Propofol decreases stimulated dopamine release in the rat nucleus accumbens by a mechanism independent of dopamine D₂, GABAₐ and NMDA receptors

D. Schulte¹, L. F. Callado², C. Davidson²-³, P. E. M. Phillips²-⁴, N. Roewer¹, J. Schulte am Eschl¹ and J. A. Stamford²*

¹Department of Anaesthesiology, University Hospital Eppendorf, Hamburg, Germany. ²Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, St Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, London E1 1BB, UK
Present addresses: ¹Department of Psychiatry, Duke University Medical Center, PO Box 3870, Durham, NC 27710, USA. ²Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
*Corresponding author: Anaesthetics Unit, Royal London Hospital, Whitechapel, London E1 1BB, UK

Although propofol (2,6-di-isopropylphenol) is a popular i.v. general anaesthetic, it has been suggested to have abuse potential. As many drugs of abuse act preferentially via release of dopamine in the limbic system, we investigated the action of propofol on stimulated dopamine release in the rat nucleus accumbens. Nucleus accumbens slices were superfused (1.6 ml min⁻¹) with artificial cerebrospinal fluid at 32°C. Dopamine release was evoked by electrical stimulation (10 pulses, 0.1 ms, 10 mA, 10 Hz, every 10 min) and monitored by fast cyclic voltammetry. Propofol 100 μmol litre⁻¹ reduced stimulated dopamine release over the 2 h after administration, relative to Intralipid controls, to mean 70 (SEM 2)% (P<0.01). The dopamine D₂ receptor antagonist metoclopramide 0.3 μmol litre⁻¹ increased dopamine release but did not block the effect of propofol (38 (3)%). The selective GABAₐ antagonist bicuculline 24 μmol litre⁻¹ also failed to antagonize the action of propofol (45 (3)%). The NMDA receptor antagonist dextromethorphan 10 μmol litre⁻¹ decreased dopamine release to 57 (6)% (P<0.01) but failed to block the inhibitory effect of propofol (46 (6)%). Although propofol has been reported to bind to D₂, GABAₐ and NMDA receptors, failure of metoclopramide and bicuculline to block its effects suggests that an agonist action at D₂ or GABAₐ receptors does not mediate the effects of propofol on dopamine release in the rat nucleus accumbens. The lack of effect of dextromethorphan makes an NMDA receptor antagonist action unlikely.

Keywords: anaesthetics i.v., propofol; brain, nucleus accumbens; receptors, amino acid; receptors, dopamine; rat
Accepted for publication: August 25, 1999

Propofol (2,6-di-isopropylphenol) is a popular i.v. general anaesthetic with a low incidence of nausea. Recently however evidence has begun to emerge, albeit often circumstantial, suggesting that propofol may have abuse potential.¹ Many drugs of abuse are thought to act preferentially via dopamine within the limbic system,² causing either the release of dopamine or mimicking its actions at the receptor level. Paradoxically, propofol has also been reported to bind to dopamine D₁ receptors (albeit relatively weakly),³ an action reconcilable if D₂ receptor block occurs solely presynaptically.

We have investigated the action of propofol on evoked dopamine release in rat nucleus accumbens slices, a component of the limbic system with a large dopaminergic input from the ventral tegmental area. Dopamine release was measured in ‘real time’ by fast cyclic voltammetry.⁴

Methods and results
Male Wistar rats (100–150 g) were killed by cervical dislocation and the brains were removed rapidly and chilled in ice-cold artificial cerebrospinal fluid at -1 to +1°C. A 350-μm section containing the rat nucleus accumbens was cut, transferred to the chamber and held on a stainless steel grid with a nylon mesh. The slice was superfused with oxygenated artificial cerebrospinal fluid (ACSF) 1.6 ml min⁻¹ at 32°C throughout the experiment.
A carbon fibre (8×50 μm) microelectrode was inserted
80 μm below the surface of the slice, 200 μm from a bipolar tungsten stimulating electrode (A-M Systems, Seattle, USA). Auxiliary (stainless steel wire) and reference (Ag–AgCl) electrodes were positioned at convenient locations in the slice chamber.

