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Abstract

This paper seeks to illuminate and quantify a feature of natu-
ral evolution that correlates to our sense of its intuitive great-
ness: Natural evolution evolves impressive artifacts. Within
artificial life, abstractions aiming to capture what makes nat-
ural evolution so powerful often focus on the idea of open-
endedness, which relates to boundless diversity, complex-
ity, or adaptation. However, creative systems that have
passed tests of open-endedness raise the possibility that open-
endedness does not always correlate to impressiveness in ar-
tificial life simulations. In other words, while natural evo-
lution is both open-ended and demonstrates a drive towards
evolving impressive artifacts, it may be a mistake to assume
the two properties are always linked. Thus to begin to in-
vestigate impressiveness independently in artificial systems,
a novel definition is proposed: Impressive artifacts readily
exhibit significant design effort. That is, the difficulty of cre-
ating them is easy to recognize. Two heuristics, rarity and
re-creation effort, are derived from this definition and applied
to the products of an open-ended image evolution system. An
important result is that that the heuristics intuitively separate
different reward schemes and provide evidence for why each
evolved picture is or is not impressive. The conclusion is that
impressiveness may help to distinguish open-ended systems
and their products, and potentially untangles an aspect of nat-
ural evolution’s mystique that is masked by its co-occurrence
with open-endedness.

Introduction

A significant challenge in artificial life is to create an evolu-
tionary system with dynamics and products similar in spirit
to those of natural evolution. Some researchers believe that
a truly open-ended evolutionary system will be a critical
step towards that goal (Bedau et al., 1998; Standish, 2003).
Though the definition of such open-endedness is still de-
bated (Bedau et al., 1998; Lehman and Stanley, 2011a; Ma-
ley, 1999; Standish, 2003), there are a variety of reason-
able intuitions about what constitutes open-endedness, e.g.
increasing complexity, diversity, accumulation of novelty,
and continual adaptation. Such intuitions typically are in-
ferred from widely-accepted examples of open-ended evo-
lution like natural evolution or the evolution of technology.

Some have attempted to quantify these intuitions (Bedau
et al., 1998; Standish, 2003). Evolutionary activity statistics
(Bedau et al., 1998) are the most popular of such measures,
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and have been applied to many artificial life simulations (Be-
dau et al., 1997, 1998; Channon, 2001; Maley, 1999; Taylor
and Hallam, 1998). The main idea motivating activity statis-
tics is that an unboundedly open-ended evolutionary system
will continually accumulate and preserve new adaptations.
However, while several systems have passed the test (Chan-
non, 2001; Maley, 1999), they do not seem to meet the high
standard set by evolution in nature. The problem is that
while the test indicates that adaptations accumulate, it does
not reveal their purpose. As a result, it is difficult to de-
cide whether the products of such systems are increasingly
impressive (Channon and Damper, 2000; Maley, 1999). In
other words, an increasing diversity of adaptations may not
be a sufficient condition for what we appreciate intuitively
about natural evolution. This possibility hints that open-
endedness and impressiveness may not always be linked.

Approaching intuitions about evolution from a different
perspective, this paper argues that a key feature of impres-
sive open-ended systems like natural evolution is that their
products are indeed impressive. For example, consider the
human brain or the wide variety of complex animals crafted
by natural evolution. Among their many features, they are
usually regarded as impressive achievements. Yet what does
impressiveness actually mean? Well-adapted natural organ-
isms, elegant technological innovations, masterful human
paintings, and great musical compositions all share the prop-
erty that they are easier to appreciate than to create. Simi-
larly to the concept of NP-completeness, wherein a compu-
tational solution is easy to verify but difficult to derive, this
paper posits that impressive artifacts are those that readily
exhibit significant design effort. In other words, it is easy to
appreciate for an impressive creation how difficult recreating
an artifact with similar properties would be.

