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Abstract

Diversity in a population is often cited as a major facilitator
for the evolution of new complex features. The intuition be-
hind this dynamic is that if a population is exploring multiple
regions of a fitness landscape, more opportunities exist to find
new functionality. We use the digital evolution software plat-
form Avida to explore the effect of multiple limited resources
on phenotypic Shannon diversity and, in turn, on evolvabil-
ity of populations. We show that Shannon diversity peaks at
intermediate levels of resource availability to the population,
and we map the evolvability of a complex computational task
on this availability-diversity gradient. While the evolvability
of the complex task is highest at intermediate availabilities, it
does not peak at the same resource inflow level as Shannon
diversity, and it is more robust than diversity in its response
to inflow level. These results indicate that while phenotypic
Shannon diversity may play into the evolution of complex
features, the selective pressures caused by diversity cannot
be the only — or indeed even the main — pressures behind
such evolution.

Introduction

Resource inflow and availability is a major factor affect-
ing ecosystem diversity (Tilman, 1982; Chesson, 2000; Hall
and Colegrave, 2007; Abrams et al., 2008; Cardinale et al.,
2009). Diversity, in its turn, has been shown by the evolu-
tionary computation community to encourage the evolution
of solutions to complex problems through a more thorough
exploration of the fitness landscape (Friedrich et al., 2009).
Here, we explore the effect of the availability of multiple
limited resources on phenotypic Shannon diversity, and use
this availability-mediated diversity gradient to examine the
relationship between Shannon diversity and the evolution of
complex features.

Of the many types and measures of diversity, we choose
to examine phenotypic Shannon diversity. We choose phe-
notypic over genotypic diversity because, of the two, phe-
notypic diversity is most easily manipulated with limited re-
sources. We would also expect different drivers of geno-
typic diversity to have radically different results depending
on whether different genotypes form a cloud in one area of
the fitness landscape or are spread widely. Although sim-
ilar issues can exist with phenotypic diversity, the range
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of interesting phenotypes in these experiments is far more
constrained than the range of interesting genotypes. Pheno-
typic diversity therefore provides a more fair treatment. We
choose to measure phenotypic diversity as the Shannon en-
tropy of the phenotypes in the population because Shannon
entropy effectively balances the two main interesting quali-
ties in diversity: the range of possible results and the even-
ness in their distribution.

Lenski et al. (2003) have investigated the evolutionary ori-
gin of complex features using Avida, using Boolean EQU as
the specific complex task under study. This is the most com-
plex of the one- and two-input Boolean operations to cal-
culate, requiring at least five logical NAND operations. An
Avidian organism requires at least 19 coordinated instruc-
tions to perform EQU, including at least five nand instruc-
tions. The ancestor starts out with none of these instructions
in its genome; Lenski et al. found that in the 23 of 50 popu-
lations that evolved EQU in their experiments, EQU evolved
in anywhere from 51 to 721 mutational steps.

In practice, the evolution of EQU is dependent on reward-
ing building blocks: the one- and two-input Boolean tasks of
lower complexity. When Lenski et al. evolved populations
in environments where only EQU was rewarded, none of the
populations evolved EQU. However, they also found that the
evolution of EQU does not depend on any particular building
block or pair of building blocks. In fact, EQU can evolve in
many different ways and is not dependent on any one thing;
all 23 of Lenski et al.’s EQU-evolving populations evolved
building blocks in different orders and organized them dif-
ferently in their genomes.

Methods
Study System

We use the digital evolution software Avida (Ofria and
Wilke, 2004), allowing precise manipulation of resource
availability and a complete record of the course of evolu-
tion. The Avida system consists of a grid of digital organ-
isms, each with a simple circular genome composed of in-
structions from an assembly-like Turing-complete instruc-
tion set. Time in Avida is measured in updates; each update
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corresponds to an average number of 30 instruction execu-
tions per organism in the population. Organisms running
quickly will execute more than 30 instructions per update,
while slow organisms will execute fewer.

