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Abstract

The evolution of self-replication in three dimensions is ex-
plored for the rsttime. A discrete three-dimensional world
populated with physically-realizable “molecubes” is simu-
lated. The cubes have randomly initialized controllers, can
rotate about an axis, and can attach to one another to form
conglomerations. Genetic material, which de nes cube con-
trollers, is exchanged stochastically between attached cubes
and subject to random mutations. Self-replicating cube con-
glomerations emerge in this simulation across a wide range
of densities and without the use of a tness function, yielding
insight into the evolution of self-replication in nature and fur-
thering progress toward physically-realizable self-replicating
machines.

Introduction

Researchers have been interested in arti cial life simula-
tions for as long as digital computers have existed. Early
on, von Neumann invented cellular automata [Neumann
(1966)], which are still an active area of research to this day.
While the original cellular automata were programmed with
the ability to self-replicate, more recent experiments have
demonstrated the spontaneous emergence of replicators in
such systems [Chou (1997)].

Figure 2: Experimental results for various densities. A
replicating species is de ned as a genome that occurs in
two or more genetically homogeneous molecube conglom-
erations, where each conglomeration contains at least two
cubes. Each result is an average over 100 randomly initial-
ized runs and error bars show standard error.

In cellular automata simulations, every agent is identical
(i.e. they all use the same ruleset). More complex arti -
cial life paradigms such as Tierra [Ray (1992)] and Avida
[Adami and Brown (1994)] simulate a diverse population of

Figure 1: Three physical “molecubes”. Note the plane of
rotation.
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digital organisms that compete for computational resources,
which can then be used for replication. Each agent in these
simulations contains its own instruction set or “program”
that can evolve over time. Organisms in Avida have the abil-
ity to self-replicate by running instructions to allocate mem-
ory for a child program and copy their instruction set into
this memory. There is no explicit fitness function guiding
evolution in these simulations, allowing for comparisons to
self-replicating life on Earth. While further analogies can
be drawn between these computational programs and real-
world systems, it is difficult to imagine physical implemen-
tations of these artificial life-forms.

In an effort to narrow the gap between computational sim-
ulation and the physical world, a 2D simulation of non-
uniform cellular automata that were physically realizable
was designed and run in [Studer and Lipson (2005)]. The
automata instruction sets existed in simulated “molecubes,”
which are cubes that can attach to one another using elec-
tromagnets and can rotate their halves around a fixed axis
(see Figure 1). Physical versions of these cubes have pre-
viously been constructed and [Zykov et al. (2005)] demon-
strated how a group of these molecubes could construct an
identical second group using other molecubes. Preliminary
results from the 2D simulations demonstrated, without the
use of a fitness function, spontaneous emergence of self-
replication. A group of simulated molecubes with identical
rulesets (a “species”) collected other molecubes in the 2D
environment, transferred their rulesets, and then separated
into two identical molecube groupings. A variety of self-
replicating species often co-existed simultaneously, compet-
ing for molecube resources in the simulation.

The experiments presented in this paper bring ALife an-
other step closer to realizable real-world systems by demon-
strating the spontaneous emergence of self-replication in a
population of physically realizable three-dimensional mole-
cubes that exist in a simulated three-dimensional world.
While this environment lacks several properties of the phys-
ical world, most notably gravity, this is the first time that
the emergence of self-replication has been observed in
three dimensions. Replicators emerged in simulations of
varying densities, producing examples of agents that must
move through the environment to accumulate cubes as well
as replicators that were forced to remain largely station-
ary. This mirrors the independent rise of multicellularity in
plants and animals [Bonner (1998)].

3D Physical Cube Automata

The simulated cubes in the following experiments were
based on real “molecubes,” presented in [Mytilinaios et al.
(2004)]. Each of these physical cubes contains an actuator
that allows it to rotate one of its pyramid-shaped halves in

increments and adjacent cubes can connect to one an-
other using electromagnets. Adjacent cubes can also com-
municate over a digital channel. Figure 1 shows an example
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of these physical molecubes.

The computer simulations consisted of a population
of simulated molecubes that exist in a three-dimensional
X Xx Xx environment partitioned into a 3D grid. Each dis-
crete grid location can either be vacant or occupied by a
molecube. A single molecube cannot move from one dis-
crete location to another, however a molecube can move
other molecubes that are attached to it by rotating around its
axis. One can then imagine various methods of locomotion
whereby attached molecubes take turns rotating around their
respective axis. Gravity is not incorporated into the simula-
tion, therefore groups of molecubes can move in any direc-
tion. The simulated world wraps around, i.e. it is toroidal. If
a molecube rotation creates a collision (i.e. two molecubes
occupying the same 3D grid location), this move is reversed.
To reduce the computational complexity of the system, colli-
sions during a molecube rotation are ignored. Furthermore,
a maximum of 15 molecubes could be attached together in
a single group, and loops of attached molecubes were not
allowed.