Dopamine release was measured using fast cyclic voltammetry (FCV) as described previously. The input voltage (1.5 cycles of a triangle waveform, -1.0 to +1.4 V vs Ag–AgCl, 480 V s⁻¹) was applied to the potentiostat every 500 ms. A sample and hold circuit monitored current at the oxidation potential for dopamine (+ 600 mV vs Ag–AgCl). Its output was displayed on a chart recorder and stored on a microcomputer using CED (Cambridge Electronic Design) ‘Chart’ and ‘Signal’ software. Electrical stimulations were applied via an NL 800 constant current isolator. Dopamine release was evoked by electrical stimulation (10 pulses, 0.1 ms, 10 mA, 10 Hz every 10 min) and monitored by FCV.

After six stable consecutive dopamine release events were obtained, propofol 100 μmol litre⁻¹ (Zeneca) or an equivalent amount of its diluent (Intralipid; Pharmacia Laboratories) was added to the ACSF for 2 h. Some slices were pretreated with metoclopramide 0.3 μmol litre⁻¹ (SmithKline Beecham), bicuculline 24 μmol litre⁻¹ (Sigma) or dextromethorphan 10 μmol litre⁻¹ (RBI) from 60 min before experimentation and throughout. In separate experiments, the effect of dextromethorphan 10 μmol litre⁻¹ itself was investigated. Stock solutions of each drug were prepared in distilled water with the exception of propofol which was dissolved in Intralipid. Subsequent dilutions were made in ACSF.

All drug effects on dopamine release were plotted against time. The effects of the drugs were compared with the appropriate time matched points in their respective vehicle controls using the Student’s t test.

Electrical stimulation (10 pulses, 0.1 ms, 10 mA, 10 Hz) in the rat nucleus accumbens evoked release of dopamine that was readily detected at an adjacent carbon fibre microelectrode. Figure 1A shows a typical stimulated dopamine release event.

In the absence of drugs, stimulated dopamine release decreased slightly over the course of the experiment (Fig. 1B). Propofol 100 μmol litre⁻¹ significantly (P<0.01) reduced stimulated dopamine release relative to Intralipid controls (Fig. 1B). Metoclopramide 0.3 μmol litre⁻¹, the dopamine D₂ receptor antagonist, significantly increased dopamine release (data not shown) but did not block the effect of propofol (Fig. 1C). As before, propofol significantly (P<0.05) reduced stimulated dopamine release. Bicuculline 24 μmol litre⁻¹, the selective GABAₐ antagonist, had no effect on dopamine release alone and also failed to antagonize the action of propofol (Fig. 1D).

Dextromethorphan 10 μmol litre⁻¹ significantly reduced dopamine release over a similar time frame to propofol (Fig. 1E). However, propofol still significantly reduced dopamine release in the presence of dextromethorphan (Fig. 1F).

Comment

Propofol has a high brain to blood concentration ratio with brain concentrations of 220 μmol g⁻¹ recorded in the rat for plasma propofol concentrations of 29 μmol litre⁻¹. We used a concentration of propofol (100 μmol litre⁻¹) that, while below peak brain concentrations achieved, nonetheless represented a typical brain concentration after i.v. propofol anaesthesia in the rat. It is worth remembering that propofol is highly protein bound and thus the concentration at the active site(s) may be considerably lower.

The experiments were predicated upon the hypothesis that propofol might block presynaptic D₂ receptors, increasing dopamine release and thus explaining its apparent abuse potential. We have recently demonstrated that ketamine markedly increases dopamine release in the rat nucleus accumbens.