By executing its genome, each organism is capable of
self-reproduction; during this process, copy mutations may
be introduced into the offspring’s genome. Because the ge-
netic instructions are drawn from a Turing-complete lan-
guage, the organisms are also theoretically capable of any
other Turing-computable task. The organisms have access to
integers that they can manipulate; the researcher can choose
to reward certain manipulations with additional CPU cycles.
These additional CPU cycles allow the organism to execute
its genome more quickly and thus increase fitness.

Avida also supports a resource system, allowing task re-
wards to be tied to these resources. We accomplish resource
manipulation in this system by manipulating the resource
supply rate. Of course, precise manipulation of resource
supply rate is possible in laboratory chemostat systems, but
the use of a digital system allows us to know every detail of
the population at any point in evolution, and to achieve very
high generation counts over the course of just a few hours for
each replicate population. Complete information about the
population allows a precise calculation of diversity, which in
this asexual system we define as the Shannon entropy of ex-
pressed resource-use phenotypes. It also allows a concrete
definition of the complex feature we are examining; in this
case, the Boolean EQU operation (Table 1).

Function name Boolean operation Reward

NOT -A;-B x 21
NAND —-(AAB) x 21
AND ANB x 22
ORN (AV =B);(-~AV B) x 22

OR AAB x 23
ANDN (AA-B);(=AA B) x23
NOR -AAN-B x 24
XOR (AN-B)V (=AAB) | x2*
EQU (AANB)V (=AA-B) | x2°

Table 1: NAND-count-based task rewards in Lenski et al.
The symbol “—” denotes negation, while semicolons sepa-
rate symmetrical functions. An organism which performs a
task has its current execution rate multiplied by the amount
of the task’s reward. Note that the EQU operation is some-
times known as XNOR.

Our experiments use a development version of
Avida 2.12.3 with the default instruction set (inst-
heads.cfg). The executable was complied from
publicly-available source code (at avida.devosoft.org);
the specific git revision identifier of the code is
e5ba9511df000bae780c8524abb6bd01987190a5.

We set the per-site copy mutation rate to .0025, while we
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left the per-reproduction rates of insertion and deletion mu-
tations at the Avida default value, .05.

The population structure is spatial; organisms reproduce
into any of the nine cells surrounding and including the or-
ganism itself, preferring empty cells. The resource structure
is non-spatial; all organisms access the same resource pools.
Our world is a 60 x 60 toroidal grid, initially seeded with
3600 clones of an asexual ancestor organism capable only
of reproduction. This ancestor is a modification of the de-
fault ancestor that ships with Avida, default-heads.org, to
reduce its genotype from length 100 to length 50 by remov-
ing 50 lines of “blank tape” no-op instructions. Since the
population experiences no bottlenecks, the entire world grid
is populated throughout the experiments.

We used SciPy 0.10.1 to calculate statistics, and Mat-
plotlib 1.1.0 to create graphs.

Configurations from Previous Experiments

In their investigation of the evolutionary origin of complex
features, Lenski et al. rewarded digital organisms once for
each distinct Boolean task performed. The value of each
task corresponded to its complexity as approximated by the
minimum number of Boolean NAND operations necessary
for its performance (see Table 1).

Chow et al. (2004) investigated the relationship between
resource inflow and diversity in Avida. They measured di-
versity as species richness; as the digital organisms are asex-
ual, Chow et al. used a clustering algorithm based on phylo-
genetic distance to determine which genotypes belonged to
the same “species”. Species richness in this system was the
result of negative frequency-dependent selection due to mul-
tiple depletable resource pools. R;xrrow units of resource
flow into each resource pool at a constant rate over each up-
date, and a percentage of each pool flows out, modeling a
chemostat.

Inflow: Rrask = Rrask + Rinrrow (1)
Outflow : Rrask = 0.01 * Rrask 2)

Chow et al. used the same set of Boolean computational
tasks as Lenski et al., but linked each task to a separate
resource pool. The amount of resource in a resource pool
(Rrask) determines the value of performing the associ-
ated task; the NAND-count is not considered. An individual
organism depletes A7 45k units of resource from the task-
linked pool when performing a Boolean task. This depletion
results in negative frequency-dependent selection (Cooper
and Ofria, 2002). Rewarding an organism for the perfor-
mance of a task again consists of multiplying its current ex-
ecution count by the amount of the reward.