This new formalization leads to two heuristics for quan-
tifying the impressiveness of evolved products, rarity and
re-creation effort, which are applied in this paper to an
exploration-driven picture-evolution system. The results es-
tablish that the system discovers increasingly impressive
artifacts compared to a random search or a direct search
for rare artifacts. Importantly, what in particular makes
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an evolved picture impressive is inherent in the introduced
heuristics. In this way, the judgment of individual products
of an artificial life simulation can be justified without ap-
pealing to subjective description. The main conclusion is
that impressiveness illuminates a quantifiable facet of cre-
ative systems perhaps independent of open-endedness, one
that may more deeply connect with what fascinates us about
natural evolution.

Background

Because this paper introduces impressiveness, which is a
measure related to open-ended evolution, this section re-
views previous efforts to quantify open-ended evolution and
prior investigations of concepts related to impressiveness.
Novelty search, which is an approach to open-ended evo-
lution applied in this paper’s experiment, is also discussed.

Quantifying Open-Ended Evolution

In accordance with the general drive in science to formal-
ize intuitions, there have been several attempts to quantify
open-endedness (Bedau et al., 1998; Nehaniv, 2000; Stan-
dish, 2003). Such formalizations derive from intuitive fea-
tures of open-ended systems, such as their drive towards di-
versity or complexity (Nehaniv, 2000; Standish, 2003), or
their accumulation of adaptations (Bedau et al., 1998).

The dominant approach to quantifying open-ended evolu-
tion in artificial life systems is a particular measure of adap-
tation called evolutionary activity statistics (Bedau et al.,
1998). The idea is that continual adaptation is a critical facet
of open-ended evolution, and that persistence of traits in the
face of selection is a proxy for measuring adaptation.

However, an interesting question is whether passing the
activity statistics test is sufficient to equate an artificial sys-
tem’s creativity with that of natural evolution. Indeed, some
systems have passed the test (Channon, 2001; Maley, 1999).
Yet Maley (1999) acknowledges that his proposed systems
will never create anything surprising and fall far short of
intuitions about nature. Similarly, Channon and Damper
(2000) note that in their system it eventually becomes diffi-
cult to describe what distinguishes new adaptations. In other
words, passing the activity statistics test may establish open-
endedness but it does not unambiguously demonstrate that a
system continues to create interesting or impressive artifacts.
Thus to facilitate investigating both the impressiveness of in-
dividual evolved artifacts and the tendency of artificial life
simulations to create increasing impressiveness, this paper
formalizes and suggests heuristics for impressiveness.

Impressiveness and Interestingness

The concept of impressiveness described in this paper also
relates to the concepts of interestingness and beauty; intu-
itively, interesting or beautiful artifacts often tend to be im-
pressive as well. Because they are general and important
concepts, beauty and interestingness have previously been
explored in diverse contexts including philosophy (Neill and
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Ridley, 1995), reinforcement learning (Schmidhuber, 2009),
and even data mining (Geng and Hamilton, 2006).

Though they overlap in some ways, a key difference be-
tween interestingness and impressiveness is that interesting-
ness is often tied to time-dependence or novelty (Geng and
Hamilton, 2006). That is, an object that is initially found
interesting may become less interesting over time due to ha-
bituation. In contrast, the formalization of impressiveness in
this paper is not relative to what has been observed before.
For example, the human brain will always be an impressive
artifact, although by some definitions of interestingness it
becomes increasingly less interesting after repeated expo-
sure. While the term interesting may also sometimes be ap-
plied in a time-independent context, the term impressiveness
explicitly disambiguates the two usages and alleviates any
confusion from overlapping colloquial usage. The important
point is that because the notion of impressiveness expressed
here is not a relative measure it can objectively compare re-
sults between experiments and not only within them.

In addition to relating to interestingness, impressiveness
might also be seen as relating in some way to beauty; for
example, Schmidhuber (2009) suggests both beauty and in-
terestingness are rooted in compressibility. The idea is that
the most compressible version of an artifact may be the most
beautiful. In contrast, this paper relates the concept of im-
pressiveness to the asymmetry between ease of recognition
and difficulty in creating artifacts. Importantly, it is possible
that what is most impressive or beautiful about an artifact
may be mostly orthogonal to compressing it; for example,
aesthetic qualities such as soft, vibrant, or ornate may sum-
marize important facets of what is appreciated about a paint-
ing without reflecting how to reconstitute it from such prop-
erties. That is, compression is typically reversible to some
degree while impressive properties may be approximately
one-way transformations: easy to observe but hard to create.

