multiobjective watershed management problem.

SOLUTION METHODOLOGY

The optimal control methodology developed to solve the

multiobjective problem relies on an interface between

SWAT and SPEA, as illustrated in Figure 2. Design of the

SWAT–SPEA linkage was performed systematically with

two critical goals: minimizing computational resources,

particularly CPU time, and preserving the originality of

SWAT so as to simplify upgrading efforts of the optimal
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control tool with future, newer versions of SWAT. SWAT

is a model designed to make one simulation run starting

from variable declaration and initialization, to the pro-

cesses of reading inputs, computation of hydrological pro-

cesses, and writing outputs to file. The optimization model

developed here, however, requires an iterative search for

which a number of function evaluations, or SWAT calls,

are necessary. To avoid performing some of the unneces-

sary operations that demand considerable computational

time, such as reading inputs, only computational sub-

routines of SWAT were directly involved in the search

process. Input reading was performed only once in

operation of the overall model. Likewise, subroutines for

reinitializing variables to their original values after every

function evaluation were carefully designed and incorpor-

ated to the model. The process of iteratively writing

outputs to a file was fully suppressed. Output was written

only on completion of the overall optimal control model.

In this control model, decision variables, or genes, are

cropping and tillage practice combinations for a particular

HRU, which are permitted to change over subsequent

seasons. A set of decision variables, or chromosome, that

defines a particular landscape then represents a potential

solution to the posed problem. Within this study, Table 1

provides examples of genes (land cover and tillage prac-

tice) and their assigned integer codes for some of the land

covers considered in this search operation. An operational

management database and economic database were devel-

oped for all potential land covers believed to be commonly

grown in the study watershed. After a sequence of genes

for a chromosome, or policy, is chosen, the model uses the

database to automatically assign management operations

for each crop in the chromosome. This subsequent man-

agement schedule is ultimately used by SWAT in hydro-

logical simulation. The operational management schedule

dictates the type of land cover chosen for a particular

season, tillage type used, planting and harvest dates for the

crop, chemical (fertilizer and pesticide) application dates

and dosages, end of year operations, curve number to be

used in estimating surface runoff taking into account soil

type in the HRU and crop type selected for the season

and its tillage type, potential heat units required for the

Figure 1 | Logical flow diagram of SPEA.
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particular crop to reach maturity which heavily influences

crop yield, and other practices. This operational manage-

ment schedule varies from HRU to HRU within the same

search iteration and also varies within the same HRU from

iteration to iteration. As a result, its allocation is dynamic

and should be updated each time a new policy is designed

for an HRU. The economic database supplies information

on production expenses, both variable and fixed costs, and

the selling price of all crops included in the decision

process.

The solution methodology assumes that each HRU

represents a particular farm field that is singularly or

commonly owned by a landowner. Under this assump-

tion, a landowner’s decision concerning land uses and

tillage types will have no influence on the decisions

made by neighbouring landowners. Expressed differently,

the methodology allows each landowner within the

watershed to make independent decisions, but con-

tributes towards the overall goal of minimizing sediment

yield to a receiving water body. This approach supports

ILEPA’s recognition that watershed planning and

management begins with the responsibility of farmers

and other landowners who have ownership rights within

Figure 2 | Structure of SWAT–SPEA interface.

Table 1 | Example of genes defining crop types and tillage practice

Crop Tillage practice Acronym Integer code

Soybean No tillage SYNT 1

Corn No tillage CRNT 4

Sorghum Conservation tillage SGCT 8

Wheat Fall tillage WWFT 19

Wheat No tillage WWNT 17

Soybean after wheat Conservation tillage SYWC 10

Alfalfa No tillage AFNT 12

Pasture No tillage PSNT 14
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the watershed. Their land use choices directly affect their

personal income and affect their shared responsibility

to maintain environmental quality. Effective decision

making in such cases should thus recognize different

stakeholder perspectives. It may be argued that such

decision policy needs to be performed on the scale of a

watershed rather than a farm field. Unlike the farm-

based decision, however, a watershed scale decision may

be that which economically favours one landowner over

the other within the same watershed and may suffer from

severe socioeconomic issues.