Araskg = 0.0025 % Rrask 3)
Depletion : Rrasx = Rrasx — Arask 4
Reward : x24TAsx (®)]
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Limited-Resource Environment

Because the Lenski et al. environment determines task re-
wards purely by task complexity, it can be thought of as an
environment with infinite resource inflow. Without the neg-
ative frequency-dependence of Chow et al.’s environments,
populations converge to a single generalist genotype that
performs all tasks. In the environments of Chow et al., high
inflow rates result in populations that converge on a single
genotype specialized on replication efficiency; these rarely
perform more than one or two of the simpler Boolean tasks.
This is because Chow et al. do not incorporate the difficulty
of the task into the task’s reward; at high resource abun-
dance, there is little to no pressure to seek new resources,
and thus no reason to do difficult tasks.

In studying the effect of resource supply on both pheno-
typic Shannon diversity and the evolution of complex fea-
tures, it is useful to create environments in which both the
difficulty of the task and its rarity in the population (via the
availability of its associated resource) contribute to the re-
ward an organism receives for performing that task. To that
end, we have devised a limited-resource environment start-
ing with Lenski et al.’s reward scheme, but where a linked
resource pool mediates the amount of the reward as in Chow
et al.; Table 2 describes this hybrid reward scheme.

Function name | # NAND | Depletion | Reward

NOT 1 Anor | x2t*Anor

NAND 1 Ananp | x2V*Ananp
AND 2 Aanp | x2%4anp
ORN 2 AORN X22*AORN

OR 3 Aor x23*Aor

ANDN 3 Aanpn | x23*AanDN
NOR 4 Anor | x2%*Anor
XOR 4 Axor | x2%*4Axor
EQU 5 AEQU x 25*Asqu

Table 2: Hybrid task rewards, based both on task complexity
and resource availability (A7 45k denotes the number of re-
source units an organism uses from the TASK’s pool). An
organism that performs a task has its current execution rate
multiplied by the amount of the task’s reward.

Results and Discussion
Diversity Peaks at Intermediate Productivity

Of the inflow rates we examined, the intermediate
Rinvrrow of 10 (Figure 1) had the highest diversity; ob-
serving the highly unimodal trend of this data, we conclude
that diversity in this system peaks somewhere between an
Rrinrrow of 3 and 30. At lower inflow rates, Shannon di-
versity drops off quickly; with too-low resource levels, each
pool supports too few organisms to make any substantial im-
pact on diversity. The number of phenotypes may remain
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high, but the Shannon entropy of the population as a whole
is low. At higher inflow rates, diversity drops more slowly
as resources become so plentiful they might as well be un-
limited. Indeed, at inflow levels of 1000 and above, nega-
tive frequency-dependent pressures are effectively removed.
This result corresponds to the results in other studies of the
effects of resource supply on diversity (e.g. Kassen et al.,
2000; Chow et al., 2004; Hall and Colegrave, 2007)

Diversity Distributions over Resource Inflow Rates
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Figure 1: Diversity distributions across inflow rates, mea-
sured as the phenotypic Shannon entropy of all viable or-
ganisms in the population. Data for inflows 1, 3, 1000, 3000,
and infinite are drawn from 20 populations; inflows 10, 30,
100, and 300 from 200 populations.

The Evolution of EQU is Common in Intermediate
Productivities

We are now equipped to examine the evolvability of com-
plex features on this resource inflow gradient, and to observe
how it relates to the corresponding Shannon diversity gradi-
ent. In this case, we measure the evolvability of complex
features by the proportion of populations that have evolved
EQU by the end of 100,000 updates. At 20 populations per
treatment (Figure 2), it is clear that the evolvability of EQU
is highest at intermediate productivities. Indeed, between
the intermediate inflow levels of 10 and 300 units per re-
source per update, the evolvability of EQU seems robust to
increasing resource supply and decreasing phenotypic Shan-
non diversity.

