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of 5 to move the body. When the leg exerts a force on the
body, it stretches elastically so that the body’s vertical posi-
tion remains unchanged. However, if the leg reaches either
extreme of the allowed angular range of motion, the agent’s
velocity immediately drops to 0. The agent’s motion is also
impeded by a constant frictional force of 1, which must be
overcome by the effectors in order to produce movements.

The agent’s task is to catch circles that fall towards it from
above. Specifically, circles of diameter 40 fall towards the
agent from an initial vertical distance of 220 (the maximum
length of each ray sensor) and at a constant vertical velocity
of -1. The agent is to catch each circle by minimizing its hor-
izontal separation from the circle when the circle completes
its fall. During evolution, agents were evaluated on 10 circle
presentations in each of three motor conditions (explained
momentarily), uniformly distributed over a range of hori-
zontal offsets between [−150, +150] relative to the agent.
The agent’s performance on each trial is given by:

150 − d

150

where d is the distance between the agent and the circle
when the circle completes its fall, clipped at 150, and 150
was chosen because it is the maximum initial horizontal off-
set at which circles are presented.

The agent’s performance is evaluated under three differ-
ent motor conditions. In the first condition, referred to as
the walking and wheels condition, the agent must coordi-
nate the behavior of both sets of effectors in order to catch
the object. This condition can be thought of as the natural
behaving state for the agent. In the second walking only con-
dition, the agent’s wheels effectors are lesioned, such that
they have no effect on the agent’s motion. In this case, the
agent must catch circles using only its leg. Finally, in the
third wheels only condition, the agent’s leg is lesioned, and
the agent must use only its wheel effectors to perform the
task. Overall performance is then calculated by averaging
trial performance for all 10 object offsets in each of the three
motor conditions.

The agent’s behavior is controlled by a continuous-time
recurrent neural network (Beer, 1995b) with the following
state equation:

τiṡi = −si +
N∑

j=1

wjiσ(sj + θj) + Ii i = 1, . . . , N

where s is the state of each neuron, τ is the time constant,
wji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, σ(x) = 1
1+e−x is the standard lo-

gistic activation function, and I represents an external input.
The output of a neuron is oi = σ(si + θi). The agent’s
sensors are fully connected to a layer of seven interneurons,
which are fully interconnected and which project fully to the
five motor neurons. In addition, to cut down on the number

of parameters that need to be evolved, the agent’s neural ar-
chitecture is forced to be bilaterally symmetric.

Neural parameters are evolved using a real-valued ge-
netic algorithm with rank based selection. A fitness scaling
multiple of 1.01 and a mutation variance of 4 were used.
The following parameters, with corresponding ranges, are
evolved: time constants ∈ [1, 20], biases ∈ [−16, 16], and
connection weights (from sensors to neurons and between
neurons) ∈ [−16, 16]. Simulations are integrated using the
Euler method with a step size of 0.1. In addition, in prelim-
inary evolutionary runs it was discovered that, by evolving
agents in all three motor conditions from random initial con-
ditions, agents would converge prematurely to solutions that
performed well in the wheels only condition but poorly in
the other two conditions. Presumably this finding is due to
the fact that walking is a much more difficult behavior to
evolve than motion via pure force effectors, and so walk-
ing performance was unable to bootstrap itself before the
wheels only condition had already been optimized. In order
to overcome this difficulty, agents were evolved initially in
the walking only condition until an average performance of
90% was reached, and only then were they evolved under all
three motor conditions. On the order of 3,000 generations
were required to reach an initial level of 90% proficiency
in the walking only condition, and then agents were evolved
for an additional 10,000 generations in all three motor condi-
tions. A population size of 200 was used in all evolutionary
runs.

