Protection by polyinosinic-polycytidylic acid complex of rabbit eye tissue cultures infected with herpes simplex virus
Effect of neomycin and virus challenge dose

Mercedes Weissenbacher, Miles A. Galin, Endliam Chouchuwech, Norbert Schachter, and Samuel Baron

The induction of the interferon mechanism in rabbit corneal, conjunctival, iris, and kidney tissue cultures with polyinosinic-polycytidylic acid complex protects against infections with herpes simplex virus. The degree of protection is inversely proportional to the viral challenge dose and is significantly enhanced by the addition of neomycin. The potential application of these observations to ocular infections of man is considered.

Key words: polyinosinic-polycytidylic acid complex, interferon, herpes simplex virus, viral challenge dose, neomycin, rabbit.
Weissenbacher et al.

Investigative Ophthalmology
November 1970

Fig. 1. Effect of In • Cn and neomycin on the yield of herpes simplex virus in various rabbit eye cultures infected with 5 TCID₅₀. Assays were performed on supernatant fluid taken from cultures on the third day after infection.

HSV, as well as the efficacy of neomycin as an enhancer of the interferon-inducing effect of In • Cn in such tissues.

Materials and methods

Three-week-old New Zealand albino rabbits of both sexes were used for all tissue-culture source material. Primary rabbit kidney (PRK) tissue cultures were prepared by trypsinization. Minimal essential medium (MEM) plus 10 per cent fetal bovine serum (FBS) were used as growth medium for the rabbit kidney tissue. The cultures were maintained with MEM, 2 per cent FBS, and 1 per cent glutamine at 37° C. in a 5 per cent CO₂ atmosphere.

Growth medium for rabbit ocular tissue was Basal Media Eagle (BME) with 20 per cent FBS and 1 per cent glutamine supplemented with the addition of streptomycin, penicillin, tetracycline, and mycostatin (SPTM). Maintenance medium was BME and 2 per cent FBS. All rabbit tissue cultures were grown and matured in screw-top tubes at 37° C.

Primary rabbit ocular tissue cultures were prepared from cornea, iris-ciliary body, and conjunctiva. Corneal explants were made by shaving the surface of the cornea with a scalpel blade and placing the tissue in 2 ml. of growth medium. Every effort was made to remove just epithelium, but all tissues contained a small number of stromal cells.

Iris–ciliary body cultures were prepared by dissecting this structure from the eye, mincing the tissue, and placing the segments in 2 ml. of growth medium. Conjunctiva was dissected from the limbus to the cul-de-sacs, minced, and placed in 2 ml. of growth medium.

Rabbit kidney monolayers were complete in about five days, while ocular monolayers took seven to ten days to grow. In • Cn was obtained in a concentration of 5 mg. per milliliter* and was diluted to a concentration of 100 ng per milliliter with the appropriate maintenance medium. Viral resistance was initiated by incubating cultures of all four tissue types with 100 µg of In • Cn at 37° C. The influence of neomycin on viral resistance was determined by adding 300 µg of neomycin sulfate to cultures containing 100 µg of In • Cn. Control tubes were incubated without In • Cn, and additional controls were incubated with neomycin alone.

After 24 hours of incubation, the media were decanted and three tubes of each culture were challenged with 5 or 50 tissue culture infective doses (TCID₅₀) of HSV.† After an adsorption period of 2 hours at 37° C., the cultures were washed three times to remove excess virus and re-fed with maintenance medium. Cultures were then observed for seven days for cytopathic effect (CPE). After three days, the media were harvested, the cultures were re-fed, and virus titers were determined as TCID₅₀ in PRK cells by a

*Obtained from Grand Islands Biological Company.
†Herpes simplex virus, 11123 strain, obtained from Dr. W. Ashe of the National Institutes of Health, Bethesda, Md.
Results

The results are shown in Figs. 1 and 2. The various eye tissue cultures incubated with In·Cn and challenged with 5 TCID_{50} of HSV, yielded 1/10 to 1/200 as much virus as did the virus controls (Fig. 1). This effect was clearly enhanced by neomycin treatment, which further decreased virus yield by a factor of 5 to 2,000. The difference in virus yield between virus control cultures and those treated with In·Cn plus neomycin was greater than 2 log_{10} in all tissues. In addition, iris-ciliary body and PRK cultures yielded no virus at all after In·Cn plus neomycin treatment. Controls had significant virus yields, identical to those obtained with neomycin alone.