The next section reviews novelty search, an algorithm de-
signed for open-ended exploration that is applied to evolving
pictures in the experiment in this paper.

Novelty Search

In contrast to most EAs, which tend to converge, novelty
search is a divergent evolutionary technique. It is inspired
by natural evolution’s drive to novelty, and directly rewards
novel behavior instead of progress towards a fixed objec-
tive (Lehman and Stanley, 2008, 2011a). Thus it matches
well with artificial life domains that are not motivated by a
defined set of objectives. This paper will ask whether the
products of novelty search are impressive.

Tracking novelty requires little change to any evolution-
ary algorithm aside from replacing the fitness function with
a novelty metric, which measures how different an individual
is from other individuals, thereby creating a constant pres-
sure to do something new. The key idea is that instead of
rewarding performance on an objective, novelty search re-
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wards diverging from prior behaviors. Therefore, novelty
needs to be measured.

The novelty metric characterizes how far away the new
individual is from the rest of the population and its predeces-
sors in behavior space, i.e. the space of unique behaviors. A
good metric should thus compute the sparseness at any point
in the behavior space. Areas with denser clusters of visited
points are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point. Intuitively,
if the average distance to a given point’s nearest neighbors
is large then it is in a sparse area; it is in a dense region if
the average distance is small. The sparseness p at point x is
given by

1 k
pla) = 2 dist(z, i), 8))

=0

where p; is the ¢th-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. Candidates from more sparse regions of the
behavior space then receive higher novelty scores.

If novelty is sufficiently high at the location of a new in-
dividual, i.e. above some minimal threshold p,,;, , then the
individual is entered into the permanent archive that charac-
terizes the distribution of prior solutions in behavior space.
The current generation plus the archive give a comprehen-
sive sample of where the search has been and where it cur-
rently is; that way, by attempting to maximize the novelty
metric, the gradient of search is simply towards what is new,
with no other explicit objective.

Once objective-based fitness is replaced with novelty, the
underlying evolutionary algorithm operates as normal, se-
lecting the most novel individuals to reproduce. Over gener-
ations, the population spreads out across the space of possi-
ble behaviors.

Instead of rewarding novel agent behaviors as in prior
novelty search experiments, in this paper novelty search ex-
plores a space of image properties, which can be conceived
as the behaviors of neural networks asked to draw pictures.
In effect this approach rewards novel pictures that exhibit
characteristics different from those previously encountered.

Defining Impressiveness

It is often said that the artifacts evolved by natural evolution
are impressive, as are many human innovations (Darwin,
1859; Kelly, 2010). In fact, such impressiveness may be in-
timately connected to our appreciation of such open-ended
systems. However, it is sometimes unclear whether the prod-
ucts of artificial systems are similarly impressive. For ex-
ample, some systems have passed the evolutionary activ-
ity statistics tests designed to validate open-ended evolution
(Channon, 2001; Maley, 1999) yet few researchers have ac-
cordingly concluded that recreating the dynamics of natural
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evolution is a solved problem. Such a discrepancy suggests
that while activity statistics can successfully detect adapta-
tion and perhaps an aspect of open-endedness, the mystery
of prolific creative systems may run deeper than adaptation
or open-endedness alone. In particular, an impressive open-
ended system should also produce impressive artifacts. Thus
a measure of impressiveness may serve as a new tool to help
investigate open-ended systems.

Importantly, creating such a measure requires a definition
that captures intuitions about what impressiveness means.
The insight in this paper is that impressive artifacts exhibit
significant design effort and that it is easy to recognize how
difficult they were to create. To illustrate this idea, consider
a gymnast performing a backflip in front of an observer.

Most observers would conclude the backflip was impres-
sive because it takes significant strength and dexterity to
defy gravity while completing a full airborne rotation and
still landing squarely without falling. The general mecha-
nisms underlying such judgments can be separated into two
interrelated issues, first of mapping an observed event or ar-
tifact into an abstract description and then of judging how
impressive that abstract description is. For example, the ob-
server first recognizes the action of the gymnast as a back-
flip, and then evaluates how impressive a backflip is.