Farm management decisions are not typically based

on single-year concerns, but rather under consideration of

multi-year criteria, such as crop rotation. In this study, it is

assumed that a farm management policy dictates the

seasonal sequence of crops to be grown on an individual

farm field for a three-year time horizon. In the decision

process, only field crops are considered and a maximum of

two crops per year are permitted to grow. The second crop

of the year can be planted only after the preceding crop is

harvested. Planting and harvesting dates of crops are

assumed to be consistent within the dates recommended

for specific crops in the watershed of study, and a crop

year is assumed to commence in January. With any three-

year rotation, a maximum of five crops can be grown. The

first crop planted in the three-year period is a warm season

crop and is harvested in late September. A winter crop is

then planted in early October and is harvested in June.

Next, using a double cropping system, warm season crops,

such as soybean, that can grow following harvest of winter

crops are planted. The fourth crop is a warm season crop

that is planted in March or April, and finally the fifth and

the last crop of the sequence is a winter crop. In addition,

once planted, perennial crops such as hay and pasture

are allowed to remain on the field until the end of the

three-year plan. These criteria represent crop manage-

ment constraints, which were expressed generally through

Equation (5).

The solution methodology begins with randomly

generated chromosomes for each HRU, each consisting of

five genes, which represent the sequence of land covers

and tillage practices to be implemented over a three-year

period for that farm field. By design, each chromosome is

feasible according to the specified crop management con-

straints described above. Satisfaction of the management

constraints is checked not only during initial random

generation of alternative solutions, but also on crossover

and mutation operations. This was performed using the

systematically assigned crop codes (see Table 1), and

supplying minimum and maximum values (codes) that a

certain season’s gene may assume. For further illustration,

Table 2 provides two examples of potential chromosomes.

Considering the second alternative in the table, sorghum

with conservation tillage is a warm season crop and is

chosen as gene 1; then wheat with fall tillage is a winter

crop chosen as gene 2; soybean with no tillage which can

be grown over the summer after harvesting wheat is the

third land cover; and the last land cover selected over the

decision time horizon is pasture with no tillage. In alter-

native 1, silage with spring tillage was proposed as the first

Table 2 | Sample management alternatives

Chromosome

Crop 1
Warm
season

Crop 2
Winter
crop

Crop 3
Warm or
perennial
crop

Crop 4
Warm or
perennial
season

Crop 5
Winter or
perennial
season

1 1
(SYNT)

17
(WWNT)

12
(AFNT)

12
(AFNT)

12
(AFNT)

2 8
(SGCT)

19
(WWFT)

10
(SYWC)

4
(CRNT)

14
(PSNT)
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gene and the second gene was chosen to be perennial land

cover, which is alfalfa with no tillage option. The third,

fourth and fifth genes of the chromosome were then

automatically assigned the same land cover (i.e. alfalfa

with no tillage) to satisfy the management constraints due

to perennial cropping.

Once a single, random decision policy is chosen for an

HRU in the watershed, the task of assigning operational

management schedules for the HRUs is accomplished.