To determine whether only complex tasks are sensitive to
resource supply levels, we also examined the evolvability of
the other 8 tasks rewarded in this environment (Figure 3).
As a general trend, these tasks indicate that more complex
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Evolution of EQU over Resource Inflow Rates
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Figure 2: Evolvability of EQU across inflow rates, measured
as the number of populations for which some genotype in
the final population can perform EQU. Data for all inflows
is drawn from 20 populations.

tasks are more sensitive to the resource supply level. Fur-
ther investigation on this added axis of task complexity was
beyond the scope of this paper.

We focused on the inflow rates in which populations were
most successful in evolving EQU (10, 30, 100, and 300), and
performed 10 times as many experimental runs at each to
gain a higher resolution (Table 3). At this resolution, we saw
that the evolvability of EQU is not truly unaffected by the
variation of resource supply and Shannon diversity in this
inflow range. The number of populations evolving EQU by
the end of 100,000 updates is significantly higher at the 100
unit inflow rate than at the 10, 30, or 300 unit inflow rates.
While these data do not indicate the precise R;yyrrow at
which the evolutionary potential of EQU peaks, it is clearly
a different — and greater — R;xrrow than that at which
phenotypic diversity reaches its peak.

Rinrrow 10 30 100 300
#pops /200 141 152 171 152
p-value <0.00001 | <0.045 | N/A | <0.045

Table 3: Number of populations out of 200 that evolved
EQU at intermediate inflow rates. We performed a chi-
squared test to determine if the evolvability of EQU for
at least one inflow rate differed significantly from the rest
(p<.005, x2 = 13.156, 3 degrees of freedom). With this
confirmed, we calculated the significance of each ratio’s dif-
ference from 171/200 with Fisher’s exact test, two-tailed,
and corrected with the sequential Bonferroni correction; the
n=2 correction was applied to both the R;yrrow = 30 and
Rinrrow = 300 data, since they can be ordered arbitrar-

ily.
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Evolution of NOT over Resource Inflow Rates
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Evolution of XOR over Resource Inflow Rates
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Figure 3: Evolvability of tasks requiring fewer NAND oper-
ations than the EQU task, measured as the number of popu-
lations for which some genotype in the final population can
perform the task of interest. The first seven tasks (only NOT
is shown) showed evolvability across resource inflows that
was qualitatively similar to the NOT task shown here, with
low evolvability at Ryyrrow = 1 and very high evolvabil-
ity for all other inflow rates. The XOR task shows evolvabil-
ity results qualitatively similar to the EQU task, with XOR
being more evolvable at intermediate values of Rinrrow -
Data for all inflows and tasks is drawn from 20 populations.

Conclusions

We have seen that, for the inflow rates we tested, the pheno-
typic Shannon diversity of populations is highest at the 10
unit inflow rate (so likely peaks between R;nprow of 3
and 30). On the other hand, for the same set of inflow rates,
the evolvability of this complex feature is highest at the 100
unit inflow rate (so likely peaks between R;nrrow of 30
and 300). These ranges do not overlap; this difference in-
dicates that diversity cannot be the only driver of the evo-
Iution of complex features, which is not unexpected. While
the evolvability of complex features is indeed high at peak
Shannon diversity, it seems that complex features may re-
quire more productive environments to evolve most often.
We speculate that this greater resource availability and lesser
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phenotypic diversity represent environments where more-
abundant resources allow the desperate scramble for survival
to relax slightly, allowing organisms to accumulate a collec-
tion of building blocks necessary for complex tasks.

These results indicate that evolutionary theory still has a
great deal of work to do in tracking down the pressures re-
sponsible for the evolution of complex features. However,
we have seen in this paper that the evolution of complex
features is relatively robust, suggesting that the search for
such pressures will not be akin to seeking a needle in a
haystack — complex features evolve at a high rate at a large
range of diversities in these experiments, and the number of
times that EQU successfully evolved displays a decidedly
unimodal nature. It is therefore likely to be similarly easy
to track down the point of peak evolvability of complex fea-
tures for other hypothesized pressures.