More specifically, the backflip is first recognized by the
observer’s visual system. Importantly, all that matters in
observing that a backflip has occurred is that the gymnast
jumps and completes a full rotation backwards in the air be-
fore successfully landing. In other words, the observer has
extracted from a complex stream of sensory information a
concise description that may be potentially impressive.

Once recognized, the complementary task is to judge the
difficulty of this abstract description of a backflip. That is,
an observer’s internal understanding of physics and the ath-
letic capabilities of most humans allows them to conclude
reasonably that performing a backflip is challenging.

These two aspects combine to allow the observer to recog-
nize how much effort is required to perform the action. No-
tice the fundamental asymmetry between recognizing and
performing: It is much easier to appreciate a beautiful novel
or a masterpiece than it is to create one. Interestingly, im-
pressiveness is not a relative measure in principle. Even
though it now requires less effort to create a machine that
flies than it did in antiquity, the cumulative string of ideas
that led to understanding flight will always be part of the true
calculation of mechanized flight’s impressiveness. However,
in practice impressiveness may only be tractable when con-
sidered relative to a particular context (e.g. flight is not as
impressive as it once was given an understanding of modern
physics) or to a particular heuristic used to estimate it (e.g.
re-creation effort, which is introduced later); similar practi-
cal limitations exist for other measures (Bedau et al., 1998).

Importantly, as it relates to artificial life, an impressive
evolved artifact or organism will have recognizable proper-
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ties that are difficult to recreate from scratch. For example,
the functionality of a virtual creature might be impressive;
it might locomote bipedally at a high speed, which would
take many generations of evolution to achieve again. No-
tably, verifying an organism’s speed is much simpler than
creating an organism that travels at a high speed. In this
way the concept of impressiveness relates to that of NP-
completeness: Verifying solutions to NP-complete prob-
lems requires only polynomial computation while most re-
searchers assume computing the solutions is impossible in
polynomial time (Gasarch, 2002). Thus impressiveness can
be defined as the difficulty of recreating an easily-recognized
property of an artifact.

Measuring Impressiveness

The approach to investigating open-ended evolution in this
paper is to measure the impressiveness of evolved artifacts.
Thus this section introduces two heuristics derived from the
definition of impressiveness proposed in the prior section.
While it may be intractable in general to measure exactly
how difficult a given property is to recreate, there are intu-
itive heuristics that may often reflect difficulty in practice.

The first simple such heuristic is rarity. That is, a prop-
erty that can only be found in very small pockets of a large
space may also be difficult to achieve. For example, few
people are able to do backflips, which suggests it may be
impressive. Similarly, few paintings are masterpieces and
few novels are timeless. However, this heuristic is not with-
out flaws because not all rare properties are hard to achieve.
For instance, a person may have an odd quirk that no one
else cares to acquire; though it is rare, acquiring that quirk
may prove easy if attempted. Thus it is not really impres-
sive. A more concrete example of this phenomenon can be
given in the context of evolutionary algorithms. Imagine the
space of all 100-digit binary numbers. Although the num-
ber consisting of all 1°s is rare (occurring only once in 2100
possibilities), optimizing for such a property with a standard
genetic algorithm is relatively trivial (Reeves, 2000). The
fitness function of 1’s in a given bit-string is not deceptive
and is easily maximized.

Interestingly, this idea of optimizing for a particular prop-
erty suggests a second, more rigorous heuristic: re-creation
effort. If a property can be measured on a continuum, then
the impressiveness of a particular level of that property can
be estimated by applying a benchmark optimization algo-
rithm to re-create that level. In other words, the difficulty
for the benchmark optimizer to re-create an observed prop-
erty of an evolved artifact is another way of estimating its
impressiveness. Of course, the benchmark algorithm that
defines the level of effort must be chosen carefully to ob-
tain a reasonable estimate of the effort needed to discover a
particular artifact. For example, evolving a virtual creature
to reach a particular speed through a reasonable optimiza-
tion algorithm may require on average a significant amount
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of evaluations; therefore such quick locomotion may be im-
pressive. Relating this heuristic to the backflip example, the
amount of training required for the average person to learn
how to do a backflip is significant.