Behavioral Analysis

The best evolved agent achieved a mean performance of
97.1% on 5,000 evaluation trials with horizontal offsets uni-
formly distributed between [−150, +150] for each of the
three motor conditions, with performances of 98.6% with
wheels only, 96.5% with walking only, and 96.1% with
walking and wheels. The performance of the best evolved
agent is shown in Figure 3. From this, it is clear that the
agent exhibits a high-performing and general solution to the
task. Accordingly, the next question that we would like to
ask is how this works. In particular, how does the agent uti-
lize different patterns of feedback to produce the different
behaviors? For that matter, how different are the behaviors
to begin with? Does the agent’s neural circuit use different
autonomous dynamics to produce the different behaviors, or
is the behavior truly a collective property of the entire brain-
body-environment system? While some of these questions
are beyond the scope of the present study, we can move to-
wards answering them by performing a detailed analysis of
the agent’s behavior. By examining the agent’s behavior and
how it changes under various perturbations, we can begin
to constrain the possible underlying mechanisms that might
give rise to it.
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Figure 2: The agent’s behavior. The agent’s motion over time in object-centered coordinates is shown for the (a) wheels only,
(b) walking only, and (c) walking and wheels conditions.
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Figure 3: Generalization performance over initial horizontal position for the best-evolved agent. Performance is shown for the
(a) wheels only, (b) walking only, and (c) walking and wheels conditions.
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Figure 4: Behavioral comparison. Each plot shows the agent’s behavior in the wheels only (red), walking only (yellow), and
walking and wheels (blue) conditions when the same stimulus is presented.

Normal behavior

We start by examining the agent’s behavior under normal
circumstances. This is shown in Figure 2, where sample
trajectories of the agent’s motion in each of the three mo-
tor conditions are shown. In the wheels only condition, the
agent’s behavior is characterized by large scans back and
forth over the object, before ultimately centering the object
as it reaches the bottom of its fall. Interestingly, for offsets

around 100 in the wheels only condition, the agent actually
begins by moving further away from the object before turn-
ing back and centering it. The agent’s motion in the walking
only and walking and wheels condition show striking dif-
ferences from the wheels only condition, largely due to the
different biomechanics for walking versus wheels. Success-
ful walking requires that the agent alternate between exert-
ing force while the foot is down and swinging the leg back
while the foot is up, resulting in a motion trajectory that al-
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ternates between short bursts of motion and stasis. In con-
trast, with the wheels the agent is able to glide smoothly
back and forth unimpeded. The plots in Figure 2 also show
apparent similarities between the walking only and the walk-
ing and wheels conditions, giving an initial impression that
behavior in these two conditions is more closely related than
either is to the wheels only condition.

Behavioral comparison
Next we can ask how much the agent’s behavior actually
differs in the three motor conditions. Since it is a basic sup-
position of this paper that the neural circuit exhibits different
behaviors, this is an important question to ask. Here a clar-
ification also must be made regarding the intended meaning
of “behavior”. At one level, the agent’s behavior can be con-
sidered the same in all three conditions, since in each case
the agent realizes the same high-level goal of catching cir-
cles. However, if behavior is defined at the lower level of
the actual motor trajectories that are produced, then the be-
haviors may in fact be different in each case. That is, al-
though the agent realizes the same goal in each condition,
the actual motor actions required for walking versus wheels
versus coordinating both may differ substantially. To deter-
mine whether this is the case, we can begin by comparing
the agent’s behavior in the three conditions when presented
with the exact same stimuli (Figure 4). From this compar-
ison, we see that, despite the apparent similarities between
the walking only and walking and wheels conditions in Fig-
ure 2, the behavior in all three conditions is actually quite
different. The contrast is most clear in Figure 4(c), where
the trajectory for the walking and wheels condition can be
seen to combine the steplike motion of the walking condi-
tion with periodic glides characteristic of the wheels only
condition.

While Figure 4 provides an initial qualitative comparison
of behavior in the three conditions, it is also possible to per-
form a more rigorous and quantitative comparison. To do
this, we record the agent’s motor outputs in one of the three
conditions and then “playback” various of the motor streams
to determine how the agent would have performed in the
other conditions. For example, when the agent is evaluated
in the wheels only condition, the agent actually produces
motor outputs for the leg as well, but those outputs are sim-
ply ignored in order to simulate the leg being lesioned. Thus,
if we record the outputs of the leg motors during the wheels
only condition and then subsequently play them back, using
them to drive the agent’s leg effectors, we can examine how
the agent would have performed had it been in the walk-
ing only condition. Similarly, we can play back the motor
streams for both the wheels and leg to simulate the walking
and wheels condition. In general, we can perform the same
experiment by running the agent in each of the three condi-
tions and performing playback simulations of the other two.
The results from performing these experiments are shown in

Figure 5, both as average performances and as performance
across the range of horizontal offsets. Clearly, there are sig-
nificant drops in performance in all of the playback condi-
tions. The largest drops are found between the wheels only
condition and the other two, in line with our earlier observa-
tion that behavior is most different in the wheels only condi-
tion. However, even between the walking only and walking
and wheels conditions there are significant declines in per-
formance. Thus, the results of these experiments strongly
support our earlier qualitative observations that the agent
does in fact produce different behaviors in each of the three
conditions.