Each simulated molecube contains a controller that up-
dates the cube’s output set based on its previous outputs
and its current input values . See Table 1 for descriptions
of the controller inputs and outputs. During a simulation,
each molecube’s controller is evaluated once per timestep.
The order in which the controllers are evaluated is based on
inter-molecube connections. Therefore while it is not ran-
dom, it does vary over time.

The controllers used are 0D3v0 controllers [Grouchy and
D’Eleuterio (2010)], where there is one evolvable ordinary
differential equation per controller output (see Equa-
tion 1).

T p (1

The functions 7 are represented as trees and can incorpo-
rate constants, inputs, outputs and a variety of mathematical
operations (as in symbolic regression in Genetic Program-
ming [Poli et al. (2008)]). For details on how the controllers
are initialized, evaluated, and mutated, the reader is referred
to [Grouchy and D’Eleuterio (2010)]. Crossover at the func-
tion level was not implemented for our experiments, how-
ever tree-level crossover that overwrites a randomly selected
subtree with a randomly selected subtree from another con-
troller was used. When at least one cube is attached to a cube
selected for mutation, tree-level crossover is performed in-
stead of a mutation with a probability of

At each timestep, there is a probability that a random
mutation will occur within a molecube’s genome. Further-
more, if a molecube is attached to at least one other cube,
there is a 50% chance that it will have its ODEs overwrit-
ten by an attached neighbours’ ODEs. This can occur once
per attached cube, per timestep. By stochastically decid-
ing whether a cube’s equations are to be overwritten by a
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Parameter Range Description \

X 0,1 Incoming communication bit from molecube adjacent to side ( if no adjacent cube).
Note that molecubes do not have to be attached to communicate.

X » 0,0.5,1 Adjacent/attached inputs. Set to 0 if no molecube adjacent to side < , 0.5 if mole-
cube adjacent but not attached, 1 if molecube adjacent and attached.

T, [0,1] Outgoing communication bit to molecube adjacent to side . If this output is greater
than 0.5, a 1 is sent. Otherwise, a O is sent.

T, [0,1] Attach/detach output for side < . At each timestep, if a randomly generated value

between 0 and 1 is less than the average of this output for two adjacent sides, their two
respective molecubes are attached. Otherwise, they are detached.

T [-1,1]

Molecube rotation output. If < p T p
The remainder of the output range is equally divided to represent the four possible
rotations, two directions per half.

, the molecube does not rotate.

Table 1: Simulated molecube controller inputs and outputs

neighbour’s, the inherent bias in the cube evaluation order is
lessened.

Experiments

The goal of the experiments presented in this paper was to
observe self-replicating cube “species” in a simulated three-
dimensional environment. Here, a replicating species is de-
fined as a genome that occurs in two or more genetically ho-
mogeneous molecube conglomerations, where a molecube
conglomeration is defined as a grouping of two or more at-
tached molecubes. Genetic distance was calculated as the
sum of the tree edit distance between each output equation
in a pair of genomes (tree edit distance was calculated using
the Zhang-Shasha algorithm [Zhang and Shasha (1989)]).
Self-replication is defined here as a series of actions whereby
a genetically homogeneous molecube conglomeration accu-
mulates molecubes from the environment and/or other con-
glomerations, overwrites their genomes with its own and
then detaches at one or more points to produce two or more
genetically homogeneous conglomerations that all contain
the same genome. Self-replicating species are detected by
searching the simulation for genomes that exist in two or
more distinct, genetically homogeneous conglomerations.
Note that the structures of the molecube conglomerations
are ignored in this definition. This is owing to the fact that
while genetically identical conglomerations were often ob-
served, they were usually composed of a different number
of molecubes, or the same number but arranged differently.