Both of these heuristics are applied to investigate the
products of the open-ended picture evolution system that is
described in the next section.

Picture Evolution Experiment

An appropriate test domain for measuring impressiveness
should potentiate both open-ended discovery and achieving
impressiveness. Furthermore, there can be ambiguity within
the results as to whether anything of interest has really oc-
curred. In this way, the test domain may reflect a typical
artificial life system wherein interpreting its products often
appeals to subjective description. The motivation is that
impressiveness can instead ground such results objectively
through revealing why particular products are impressive.

A simple such domain is evolving pictures. The pheno-
type space of possible pictures is vast: A square image in-
duces ¢ possibilities, where c is the number of shade gra-
dations for a single pixel and n is the size in pixels of one
dimension. Also, humans intuitively appreciate many dif-
ferent properties of such pictures, e.g. their dominant color,
level of symmetry, or smoothness. Furthermore, some com-
binations of such properties may be difficult to craft, espe-
cially when they conflict. For example, a picture with a low
level of smoothness that still maximizes symmetry may re-
quire some aesthetic and technical skill to draw and thus may
be more impressive than other pictures.

However, because aesthetic preferences for pictures are
subjective and largely variable, judging the success of a
given picture evolution system may be particularly con-
tentious. That is, people may prefer different properties of
pictures, which may cause them to disagree over whether
a picture-evolving system has been successful or produced
anything meaningful. However, a measure of impressive-
ness may be able to ground statements made about evolved
pictures by indicating the degree of impressiveness and what
about particular pictures is impressive.

Following the definition of impressiveness, to fit the mea-
sures of impressiveness to picture evolution it is necessary
to identify potentially impressive properties of pictures that
are easily recognizable. While humans are naturally able to
recognize a wide range of picture attributes, such as symme-
tries, similarity to real-world objects, and various aesthetic
qualities, a smaller set of properties is chosen for this experi-
ment. The motivation is to create a reasonably-sized abstract
space of picture characteristics that would serve both as a ba-
sis for recognizing impressiveness and as a behavior space
for novelty search to explore.

Note that although the term space most frequently refers
to the genotype space, such a set of image properties is not
the genotype space. Such image properties are measures
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of images that will be used to help measure their impres-
siveness, and do not specify particular images themselves.
For this experiment, eight features are chosen to capture the
space of image properties, motivated by their simplicity and
alignment with human recognition:

Brightness. An average of all pixel values in the picture
yields a measure of a picture’s brightness.

BZip2 compression. The compressibility of the image by
the BZip2 algorithm gives an estimate of the picture’s vi-
sual complexity.

Wavelet compression. This measure describes how com-
pressible the image is after a wavelet transformation by
counting how many coefficients are necessary to explain
95% of the image’s brightness. Wavelet compression of-
fers an alternate perspective to BZip2 on complexity.

Color variety. The standard deviation statistic is calculated
over of all pixel values in a picture, giving a measure of
how widely pixel values are distributed.

X-axis symmetry. This simple measure of symmetry is cal-
culated by taking the average pixel similarity between
pixels reflected over the X-axis.

Y-axis symmetry. The same measure as above is instead
applied to the Y-axis.

Choppiness. The discontinuity of local neighborhoods of
pixels is estimated by this measure. It is calculated as the
average standard deviation of pixels over all 5x5 windows
within the picture.

While the idea of impressiveness does not depend on this
particular choice of picture properties, the general motiva-
tion is that such a set can facilitate aligning impressiveness
with pictures visually appreciated by humans. Furthermore,
they enable the evolution of impressive pictures because the
trade-offs between various properties are difficult to achieve.
For example, maximizing one compression measure while
minimizing the other requires exploiting the differences be-
tween the underlying compression algorithms.

