Legionella species and serogroups in Malaysian water cooling towers: identification by latex agglutination and PCR-DNA sequencing of isolates

Stacey Foong Yee Yong, Fen-Ning Goh and Yun Fong Ngeow

ABSTRACT

In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml⁻¹; 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2–14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.

Key words | latex agglutination, Legionella, Malaysia, rpoB PCR, water cooling towers, 16S rRNA PCR

INTRODUCTION

The genus Legionella was first established after a severe outbreak of pneumonia in Philadelphia, USA, in 1976, which resulted in 239 cases and 34 deaths (Fraser 2005). To date, 50 species of Legionella have been described of which at least 21 are associated with human infections (Coscolla & Gonzalez-Candelas 2007). Legionella pneumophila serogroup 1 alone is believed to be responsible for 60–80% of legionnaires’ disease; serogroups 2–14 account for another 15–35% and other Legionella species are associated with the remaining infections (Yu et al. 2002).

Legionnaires’ disease is identified as a community-acquired pneumonia that can present as sporadic infections or outbreaks (Kusnetsov et al. 1997; Liang et al. 2006; Joseph & Ricketts 2007). Transmission is via the inhalation or aspiration of aerosols contaminated with legionellae mostly from water cooling towers and other man-made water systems. Travel-associated legionnaires’ disease has been increasingly reported in Europe and the USA where there has been a dramatic increase in the incidence of legionellosis since 1990 (CDC 2007; Neil & Berkelman 2008; Ricketts et al. 2008).

Many epidemiological studies have shown the link between environmental and clinical strains of Legionella, and environmental surveillance programmes can provide useful data for risk assessment of outbreaks (Huang et al. 2004; Harrison et al. 2007). Even though no outbreaks of legionnaires’ disease have been documented in Malaysia, Legionella organisms have been shown to be present in the environment (Ngeow et al. 1992). Legionella were found in water cooling towers and in hospital warm water supplies
(Ngeow et al. 1992; Chin et al. 2003–2005). As these environmental reservoirs may be the source of clinical disease, it is of interest to know the distribution of Legionella species and serogroups in them. In this study, Legionella isolates from water cooling towers in various parts of Malaysia were serogrouped by latex agglutination with antisera and speciated by 16S rRNA and \(rpoB \) DNA sequencing. The 16S rRNA and \(rpoB \) gene sequences obtained were also used to study phylogenetic relationships among the Legionella isolates.

MATERIALS AND METHODS

Reference strains of Legionella species

Three *L. pneumophila* (serogroups 1, 5, 12) and eight non-pneumophila reference strains (five *L. longbeachae*, two *L. micdadei* and one *L. gormanii*) were included in this study as the positive and negative controls in the latex agglutination test and PCR-DNA sequencing of isolates of Legionella-like organisms. These strains were kindly provided by Professor P.M. Hawkey at the University of Leeds, UK, and Dr Elizabeth L. Hartland at the University of Melbourne, Australia.

Water sampling

Water samples were collected in 2005 and 2006. Samples from cooling towers 1–6 were collected and processed by the Public Health Laboratory in the state of Johor in south peninsular Malaysia. Isolates from these samples were supplied by the National Public Health Laboratory. Samples from towers 7–11 were collected by the authors from cooling towers located in different buildings in west peninsular Malaysia (Table 1). Water samples (500 ml) were collected from each cooling tower by immersing a sterilized 1-litre bottle approximately 10 cm below the surface of water. The water sample was then kept on ice, delivered to the laboratory and processed within 48 hours of collection, as described in the Australian/New Zealand Standard (AS/NZS 3896:1998) for waters: examination for legionellae including *L. pneumophila*.

Water processing

Each water sample was pressure filtered through a 0.45 \(\mu \)m cellulose nitrate membrane (Millipore) and eluted with 10 ml of sterile phosphate buffered saline (PBS pH 7.2 ~ 7.3). This was followed by 20 minutes of centrifugation at 4,000 rpm. The resulting sediment was resuspended in 1 ml sterile distilled water.