Experiments consisted of 1,000 randomly placed mole-
cubes, each with a randomly generated genome. Experi-
ments were performed with densities of 0.25%, 1%, 4%,
16% and 64% (note that in cases other than 1% density, the
number of cubes had to be adjusted slightly to achieve the
desired density). The mutation rate used was 7 .
An experiment would run for 10,000 timesteps, where a
timestep consists of evaluating every molecube’s controller,
executing their outputs and stochastically performing muta-
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tions and equation overwrites. At periodic intervals, inter-
conglomeration and between conglomeration genetic dis-
tances were calculated. If two or more genetically homo-
geneous conglomerations were found to contain the same
genome, this species would be observed in a manually con-
ducted test simulation. Test simulations would occur in
smaller 3D grids (usually 9x9x9), populated by other con-
glomerations and/or single molecubes extracted from the
same original simulation. The test simulation would last
for 1,000 timesteps, and the results would be visualized us-
ing an RGB colour scheme to represent relative genetic dis-
tances. The goal of these test simulations was to observe
self-replication. Furthermore, a variety of quantitative met-
rics based on genetic distance were used to analyze the sim-
ulations and to detect and observe the emergence of self-
replicating species.

Results and Discussion

For the following results, data were collected at 100 timestep
intervals. Figure 2 shows, for all experiments, the number of
different self-replicating species detected at a given timestep
(top), the average size of replicating conglomerations (mid-
dle), as well as the maximum number of conglomerations
belonging to a single replicating species (bottom).

At low densities, replicators must be mobile to acquire
new molecubes. At a density of 0.25%, very few replicat-
ing species arise, as there is little interaction between mole-
cubes. Replicating species do appear on occasion, however
they cannot acquire new molecubes fast enough to replicate
further before succumbing to mutations. At 1% density, mo-
bile conglomerations encounter new molecubes more fre-
quently. Initially, a few small replicators appear. Over time,
these initial replicators collect stationary molecubes, thus
spreading genomes that promote conglomeration mobility.
This also enables molecubes that were initialized without
immediate neighbours to interact with other cubes. Thus,
the molecubes in the system become more mobile, increas-

Artificial Life 13

120 Jaquiadaq G uo 3sanb Aq ypd-600U0-G-050 1L €-292-0-8L6/7E L L 06 L/6S/+2/Z 1 0Za)e/spd-sBuipaadoid/jes)/npajiwioalip//:dpy woly papeojumoq



Evolution of Self-Replicating Cube Conglomerations in a Simulated 3D Environment

Figure 3: A collection of timesteps during a full simulation run at 64% density. Colours represent relative genetic distance.
Despite their almost complete lack of mobility, several replicating species succeed in dominating large sections of the simulation

world, albeit temporarily.

ing the number of molecube interactions, which in turn pro-
duces more replicating species and larger conglomerations.

At higher densities, molecubes are more likely to be ini-
tialized with adjacent neighbours, therefore a large number
of replicating species appear within the first 100 timesteps.
Interestingly, the number of distinct replicating species de-
creases as the simulation progresses, with the higher den-
sity simulations (16% and 64%) finishing with less distinct
species on average than the lower density simulations (1%
and 4%). This is most likely owing to the larger number
of molecube interactions that will occur at higher densities,
which in turn will lead to more competition and a larger
number of equation overwrites per timestep, thus reducing
overall diversity. At a density of 64%, mobility is extremely
limited. Regardless, self-replication emerges consistently,
with larger species conglomerations on average. Figure 3
shows several timesteps of a 64% density simulation run.

Figure 4 compares the original results from the 1% den-
sity runs with a new set of results from a similar 1% den-
sity simulation where the only difference was that the out-
puts of all molecubes were randomly generated values in
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the range x . These values were regenerated at each
timestep. These data show that self-replicating species can
occasionally arise from inherent properties of the simula-
tion itself. However, these species are on average the mini-
mum possible size (two molecubes per conglomeration, the
minimum number required to be defined as a conglomera-
tion) and comprised of the minimum number of conglomer-
ations (two conglomerations, the minimum number required
to be defined as a species). Thus, while a minimal amount
of self-replication can occur in the system by chance, hav-
ing the genomes control the molecube outputs allows for a
larger number of self-replicating species to emerge from the
simulation. These genome controlled species are also on
average more complex (i.e. more molecubes per conglom-
eration) and more reproductively viable (i.e. produce more
copies of themselves) than their randomly arising counter-
parts.

Figures 5 and 6 show two examples of test simulations
where replication was observed. In both scenarios, the test
grid was 9x9x9 and all conglomerations were extracted from
the same original 1% density simulation run. The conglom-
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Figure 4: Experimental results for 1% density runs.
“Genome controlled outputs™ are the original results from
the simulation as described. ‘“Randomized outputs” are re-
sults from a simulation identical to the original, except that
the outputs of each molecube were set to random values at
each timestep. Each result is an average over 100 randomly
initialized runs and error bars show standard error.