However, an interesting question is how to evolve pic-
tures with such impressive properties. To do so a means
of representing and evolving pictures is necessary. While
there are many different representations for pictures, a
well-validated method is to apply the NeuroEvolution of
Augmenting Topologies (NEAT; Stanley and Miikkulainen
2002, 2004) algorithm to pictures represented by composi-
tional pattern producing networks (CPPNs; Stanley 2007),
as in Picbreeder (Secretan et al., 2011; Stanley, 2007). While
the NEAT method was originally developed to evolve artifi-
cial neural networks (ANNS) to solve difficult control tasks
(Stanley and Miikkulainen, 2002, 2004), it is easily adapted
to evolving CPPNs because they are similar in structure to
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ANNs. Also, NEAT is well-suited to evolving impressive
pictures because it can complexify CPPN topology into di-
verse species over generations, leading to increasingly so-
phisticated pictures.

In effect, CPPNs are neural networks extended to con-
tain a variety of specially-chosen activation functions. The
CPPNss in this paper take x, y coordinates as input and output
the pixel brightness at that location. They facilitate images
with regularities through activation functions with regular
properties. For example, a Gaussian activation function by
virtue of its symmetry can induce symmetric pictures and
a sine function can induce pictures with elements of repe-
tition. In this way, evolving CPPNs with NEAT can result
in increasingly sophisticated images with appreciable regu-
larities (as seen in Picbreeder; Secretan et al. 2011), which
aligns well with the motivation for the experiment in this pa-
per. Importantly, all of the experimental setups that follow
apply NEAT with the same settings to evolve CPPNs; only
the reward scheme is varied between them.

Varying the reward scheme in this way facilitates explor-
ing the question of what type of evolutionary reward scheme
is appropriate to guide this kind of open-ended search. Most
approaches in EC apply objective-driven fitness functions.
Yet in the huge space of potential pictures there are no in-
herent notions of better or worse, which usually underlies
the traditional fitness-based search paradigm.

Thus with open-ended evolution in mind, a promising ap-
proach is to reward exploring the space of pictures through
novelty search. That is, a picture is rewarded proportionally
to how novel it is, i.e. how different it is from previously
encountered pictures with respect to the eight picture prop-
erties (which are each scaled between 0 and 1 so that they are
equally weighted). The idea is that over time as the easiest
to reach points in this space are exhausted, evolution will be
driven into interesting trade-offs and areas of the space that
are increasingly difficult to reach. That is, novelty search
may be driven to find impressive pictures. However, this
sort of search has no ultimate objective other than to contin-
ually uncover new varieties of pictures and thus aligns well
with the idea of open-ended evolution.

Two alternate reward schemes are also considered for
comparison. First, a random search is implemented in which
pictures are rewarded random fitness. The idea is to explore
whether a random search, which is also open-ended in some
sense because it does not attempt to prune out any possi-
bilities from search, can also discover impressive artifacts
through drift combined with NEAT’s drive to complexify
over time. Second, a fitness-based search is considered in
which the explicit objective for each run is to re-evolve one
of the rarest pictures discovered by novelty search. That is,
the fitness function is to minimize distance among the salient
properties (explained in the next section) from an evolved
picture to the target picture. The hypothesis is that impres-
sive artifacts may also be deceptive as targets and thus hard
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to reach directly. If this hypothesis is true then an objective-
based search to recreate such rarity may often fail to discover
pictures as impressive as the target.

In this way, one aim of the experiment is to discover
whether the proposed measures can make meaningful dis-
tinctions between variations in reward scheme that would
naturally be expected to impact the dynamics of impressive-
ness. The measure’s ability to make such distinctions may
predict its applicability to other artificial life experiments.

Experimental Parameters

For each reward scheme 40 independent runs were con-
ducted that ran for 500 generations each with a population
size of 250. Evolved pictures were 64x64 pixels. Unlike in
Picbreeder, colors in the pictures were limited to grayscale
for simplicity. The dynamic threshold for adding pictures to
the novelty archive was initialized to 0.5. The weight muta-
tion power was 1.0, the chance for adding a new node was
0.05, and the chance for adding a connection was 0.1.

Results

To analyze the products of the picture evolution system, the
two heuristics of rarity and re-creation effort were fitted to
the domain and applied, which the next section discusses.