Propofol decreased dopamine release, an effect suggesting an agonist action at D₂ receptors. Certainly, propofol binds to D₂ receptors, albeit weakly. However, metoclopramide did not block the propofol response at a concentration that rapidly increased dopamine release and has been shown in this laboratory to block autoreceptor stimulation. Thus propofol, at this concentration, has no detectable D₂ agonist or antagonist activity on presynaptic D₂ receptors in the rat nucleus accumbens. Furthermore, Appadu, Strange and Lambert showed that propofol, at typical serum concentrations, occupies no more than 15% of D₂ dopamine receptors.

Propofol is known to potentiate GABA-mediated synaptic inhibition and this might underlie its effect on dopamine release. However, failure of bicuculline, the specific GABAₐ receptor antagonist, to block propofol suggests that a GABAₐ agonist action does not mediate the observed effects.

Propofol causes inhibition of NMDA receptors in vitro and this may mediate the hallucinations observed after propofol anaesthesia. However, although dextromethorphan itself decreased dopamine release, it was unable to block the action of propofol at a concentration known to block NMDA-mediated responses in vitro.

The absence of involvement of D₂, GABAₐ and NMDA receptors may suggest that the action of propofol is mediated via less specific mechanisms, such as calcium and sodium channels. Voltage-sensitive calcium channels can perhaps be excluded. Although propofol can block L- and T-type calcium channels, we have shown that forebrain dopamine release is mainly under the control of N- and P/Q-type calcium channels (Phillips and Stamford, unpublished data). More likely is the involvement of sodium channels. Propofol has been shown to inhibit glutamate release evoked by 4-aminopyridine and veratridine but not by potassium. It is possible that the same phenomenon may apply to dopamine release.

In summary, we found that propofol inhibited dopamine release in the rat nucleus accumbens in a manner dependent neither on D₂, GABAₐ nor NMDA receptors. We suggest
Fig 1 Propofol inhibits stimulated dopamine release. A: Sample-and-hold record of stimulated dopamine release and reuptake (as peak dopamine oxidation current) in the nucleus accumbens. The period of stimulation is shown by the filled bar. B: Effect of propofol 100 μmol litre⁻¹ on stimulated dopamine release in the nucleus accumbens. Intralipid controls are shown for comparison. The filled bar shows the period of drug or vehicle administration. C: Effect of propofol 100 μmol litre⁻¹ (filled bar) on stimulated dopamine release in the nucleus accumbens in the presence of metoclopramide 0.3 μmol litre⁻¹ (open bar). Intralipid controls in the presence of metoclopramide are shown for comparison. D: Effect of propofol 100 μmol litre⁻¹ (filled bar) on stimulated dopamine release in the nucleus accumbens in the presence of bicuculline 24 μmol litre⁻¹ (open bar). Intralipid controls in the presence of bicuculline are shown for comparison. E: Effect of dextromethorphan 10 μmol litre⁻¹ on stimulated dopamine release in the nucleus accumbens. Intralipid controls are shown for comparison. The filled bar shows the period of drug administration. F: Effect of propofol 100 μmol litre⁻¹ on stimulated dopamine release in the nucleus accumbens in the presence of dextromethorphan 10 μmol litre⁻¹, 2 h after administration. Intralipid controls in the presence of dextromethorphan are shown for comparison. All values are mean (SEM), n=4. *P<0.05, **P<0.01, ***P<0.001 vs time-matched controls (Student’s t test).
that propofol may be acting not through receptor mechanisms but by block of ion channels.

Acknowledgement

L. F. C. is a postdoctoral fellow supported by a grant from the Basque Government.

References

6 Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones. *Br J Pharmacol* 1995; 116: 1761–8

8 Hirota K, Lambert DG. I.v. anaesthetic agents do not interact with the verapamil binding site on L-type voltage-sensitive Ca\(^2\+) channels. *Br J Anaesth* 1996; 77: 385–6

9 Todorovic SM, Lingle CJ. Pharmacological properties of T-type Ca\(^2\+) current in adult rat sensory neurons; effects of anticonvulsant and anesthetic agents. *J Neurophysiol* 1998; 79: 240–52