Acid treatment of concentrated filtrate

The 1 ml of bacterial suspension was acid treated with 9 ml of HCl-KCl pH 2.2 (0.1 M Tris HCl, 0.1 M KCl) for 30 minutes, after which 100 \(\mu l \) of the treated suspension was plated on BCYE-GVPC medium (Oxoid Ltd, Basingstoke, UK).

Identifying and quantifying Legionella-like organisms on BCYE-GVPC medium

After incubation at 37°C for up to 10 days in 5% CO\(_2\), glassy-looking colonies resembling Legionella were selected and sub-cultured onto Horse Blood Agar (FC Bio Sdn. Bhd., Malaysia) and BCYE-GVPC media. Colonies growing on BCYE-GVPC agar but not on HBA were presumptively identified as Legionella-like organisms. The number of suspected Legionella colonies on each BCYE-GVPC agar was counted and CFU ml\(^{-1}\) were calculated by multiplying the total number of colonies by the dilution factor and dividing by the volume of inoculum.

Characterization of Legionella-like organisms using latex slide agglutination test

A few colonies from each positive water sample were used for latex slide agglutination with test kits (Dryspot Legionella Latex test; Oxoid Ltd, Basingstoke, UK) for serogroup (SG) 1, SG 2–14 and Legionella species. The Legionella species kit contains rabbit antisera against *L. anisa*, *L. longbeachae*, *L. gormanii*, *L. jordanis*, *L. dumoffii*, *L. micdadei* and *L. bozemanii*. Legionella-like organisms that were latex agglutination negative were subsequently analysed by 16S rRNA and \(rpoB \)
Table 1 | Legionella isolates identified by latex slide agglutination, 16S rRNA and rpoB PCR-DNA sequencing

<table>
<thead>
<tr>
<th>Source of Legionella</th>
<th>Latex test</th>
<th>16S rRNA sequencing</th>
<th>rpoB sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>South peninsular Malaysia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower 1 (Polyclinic)</td>
<td>Colony a SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Colony b</td>
<td>–</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Tower 2 (Healthcare centre)</td>
<td>Colony a SG 1</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td>Colony b SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Colony c SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Tower 3 (Office Building)</td>
<td>Colony a SG 1</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td>Colony b SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Tower 4 (Healthcare centre)</td>
<td>Colony a SG 2–14</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Tower 5 (Office Building)</td>
<td>Colony a SG 1</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td>Colony b SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Colony c SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td>East Malaysia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower 6 (Healthcare centre)</td>
<td>Colony a SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Colony b Species</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Colony c Species</td>
<td>L. anisa</td>
<td>L. anisa</td>
</tr>
<tr>
<td>West peninsular Malaysia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower 7 (Healthcare centre) 100–1,000 CFU ml⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tower 8 (Factory) 100 CFU ml⁻¹</td>
<td>Sample a SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td>Tower 9 (Office tower) 200–2,000 CFU ml⁻¹</td>
<td>Sample a –</td>
<td>L. busanensis</td>
<td>Not amplified by rpoB PCR</td>
</tr>
<tr>
<td></td>
<td>Sample b colony a SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample b colony b SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td>Tower 10 (Office tower) 200–2,000 CFU ml⁻¹</td>
<td>Sample a SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample b Species</td>
<td>L. dumoffi or L. longbeachae or L. gormanii</td>
<td>L. gormanii</td>
</tr>
<tr>
<td></td>
<td>Sample c SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample d Species</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample e SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td>Tower 11 (Healthcare centre) 180 CFU ml⁻¹</td>
<td>Sample b</td>
<td>–</td>
<td>L. gresilensis</td>
</tr>
<tr>
<td></td>
<td>Sample c SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample d SG 2–14</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
<tr>
<td></td>
<td>Sample e SG 1</td>
<td>L. pneumophila</td>
<td>L. pneumophila</td>
</tr>
</tbody>
</table>

SG, serogroup; –, no agglutination with any antiserum used; NP, not performed.
PCR-sequencing. All except three of the latex agglutination positive Legionella strains and all reference strains were similarly examined by PCR-sequencing.

