retracted and will gradually become retractile on its own. It protects the glans and prevents it from cornifying. It also protects the meatus from stenosing (2,3).

As the intact boy matures, the foreskin begins to perform another rather vital function. It serves as the skin for the enlarged, erect penis, providing the surface mobility decreed by millions of years of evolution.

Last, but hardly least, it is now known that the foreskin contains Meissner’s corpuscles, complex nerve endings also found in breast papillae, that contribute to sexual pleasure (4).

It is quite unnecessary to remove the foreskin. The 250 million European men who have virtually all grown up intact, are testimony to this fact (5). In presenting studies of this important organ, extra care must be taken due to the irrational behavior surrounding the performance of circumcision in the United States.

GEORGE C. DENNISTON, M.D.
2442 NW Market St.
Seattle, WA 98107

References


(2) GARDNER D: Fate of the foreskin. Br Med J 2:1433, 1949


(5) DENNISTON GC: Unnecessary circumcision. The Female Patient 17:13-14, July 1992

Re: Decision Analysis of Hematopoietic Growth Factor Use in Patients Receiving Cancer Chemotherapy

Cost studies of new drugs approved for clinical use provide valuable information for clinicians who must decide whether to use those drugs for a given patient. This information is especially important when the new and often expensive drug is not directly active against the main disease but may relieve therapy-related side effects. The cost study of Lyman et al. (1) on hematopoietic growth factor (HGF) use in patients receiving cancer chemotherapy is of utmost interest. However, the authors find that “therapeutic HGF always results in a greater cost than no HGF.” This statement is based on the assumption that the use of HGFs administered therapeutically (i.e., after onset of neutropenia and fever) in addition to intravenous antibiotics does not result in a reduction of duration of hospitalization or cost. This assumption may not be correct.

To our knowledge, there are no previous reports in the literature on the role of therapeutic HGFs in patients with febrile neutropenia. This situation is somewhat surprising because febrile neutropenia remains a major complication of cancer chemotherapy, and it has been previously stated that minor changes in antibiotic schedule are unlikely to result in major reductions in the mortality rate of febrile neutropenia (2). There is also evidence from animal studies (3) that suggests a role for HGFs in the therapy of neutropenic sepsis.

We have recently completed a randomized trial on the value of adding granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) to standard antibiotic therapy in the treatment of febrile neutropenia. In this trial, cancer patients with chemotherapy-induced febrile neutropenia (absolute neutrophil count [ANC] <500/µL) were randomly assigned to receive therapy with G-CSF (arm A), GM-CSF (arm B), or placebo (arm C) to be started just after hospital admission. In addition, these patients received intravenous antibiotics. HGFs were discontinued when ANC remained over 1000/µL for 2 consecutive days. Intravenous antibiotics were discontinued and the patients were discharged when they remained afebrile.