This process is repeated for all HRUs in the watershed

where potentially different policies are chosen for differ-

ent HRUs, according to the process described above. After

having decision alternatives for all HRUs in the water-

shed, the water quality and hydrological simulator is used

to solve implicitly the transition constraints for each

chromosome. The objective function value returned from

SWAT represents a three-year average annual sediment

yield and crop yield of the five genes in a chromosome that

occur in response to implementation of a particular alter-

native. Net profit that accrues as a result of implementing

this policy is then estimated by using the economic data-

base and the crop yield estimated for each gene. Finally,

variable reinitialization is performed since the original

SWAT processes of variable initialization and input

reading are suppressed for the mere reason of reducing

computational time. This process is repeated until the

user-defined number of chromosomes for each HRU is

reached. The mean annual sediment yield and mean

annual net profit values establish the basis for searching

non-dominated solutions by SPEA. If the number of non-

dominated solutions is beyond the maximum niche

number assigned by a user, clustering is performed. Binary

tournament selection is applied to the fittest pairs of

chromosomes to evaluate policies that are privileged to

mate during a random, uniform crossover scheme. Before

progressing to the next generation (search iteration) of the

SPEA, genes are mutated according to a user-specified

frequency and function evaluation is performed for

the new offspring and mutated alternatives. This cyclic

process is continued for a user-defined number of

generations. The ultimate result is the evolution of a

set of land-use patterns (Pareto-optimal sets) that are best

suited to the multiple criteria problem considered in this

study.

APPLICATION TO THE BIG CREEK WATERSHED

The Cache River basin, shown in Figure 3, is located in

Southern Illinois near the confluence of the Mississippi

and Ohio Rivers. Big Creek watershed is one of the major

tributaries draining into the Lower Cache River, near

the internationally recognized Cache River Wetlands,

including Buttonland Swamp. This watershed not only

contributes significant amounts of water to the Lower

Cache River, but also carries a higher sediment load than

other tributaries in the area. According to data from

1985–1988, Big Creek watershed contributed more than

70% of sediment inflows into the Lower Cache (Demissie

et al. 2001). Because of its high sediment yield and influ-

ence on the Lower Cache River, multiple agencies and

organizations have identified the Big Creek watershed as a

priority area for improved watershed management. As

a result, it is undergoing extensive study as part of the

Illinois Pilot Watershed Program, through cooperation

between the Illinois Department of Natural Resources

Figure 3 | Location map of Big Creek watershed.
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(IDNR), the Illinois Department of Agriculture, ILEPA,

and the U.S. Natural Resources Conservation Service

(IDNR 1998).

A 30 m resolution U.S. Geological Survey (USGS)

Digital Elevation Model (DEM), an IDNR land use map,

and a soils map were obtained for the region of study. The

land use map had been generated from LandSat imagery

collected between April 1991 and May 1995. The Big

Creek watershed was delineated from the DEM using

the United States Environmental Protection Agency’s

(USEPA) BASINS model, which provides a GIS extension

for SWAT2000, and was subsequently divided into 73

sub-basins. BASINS was used in this study since the

Arcview© interface for the latest version of SWAT,

SWAT2000, was not yet released (as of July 2001) from the

USDA. The land use map and soils map were then super-

imposed over the subdivided watershed to identify HRUs.

For this application, dominant soils types and land uses

from each sub-basin were used in establishing HRUs, a

statement that implies that each farm field consists of a

single soil type and land cover during any one season and

that the number of HRUs is equal to the number of

sub-basins (i.e. 73). A search for an optimal land use

pattern was applied to HRUs whose existing land cover

was not forest, water, wetland and/or urban. Historical

data related to daily precipitation, daily maximum tem-

perature and daily minimum temperature were obtained

from the U.S. National Weather Service for Anna, IL, a

nearby weather station. A database of 19 suitable cropping

and tillage practice combinations was prepared for the Big

Creek watershed. This database contains additional infor-

mation on planting dates, harvesting dates, dates to apply

tillage, fertilizer and pesticide types, application dates and

dosages, heat units required for a plant to reach maturity,

and curve numbers the land cover may assume for all

hydrological soil groups for AMC II (i.e. Soil Groups A, B,

C and D). Information for the watershed’s management

database was collected from the Illinois Agronomy

Handbook (UIUC 2000) and from National Agricultural

Statistics Service (USDA 2000). Additionally, an econ-

omic database for all crop type and tillage combinations

was prepared. This database provides data on production

expenses and selling prices of these land uses. The produc-

tion expenses were broadly classified as variable costs and

fixed costs. Variable costs include expenses for seed,

chemical, insurance and interest for machinery, labour

and trucking. Fixed costs are related to cost of owning

land and machinery and were not used in the optimization

process. A 10-year (1990–1999) average of production

expenses and selling price data for the study area were

collected from various sources, and these data were used

in the decision process. The major resources used in

preparing the economic database were the University of

Illinois at Urbana-Champaign (UIUC) Farm and Resource

Management Laboratory (FaRM Lab) (UIUC 1999),

Illinois Census of Agriculture (USDA 1997a), and Cost

and Returns Estimator model (CARE) farm budget for

Southern Illinois (USDA 1997b).