Cultures, pretreated with In·Cn and infected with 50 TCID_{50} HSV, yielded less virus than controls, but the degree of reduction was smaller and more variable than when the cultures were challenged with the lesser viral inoculum (Fig. 2). In fact, no diminution in virus yield was noted in conjunctival cultures. Neomycin enhancement at this viral challenge dose was slight in most tissues and absent in iris-ciliary body cultures.

The cytopathic effects induced in the tissue cultures are shown in Figs. 3 to 6. The cytopathic effect of corneal and iris cultures appeared similar to that in rabbit kidney cells. The typical giant cells produced by our herpes virus stock were not seen in the conjunctival cultures.

Discussion

Though HSV is known to be relatively resistant to the inhibitory action of interferon, this study demonstrates that In·Cn, an interferon inducer, confers antitherpetic resistance to various ocular tissue cultures. This protection is enhanced when In·Cn is combined with a polybasic substance such as neomycin. In addition, the degree of protection in tissue culture is clearly related to the intensity of virus challenge in that viral resistance was noted with inoculums of 5 TCID_{50}, but the protection...
was apparently overwhelmed by inoculums of 50 TCID₅₀. Additional experiments have been carried out to show that it is interferon that is the protective factor after In·Cn treatment of iris and corneal tissue cultures.

Polybasic substances, such as neomycin, have been shown to enhance the interferon stimulating effect of polynucleotides in nonocular tissue cultures. The present findings show similar enhancement in several types of ocular tissue cultures. The available evidence indicates that the polybasic substances may act by increasing cellular uptake and ribonuclease resistances of ribopolynucleotides.

The ability of large viral inoculums to overcome interferon protection has been noted consistently in vivo but has not been generally observed in cell culture systems. For example, in rabbit eye studies, if systemic interferon protection is in-
duced with intravenous typhoid vaccine, anterior chamber growth of Newcastle disease virus is inhibited if the intracameral inoculums of this virus are low. Challenges with high virus inoculums produce an incidence of infection equal to controls, although the onset of disease may be delayed. On the other hand, in mouse embryo cultures, low doses of vesicular stomatitis virus are actually less sensitive to the antiviral action of interferon than are high doses of virus. Recent in vitro studies with interferon in other viruses of the herpes group, mouse and human cytomegaloviruses, concur with the observations of this study in that they are highly sensitive to the antiviral action of interferon when small virus challenge doses are used. However, when virus doses in excess of 100 TCID₅₀ are employed, the interferon effect is diminished by about 100-fold. These findings with the herpes
viruses, but not generally with other viruses in culture, suggest that the herpes virus group may be unusual in its interaction with the interferon system in vitro. Study of the controlling mechanisms in tissue culture may lead to an understanding of the systems which govern the resistance to interferon of large inocula of most viruses in vivo. The possibility that the size of the fraction of the virus population, which is not inhibited by interferon in a given system, is related to the virus dose-dependent resistance, is being studied.20

The observations of this investigation may be pertinent to the therapeutic potential of In·Cn, with the obvious limitation that cells in vitro may be quite different from cells in situ. The prophylactic response to In·Cn treatment of experimental herpetic keratoconjunctivitis in rabbits is greater than is the therapeutic re-
This may be due to the relatively small virus dose which is applied after induction of interferon in a prophylactic study. In contrast, the same virus dose may replicate to much higher levels before interferon is induced in a therapeutic study and, thereby, lead to a resistant condition.

Herpes keratitis in man is typically a more indolent disorder. The number of virus particles and infected cells may be significantly lower in the human case than in the experimental counterpart. In \(\text{C}n \) may, therefore, prove more effective against the milder human infection than it does in rabbits. Furthermore, the ability to enhance activity with polyanions, such as neomycin, may help. In any event, because of the demonstrated prophylactic ability of the interferon system and the potential therapeutic efficacy available by local therapy, well-controlled clinical stud-

Fig. 6. (A) Normal rabbit conjunctiva tissue culture. (B) CPE in rabbit conjunctiva tissue culture 96 hours after infection with 50 ID\(_{50}\) per milliliter of HSV.
ies seem in order if In-Cn proves to be nontoxic topically.

The authors wish to acknowledge the excellent technical assistance of Miss Anita Panic-Pesika.

REFERENCES