Characterization of Legionella-like organisms by 16S rRNA and rpoB genes PCR-DNA sequencing

Genomic DNA extraction

Chromosomal DNA was extracted from isolates using DNAzol® Genomic DNA Isolation Reagent (Molecular Research Centre, Inc.) according to the manufacturer's instructions.

PCR primers and reactions

The 16S rRNA PCR primers used were previously described by Miyamoto et al. (1997). PCR was performed using 20 ng of template DNA, 10 μM of each primer, 1 × reaction buffer, 2.2 mM MgCl₂, 0.4 μM deoxyribonucleoside triphosphate mix and 1 U of Taq polymerase per 25 μl reaction. The thermocycling conditions used were: 95°C for 4 minutes, 35 cycles of 95°C for 1 minute, 60°C for 1 minute, 72°C for 1 minute and 72°C for 5 minutes. The PCR reaction mixture and thermocycling parameters to amplify rpoB genes were as described by Ko et al. (2002).

DNA sequencing

PCR amplicons for partial 16S rRNA (600 bp) and rpoB (360 bp) genes were purified using GenElute PCR clean-up kit (Sigma-Aldrich) prior to DNA sequencing. All DNA sequencing reactions were performed by using dye primer and dye terminator chemistries in LI-COR® NEN 4200 Global IR2 DNA Sequencing System and ABI® PRISM DNA Sequencers.

Phylogenetic analyses

Multiple sequences of all isolates and reference strains of Legionella were aligned using Clustalw2 (Larkin et al. 2007) prior to plotting phylogenetic trees to reveal the DNA relatedness among them. Phylogenetic trees were constructed by the neighbour-joining method (NJ) in MEGA version 4 (Tamura et al. 2007). Coxiella burnetii, the aetiological agent of Q fever, was employed as the outgroup in both trees. The clusters in both trees were defined as groups of isolates sharing more than 97% homology in DNA sequences. Branch bootstrap values were evaluated with 1,000 replications.

RESULTS

Legionella counts

The viable counts of Legionella-like organisms ranged from 100 to 2,000 CFU ml⁻¹ water in the cooling towers screened. Repeat samples were taken from four cooling towers. In the absence of water treatment, repeat samples from the same cooling tower gave CFU counts that were mostly within 1 log different (data not shown).

Latex slide agglutination

All reference strains were correctly identified by the latex agglutination test as either L. pneumophila or non-pneumophila species. As shown in Table 1, the isolates were identified as L. pneumophila serogroup 1 in ten water samples, L. pneumophila serogroups 2–14 in eleven and Legionella species in three. Legionella-like isolates from three samples were not serogroupable. Serogroup 1 comprised 35.7% of all isolates. In some instances, different serogroups were identified among different colonies taken from the same sample of water and among different samples from the same cooling tower.

16S rRNA and rpoB DNA sequencing of isolated Legionella-like organisms

All reference strains of L. pneumophila and non-pneumophila Legionella were correctly identified by both 16S rRNA and rpoB PCR-DNA sequencing (results not shown). Similarly, both PCR-DNA sequencing examinations gave concordant results for 22 isolates identified as L. pneumophila and one L. anisa (Table 1). Two Legionella species, L. busanensis and L. gresilensis, were identified by the 16S rRNA DNA sequencing but were not amplified using the rpoB primers. Of the four isolates that agglutinated with Legionella species reagent in the latex
agglutination test, surprisingly, two turned out to be \textit{L. pneumophila} by both PCR-DNA sequencing tests. The remaining two were identified to be \textit{L. gormanii} by \textit{rpoB} PCR-DNA sequencing and \textit{L. anisa} by both 16S rRNA and \textit{rpoB} PCR-DNA sequencing (Table 1). Mixed populations of \textit{L. pneumophila} and other \textit{Legionella} species were found in six of the cooling towers.