Recognizer Based on Rarity

To estimate how rare combinations of various values of
the eight measured image properties were, ten million ran-
dom CPPNs of various complexities were sampled and their
properties measured. Histograms were constructed (with
bins with width 0.05) for each combination of properties
to estimate their joint probabilities (e.g. one such histogram
would bin based on three dimensions: levels of x symmetry,
wavelet compressibility, and brightness). In this way, the
rarity within the space of random CPPNs of certain combi-
nations of properties can be approximated.

To model recognition of an image’s most salient features,
a recognition algorithm was created that when applied to
a picture would return the rarest combination of properties
(e.g. the most improbable combination of properties for a
particular picture might be a x-symmetry of level 0.3 and
BZip2 compressibility of 0.6). In other words, the recog-
nizer returns a summary of what is most unique about a pic-
ture, and how rare such an abstract description is (i.e. how
often it occurs among randomly sampled CPPN5s). Formally,
the rarity of an evolved artifact is defined as —log(p(«)),
where « is the set of salient features and p(z) is a function
that estimates the probability of such features occurring by
chance, i.e. the probability returned by the recognizer.

In particular, the recognizer is a greedy algorithm that
iterates over each combination of k features searching for
the most improbable among possible combinations, start-
ing with £ = 1 and increasing incrementally. Because joint
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Figure 1: Rarity of evolved images. The maximum rar-
ity (i.e. how infrequently similar pictures occur) of pic-
tures from novelty search, random search, and fitness-based
search is shown over 500 generations of evolution averaged
over 40 independent runs. Note that a combination of im-
age properties not present in any of the sampled CPPNs will
receive a rarity of 18.4 (2!%4 = 10,000, 000), the line to
which novelty search quickly converges.

probabilities can only decrease when adding additional fea-
tures, a control is added to ensure that adding a new feature
increases rarity by at least 10 times the a priori assumption
of a uniform distribution; otherwise the algorithm would ter-
minate and return the most rare combination found so far. In
this way, only the most unique properties would be consid-
ered that significantly contribute to rarity, i.e. this constraint
acts as a filter to ensure concise descriptions of artifacts.

After the histograms are computed from the random
CPPN samples, the recognizer algorithm is computationally
inexpensive and can thus be applied to all evolved artifacts
from each run at 50 generation intervals. Figure 1 shows
the results of averaging the most rare picture discovered by
a particular run over generations as measured by the recog-
nizer. The main result is that rarity is able to distinguish
between the different reward schemes. Novelty search is
most driven towards rarity while random search more slowly
discovers rarer artifacts over time (the difference is signifi-
cant from generation 50 until generation 250; Student’s t-
test; p < 0.001). Novelty search also discovers significantly
more rare artifacts than fitness-based search from generation
50 onwards (Student’s t-test; p < 0.001). Interestingly, di-
rectly searching to recreate rare pictures with fitness-based
search often fails due to deception.

A selection of such rare pictures found by novelty search
is shown in figure 2. To aid in interpretation the combination
of properties that justifies each image’s rarity is returned by
the observer. That is, it is possible to provide objective evi-
dence for what is impressive about these images, instead of
relying on subjective assessment as is often necessary when
describing the results of an artificial life simulation. For ex-
ample, picture 2a is highly compressible by BZip2 yet rel-
atively incompressible by the wavelet algorithm, and has a
low average pixel value. The result is impressive because
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Figure 2: Selection of rare pictures. Each of these pictures discovered by novelty search was evaluated as rare by the observer
because it has a combination of properties that rarely co-occur within the space of pictures.

these settings mutually conflict; generally an image is either
compressible or not compressible, and incompressibility is
more easily attained through wildly fluctuating pixel value
(which would yield a higher average). It is also possible
to learn about an encoding through observing rare artifacts:
Figure 2c is rare because it is highly asymmetric along both
the x and y axes and such rigidly rectangular asymmetry is
not a natural bias of CPPNs (nor is it of DNA in nature).

To investigate the results of the picture evolution experi-
ment further, the next section describes applying a more rig-
orous heuristic of impressiveness.

Re-creation Effort

While rarity provides one heuristic for the impressiveness of
an artifact, not all that is rare is difficult to achieve. Thus
conceivably the rare artifacts discovered by novelty search
may require little effort to recreate, which would undermine
their impressiveness.