Future Work

In this paper, we have investigated only phenotypic Shannon
diversity as caused by resource-based negative frequency-
dependent selection. Negative frequency-dependent selec-
tion allows adaptive radiation in the Avida system’s homo-
geneous environment, but it is not the only driver of diversity
in nature. The relationship between the evolvability of com-
plex features and diversity as driven by other factors (e.g.
spatial structure, heterogeneous environments, or parasite
pressures) certainly deserves investigation. Other measures
of diversity ought also to be considered. Further, exami-
nation of the relationship between diversity and the evolv-
ability of complex features only begins to explore the possi-
ble pressures driving the evolution of complex features. Al-
though the mechanisms allowing complex features to evolve
have been the subject of much investigation and debate (see
Gregory, 2008, for an excellent overview), the exploration
of pressures involved in the evolution of complex features
has only begun.

Acknowledgements

We would like to thank Richard Lenski for helpful discus-
sions about the relationship between diversity and the evo-
lution of complex features, Heather Goldsby for her com-
ments on the introductory section of this paper, and Michael
Wiser for his comments and careful copyediting of the final
draft.

This material is based in part upon work supported by
the National Science Foundation under Grant No. CCF-
0643952 and Cooperative Agreement No. DBI-0939454.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

120

References
Abrams, P. A., Rueffler, C., and Kim, G. (2008). Determinants of

the strength of disruptive and/or divergent selection arising
from resource competition. Evolution, 62(7):1571-1586.

Cardinale, B. J., Hillebrand, H., Harpole, W. S., Gross, K., and
Ptacnik, R. (2009). Separating the influence of resource
‘availability’ from resource ‘imbalance’ on productivity—
diversity relationships. Ecology Letters, 12(6):475-487.

Chesson, P. (2000). Mechanisms of maintenance of species diver-
sity. Annual Review of Ecology and Systematics, 31:343-366.

Chow, S. S., Claus, W. O., Ofria, C., Lenski, R. E., and Adami,
C. (2004). Adaptive radiation from resource competition in
digital organisms. Science, 305(5680):84—-86.

Cooper, T. F. and Ofria, C. (2002). Evolution of stable ecosystems
in populations of digital organisms. In Proceedings of VIII
International Conference on Artificial Life, pages 227-232.

Friedrich, T., Oliveto, P. S., Sudholt, D., and Witt, C. (2009).
Analysis of diversity-preserving mechanisms for global ex-
ploration. Evolutionary Computation, 2003. CEC’03. The
2003 Congress on, 17(4):455-476.

Gregory, T. R. (2008). The evolution of complex organs. Evolution:
Education and Outreach, 1:358-3809.

Hall, A. R. and Colegrave, N. (2007). How does resource supply
affect evolutionary diversification? Proceedings of the Royal
Society B: Biological Sciences, 274(1606):73-78.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Com-
puting In Science & Engineering, 9(3):90-95.

Jones, E., Oliphant, T., Peterson, P., et al. (2001-). SciPy: Open
source scientific tools for Python.

Kassen, R., Buckling, A., Bell, G., and Rainey, P. B. (2000). Di-
versity peaks at intermediate productivity in a laboratory mi-
crocosm. Nature, 406(6795):508-512.

Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003).
The evolutionary origin of complex features.  Nature,
423(6936):139-144.

Ofria, C. and Wilke, C. O. (2004). Avida: A software platform
for research in computational evolutionary biology. Artificial
Life, 10(2):191-229.

Tilman, D. (1982). Resource Competition and Community Struc-
ture. Princeton University Press, Princeton, NJ.

Artificial Life 13

€202 Jaquiada( G U0 3sanb Aq ypd-2 L OUYO-G-050 L €-292-0-826/201 L0B L/91 L/¥Z/ZL0ZaMIE/Ppd-sBulpaaooid/|es)/npa iw joaulp//:dny woly papeojumod