Phylogenetic relationship of \textit{Legionella} isolates based on 16S rRNA and \textit{rpoB} DNA sequences

The 16S rRNA phylogenetic tree established three clusters of \textit{Legionella} species (Figure 1). Cluster A consisted of only \textit{L. pneumophila}, with intra-species homology of 99.4–100%, supported by a robust bootstrap value of 98%. Cluster B consisted of \textit{L. anisa}, \textit{L. longbeachae} and \textit{L. gormanii}, sharing 99.1–99.3% homologous sequences with a low bootstrap value of 66–58%. Cluster A and B share 98.9% of homology in sequence. Cluster C consisted of \textit{L. micdadei}, \textit{L. busanensis} and \textit{L. gresilensis}, sharing sequence homology of 97.1–98.9% with a relatively high bootstrap value of 84%. Cluster A and C share 97.2% of homologous sequences.

The \textit{rpoB} phylogenetic tree displayed four distinctive clusters of \textit{Legionella} species (Figure 2). Cluster A consisted of \textit{L. pneumophila} species with intra-species homology of 97.2–100%. Cluster B consisted of only one species, \textit{L. gormanii}, which shared 85% sequence homology with cluster A. The species \textit{L. anisa} and \textit{L. longbeachae} formed clusters C and D, respectively. Clusters C and D share 81.1% and 82% homologous sequences with cluster A, respectively. All strains of \textit{Legionella} within clusters B, C and D showed 100% intra-group homology and all three clusters were supported by 100% bootstrap values.

DISCUSSION

\textit{Legionella pneumophila} has been classified as a re-emerging pathogen that has been causing increasing numbers of human infections in recent years (Neil & Berkelman 2008). In Malaysia, seroprevalence studies have indicated substantial population exposure to this organism and sporadic infections have been reported (Ngeow & AsiA-CAP study group 2005; Normaznah et al. 2005). In this study, the isolation of \textit{L. pneumophila} from all 11 cooling towers examined reconfirmed the widespread presence of this organism in the environment. The overall 75% predominance among isolates is also similar to that reported in a 1992 study on 50 cooling towers in the capital city of Kuala Lumpur, in which 9 out of 12 \textit{Legionella} isolates were identified as \textit{L. pneumophila} (Ngeow et al. 1992).

The frequent occurrence of \textit{L. pneumophila} in water cooling towers may be related to its enhanced resistance to chlorine disinfection or its ability to persist for long periods of time in the environment despite susceptibility to chlorine (Kuchta et al. 1985; García et al. 2008). The latter has been attributed to the bacterium’s existence inside amoebae and within biofilms, both of which provide protection from chlorination (Bichai et al. 2008). Older cooling towers, especially those with corrosion and sedimentation of sand and minerals are more prone to biofilm formation and \textit{Legionella} proliferation. In Malaysia, the warm humid weather could be another factor favouring the long-term survival of the organism in the environment.

Latex slide agglutination tests are commonly used in the diagnostic laboratory because they are simple and rapid. However, the sensitivity and specificity of the agglutination test depend on the surface antigens of bacteria and the antisera used. In this study, the Dryspot \textit{Legionella} Latex test was negative in one \textit{L. pneumophila} isolate and wrongly diagnosed two \textit{L. pneumophila} isolates as non-\textit{pneumophila} species, thus giving a sensitivity of only 85.7% (18 out of 21) for the identification of \textit{L. pneumophila}, when compared with PCR-DNA sequencing. There is a possibility that the isolate that was agglutination negative belonged to serogroup 15 or a hitherto unknown serogroup, but the two isolates that agglutinated with the \textit{Legionella} species reagent were probably examples of cross-reactivity caused by inadequate adsorption of polyclonal antisera. For the four non-\textit{pneumophila} species, the Dryspot \textit{Legionella} latex test showed positive agglutination with \textit{L. anisa} and \textit{L. gormanii} but not with \textit{L. busanensis} and \textit{L. gresilensis} because the latter two species were not represented in the \textit{Legionella} species reagent in the kit. This limitation illustrates the importance of conducting \textit{Legionella} studies locally so that the usefulness of commercially available
Figure 1 | Phylogenetic tree of Legionella species from partial 16S rRNA gene sequence generated by the NJ method in MEGA version 4. Coxiella burnetti was used as the outgroup. Bootstrap values presented at corresponding branches were evaluated from 1,000 replications. Values below 50% are not indicated. Species of Legionella are abbreviated (LP, L. pneumophila; LA, L. anisa; LG, L. gormanii; LL, L. longbeachae; LB, L. busanensis; LGr, L. gresilensis). Designations of strains are shown after species abbreviation. 16S rRNA gene sequences for bacteria with † were obtained from GenBank and reference strains are indicated by symbol #. Scale bar represents 1 substitution per 100 nucleotides.
Legionella identification kits can be assessed for their ability to identify locally prevalent strains.