Therefore, as a more rigorous heuristic of impressiveness,
the effort required to recreate artifacts was estimated. The
basic idea is to measure how much effort on average it takes
to recreate a similar artifact from scratch. First, because it
is computationally expensive to calculate, only the most rare
picture was sampled across all 40 runs of all methods at 100
generation intervals. For each sampled picture, the observer
described in the previous section derived the most rare com-
bination of properties. Next, for each set of such observed
properties five independent runs of NEAT were instantiated
with those properties as an explicit objective (i.e. the fitness
function was to minimize distance between the most unique
properties of the target image and a candidate solution im-
age). Each run terminated if unsuccessful after 50, 000 eval-
uations, or if the image properties were successfully recre-
ated. The average number of evaluations required to evolve
an image that would fall into the same histogram bin (i.e.
allowing for error of 0.05 in any given property) was then
recorded as an estimate of the effort required to recreate a
similar picture.

Figure 3 shows these results for all three variants, which
reinforce the results from measuring rarity in the previous
section by distinguishing the reward schemes in the same
order. In particular, novelty search is distinguished from ran-
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Figure 3: Effort to recreate image properties. The average
effort (i.e. the number of evaluations) necessary on average
to recreate the rarest images (with fitness-based search) sam-
pled at 100 generation intervals from each run of novelty
search, random search, and fitness-based search is shown.
Note that the measure has a ceiling of 50, 000 evaluations,
which may mask continuing growth of re-creation effort for
both novelty search and random search.

dom search for generations 100 and 200, and from fitness-
based search for all generations after zero (Student’s t-test;
p < 0.001). It is interesting that random search demon-
strates a drive towards impressiveness (which may result
from NEAT’s complexification mechanism), although nov-
elty search most quickly evolves artifacts that exceed the up-
per extreme of the test’s range (50, 000 evaluations).

Additionally, a significant correlation (0.673) was mea-
sured between paired samples of rarity and re-creation ef-
fort (p < 0.0001; Kendall’s tau coefficient), indicating that
the two heuristics are strongly related, which supports their
derivation from the same definition.

Discussion

From a practical perspective the definition and heuristics
of impressiveness introduced in this paper facilitate making
distinctions among variations of evolutionary systems and
providing objective statements about their products. Nov-
elty search, which is designed explicitly to achieve open-
ended exploration, climbs the ladder of impressiveness most
steeply, as would be intuitively expected. However, on a
deeper level impressiveness yields an alternate perspective
on the goals of open-ended evolution.
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That is, perhaps meeting the challenge of unbounded
open-endedness, which is often assumed to correlate with
intuitions about natural evolution’s greatness, is instead a
necessary but not sufficient condition to yield increasingly
impressive products. In other words, increasing impressive-
ness may be a more inherently meaningful goal than open-
endedness alone insofar as it more deeply abstracts what we
appreciate about natural evolution: its impressive products.

Furthermore, the results in this paper and prior work with
non-objective search processes (such as novelty search and
Picbreeder) suggest that objective-based search is deceived
by increasingly ambitious or impressive objectives (Lehman
and Stanley, 2011a,b; Woolley and Stanley, 2011). Thus, an
interesting possibility is that open-endedness may be impor-
tant to evolving increasingly impressive artifacts solely to
circumvent deception. That is, seeking impressiveness con-
vergently may be fruitless because of the inherent difficulty
in predicting a priori what paths through any search space
will lead to great achievement. Such a possibility hints at a
potential deeper understanding of open-ended creativity.

Future work will investigate the hypothesis that systems
previously passing the evolutionary activity statistics tests
will not exhibit unbounded impressiveness, highlighting
where the two measures may differ.

Conclusion

Motivated by the possible gap between open-endedness and
impressiveness in some artificial life simulations, this pa-
per introduced the idea of quantifying the impressiveness of
evolved artifacts. Heuristic measures of impressiveness de-
rived from a novel definition were applied to an open-ended
picture evolution system to characterize the effect of differ-
ent reward schemes on impressiveness and to examine in-
dividual evolved products. The conclusion is that impres-
siveness is a new tool for investigating the products of open-
ended systems that presents an alternate perspective on the
goals of open-ended evolution.
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