erations shown in Figure 5 were from timestep 7,900, while
those in Figure 6 were taken from timestep 9,700. Figure 5
shows a large conglomeration dividing multiple times. It be-
gins the test simulation composed of eight molecubes, which
was its structure when it was extracted from the original sim-
ulation. It splits almost immediately into two groups, one
of three cubes and one of four, leaving a single cube un-
used. The conglomeration of size four soon splits again into
two groups of two cubes. One of these two groups attaches
to a genetically distinct conglomeration of size two and af-
ter a few timesteps of back-and-forth stochastic genetic ex-
change, it is able to overwrite the foreign genomes with its
own, thus becoming a genetically homogeneous conglom-
eration of size four. By the end of the test run, the orig-
inal conglomeration of eight cubes has replicated multiple
times, with the help of two cubes consumed from a foreign
conglomeration.
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In Figure 6, the blue conglomeration with four cubes con-
sumes the two cubes in the green conglomeration. It then
moves on to attach itself to the orange conglomeration. De-
spite being one cube smaller, the stochastic overwrites work
in the blue conglomeration’s favour, allowing it to rapidly
overwrite the orange conglomeration. Finally, the single
13-cube conglomeration splits into two genetically identical
conglomerations of size six, leaving a single cube unused.
Thus in only 15 timesteps, the blue species was able to con-
sume all of the molecubes in the test simulation and use this
material to self-replicate.

It seems counter-intuitive that self-replication would arise
in so few timesteps considering the large number of inputs
and outputs for a molecube controller. In low-density sit-
uations, a self-replicating conglomeration must be able to
move through the simulated 3D world and attach to new
molecubes in ways that do not impede mobility. Moreover,
at all densities, replicators must be able to detach at appro-
priate inter-cube connections and at appropriate times to pro-
duce viable copies. It turns out that a simple cube controller
can produce these desired properties. For example, the con-
troller in the blue cubes in Figure 6 is largely static, with
the majority of its outputs set permanently to O or 1. This
includes its turn output. Four of its six attach/detach outputs
are static, with two set to 0 and two set to 1. The only fully
dynamic outputs® are two of its attach/detach outputs, shown
in simplified form in Equations 2 and 3.

dyg/dt = dl‘g/dt (2)

0.074, ifx7=0.0
dyll/dt = —0.77, lf r7 = 05 (3)
—0.54, ifz;=1.0

Thus, as in 2D cellular automata, a simple controller
governing the interaction of multiple identical agents in a
simulated 3D world can produce surprisingly complex be-
haviours. Note that the attach/detach output shown in Equa-
tion 2 depends on an incoming communication bit, demon-
strating how communication bits can be used to decide when
and where a cube conglomeration should split.

Conclusions and Future Work

As far as the authors know, the results presented in this
paper are the first cases of the spontaneous emergence of
self-replication in a simulated three-dimensional environ-
ment. Previous results (e.g. [Studer and Lipson (2005);
Chou (1997)]) occurred in two-dimensional scenarios. Fur-
thermore, by simulating molecubes that have been con-
structed in the real world, we are one step closer to evolved,

'“fully dynamic” outputs are ones that continue to change over

time. This controller also had several “partially dynamic” equa-
tions that could change an output once before becoming static.
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Figure 5: Test simulation using conglomerations from timestep 7,900. Colours represent relative genetic distance. A large
conglomeration replicates multiple times. It also captures a small genetically distinct conglomeration and uses its cubes for
self-replication.
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Figure 6: Test simulation using conglomerations from timestep 9,700. Colours represent relative genetic distance. The blue
conglomeration consumes the other groups and uses their cubes to self-replicate.

physically realizable self-replicating machines. The next
steps toward this goal would be to incorporate more physics
into the simulation, including gravity, and to have the 3D
simulated world be continuous instead of partitioned into a
discrete grid.

In a 3D simulation, evolving controllers have a large num-
ber of inputs and outputs to contend with, and the number
of potential situations in which a molecube conglomeration
might find itself is very large. Future work should focus on
further evolving these self-replicating species in an effort to
produce species with more complex behaviours. Incorporat-
ing nature-inspired operations such as crossover and random
death might help to increase the evolved capabilities of the
controllers.

Despite the complexities associated with a three-
dimensional world, a plethora of self-reproducing molecube
conglomerations emerged in every run of our 3D simulation
at densities of 1% and higher. Using simple, largely static
controllers, these conglomerations were able to collect other
molecubes and use them to produce new, genetically identi-
cal conglomerations. The simplicity of the controllers cou-
pled with the frequency of the emergence of self-replication
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in scenarios requiring mobility as well as in scenarios that
allowed for only limited mobility demonstrates that a diver-
sity of surprisingly complex behaviours can emerge from the
interactions of relatively simple agents in a simulated three-
dimensional world.
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