The partial 16S rRNA and rpoB DNA sequencing results concurred in all L. pneumophila isolates but differed in three of the four Legionella species. L. busanensis and L. gresilensis were identified by the 16S rRNA sequencing but not by rpoB gene sequencing. On the other hand, rpoB sequence analysis identified L. gormanii which was not identified by the partial 16S rRNA gene sequence analysis. Both DNA analyses can be

Figure 2 | Phylogenetic tree of Legionella species from partial rpoB gene sequence generated by the NJ method in MEGA version 4. Coxiella burnetti was used as the outgroup. Bootstrap values presented at corresponding branches were evaluated from 1,000 replications. Values below 50% are not indicated. Species of Legionella are abbreviated (LP, L. pneumophila; LA, L. anisa; LG, L. gormanii; LL, L. longbeachae). Designations of strains are shown after species abbreviation. rpoB gene sequences for bacteria with ¥ were obtained from GenBank and reference strains are indicated by the symbol #. Scale bar represents 5 substitutions per 100 nucleotides.
used to complement latex slide agglutination to give a more complete characterization of Legionella isolates. An added advantage is the potential detection of novel species from DNA sequence alignment.

The phylogenetic trees of 16S rRNA and rpoB genes were constructed to determine the DNA relatedness of the Legionella isolates from different locations. Both trees displayed high intra-species homology for L. pneumophila (99.4–100% with 16S rRNA and 97.2–100% with rpoB) but, with the exception of three L. pneumophila isolates in Tower 10 (Figure 2), there was no distinct clustering by location. This lack of clustering could be the result of the introduction of different strains at different times from different sources or the divergence in genetic evolution over a long period of time in the same location. There was clear separation of L. pneumophila from the other species (Figures 1 and 2). Although there were very few non-pneumophila Legionella isolates in this study, they clustered with their corresponding reference strains as shown by L. gormanii (Tower 10) and L. gormanii (03/69) from Australia as well as L. gresilensis (Tower 11) and L. gresilensis ATCC 700509 (Figure 1). The 16S rRNA phylogenetic tree revealed a closer relationship among the Legionella species (97.2–98.9%) compared with the rpoB gene phylogenetic tree (81.1–85%). This might have been the reason why L. busanensis and L. gresilensis from towers 9 and 11 were amplified and identified by the 16S rRNA PCR but not by the rpoB PCR.

In summary, although there have been no documented outbreaks of Legionella infection in Malaysia, the high rate of contamination in water cooling towers is a cause for concern. Routine screening for Legionella in water cooling towers is not yet mandatory in the country but is encouraged, as it will not only help to prevent outbreaks by monitoring the level of contamination and prompting corrective actions when levels are high, but will also help to confirm or refute the effectiveness of maintenance measures in place.

ACKNOWLEDGEMENTS

This project was supported by the Malaysian Toray Science Foundation. We thank Mr Wong Chai Kwee for assistance with the water collection and transportation to the laboratory; the management of the public buildings sampled for permission to conduct the study on their premises; and the National Public Health Laboratory, Malaysia, for the isolates from southern peninsular and east Malaysia.

REFERENCES

First received 13 January 2009; accepted in revised form 21 April 2009. Available online 9 November 2009