The optimal control model was applied using inputs

collected for Big Creek watershed and executed for each

HRU with an initial population of 100 chromosomes, an

upper limit of 100 generations and a mutation rate of 15%.

To search solutions for the 73 HRUs in the entire 130 km2

watershed required a CPU time of about 63.25 h on a

Pentium 4, 1.3 GHz PC. However, it should again be

noted that a 3-year policy is designed for the watershed

during this 63.25 h of CPU time. To demonstrate solution

convergence, search results for one particular HRU is

presented in the plot shown in Figure 4. The plot shows

Pareto-optimal fronts obtained at generation 2 and

generation 50. The search was continued until generation

100, but no significant improvement was found after

generation 50. One can clearly see that none of the

alternatives at any corresponding generation are better

than any other as to the criteria that were supplied to the

model. Alternatively stated, improvement in one of the

objective functions comes only at the expense of deterio-

ration of the other objective and no solution is better than

the other solution according to the model criteria. The

policy maker can add his/her own criteria to decide on

which of these seven alternatives to implement. At the

same time, the ability of the model to guide the search to a

region that improves both objectives simultaneously is

demonstrated. This is evident from a comparison of the

Pareto front found at generation 50 with that obtained at

generation 2. It is also interesting to see that the optimal

land covers chosen make a clear compromise between

erosion protection and generating profit. Considering the
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plot for generation 50, for example, land covers that corre-

spond to alternatives on the lower portion of the curve (i.e.

those which generate less profit, but have better erosion

protection capability) are mainly hay and pasture with

conservational tillage or no tillage option. Those on the

extreme opposite side of the curve are cash crops with less

erosive tillage options, which can generate higher profit,

but at relatively high sediment yield. Lack of alternatives in

the middle of the curve is due to extreme differences

between field crops and perennial crops with respect to

erosion protection and market prices and not due to the

inadequacy of SPEA in locating smoothly distributed

optimal solutions over the range of the front.

It should also be noted that no calibration was

performed as part of this particular study since sufficient

calibration data does not exist at this time. This makes the

actual figures (average sediment yields and annual dollar

values) given in the convergence plot less informative,

apart from their relative comparison. This data, however,

is currently being collected, thus permitting extensive

calibration efforts in the near future. Nevertheless,

application of the model and presentation of results at this

stage allow the demonstration of the tools developed in

this research and their capabilities.

CONCLUSIONS

This study explains a multiobjective, discrete-time optimal

control computational model for watershed decision sup-

port. The tool may potentially play a significant role in

addressing adverse environmental impacts of non-point

source pollution and, at the same time, boost the agricul-

tural economy of a watershed. The model framework is

based on an interface between a comprehensive hydro-

logical and water quality model known as SWAT and

an evolutionary algorithm-based, multiobjective optimiz-

ation technique known as SPEA. Application of the

methodology to a study region located in Southern Illinois

demonstrates the effectiveness of the tool in presenting

non-dominated decision alternatives to policy makers,

who may then decide upon which policy to adopt,

based on their own additional criteria. The solution

methodology applied in this study integrates local, social

dynamics in multiple ownership watersheds with environ-

mental issues and is more likely to be granted validity and

trust by stakeholders of a watershed. Future work will

address calibration concerns and issues related to the

reliability of the model under uncertainty of inputs.

Techniques that may reduce computational demand of the

current methodology are also under investigation. Finally,

the methodology and computational watershed decision

support model may play a significant role in assisting

watersheds in meeting criteria such as Total Daily

Maximum Loads (TMDLs).
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