Effects of removing the object
Having established that the agent exhibits different behav-
iors, we can next ask about the source of this behavioral dif-
ferentiation. In particular, to what extent does the differenti-
ation rely on continuous feedback from the environment? If
we found, for instance, that the agent does not rely on con-
tinuous feedback, this would suggest that the agent’s neural
circuit may be intrinsically multifunctional, with initial en-
vironmental input serving only to switch the agent into one
or the other of its behavioral modes. On the other hand,
if the different behaviors rely on continuous feedback, this
would lend support to the idea that the environmental feed-
back is in fact crucial for producing the different behaviors.
To determine which is the case, we can remove the visual
object at different times during each trial and measure the
impact on performance. Figure 6 shows the results of per-
forming these experiments. Performance in all three con-
ditions is significantly impaired by removing the object at
nearly all times except very late in the trial, presumably af-
ter the agent has already settled on its final position. Also,
interestingly, whereas the walking condition shows a steady
increase in performance as the object is removed later in the
trial, the other two conditions show much greater variability.
There are certain times when the agent is very sensitive to
the object being removed, and certain other times when per-
formance is hardly affected at all. Also, by comparing the
density plots in Figure 6 with the behavioral trajectories in
Figure 2, one can begin to see why this is likely the case.
The points in time when performance is impacted the most
appear to correspond to times when the agent’s behavioral
trajectory is changing, turning either towards or away from
the object. Thus, one reasonable prediction is that environ-
mental feedback influences behavior precisely at these criti-
cal junctures, when the agent is actively moving to position
itself with respect to the object.

Effects of switching motor conditions
The final set of experiments examine the agent’s ability to
flexibly switch between the motor conditions. There are sev-
eral reasons why the results of these experiments are of inter-
est. First, the ability to switch between conditions provides a
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measure of the robustness of the agent’s control mechanism.
Since, as is well established by now, the behavioral trajecto-
ries in each condition are actually quite different, it is not at
all obvious that the agent should be able to switch behaviors
mid-trial. Successful walking, for example, may rely fun-
damentally on the precise pattern of feedback that the agent
selects for itself while walking, which differs significantly
from feedback in the walking and wheels condition. Thus,
to the extent that the agent is able to switch conditions, we
can explore the robustness of the evolved mechanism. A sec-
ond reason that these experiments are of interest is that the
ability to switch behaviors would also provide further sup-
port for the idea that the agent’s behavior relies fundamen-
tally on continuous environmental feedback. For example, if
the agent uses feedback only to switch into one or the other
behavioral mode, and ignores it thereafter, then the agent
presumably will fail when switched to a different condition.
On the other hand, if the agent is continuously adjusting its
behavior online as a result of changing patterns of feedback,
then it is more likely able to adapt to a different motor con-
dition.

The results of switching motor conditions at different
times during the trial are shown in Figure 7. First, we see
that when switching from the wheels only condition to either
of the other two conditions performance decreases signifi-
cantly, especially as the switch occurs later in the trial. One
possible explanation for this is that the agent sweeps back
and forth over the object much more widely in the wheels

only condition, and when switched to the walking only or
walking and wheels condition it may be unable to recover
this distance before the object completes its fall. However,
when switching from either of the other two conditions, per-
formance remains high regardless of when the switch oc-
curs. This is a somewhat surprising result, especially con-
sidering switches to the wheels only condition which, as we
have seen, involves very different behavior. Moreover, this
result also provides strong support for the earlier findings of
Section 3.3, indicating that the agent’s behavior relies fun-
damentally on continuous environmental feedback.

Discussion
Although neural mechanisms are undoubtedly crucial in pro-
ducing different behaviors, the embodied and embedded
contexts of neural circuits also provide many additional de-
grees of freedom that are often under-appreciated. Behav-
ior is the product not of brains, but of entire brain-body-
environment systems, and each of these three components
may have a profound influence on behavior. This paper ex-
plored the ability of environmental feedback to drive the
production of different behaviors from a single fixed neu-
ral circuit. Agents were evolved to accomplish the same
objective—catch circles—under three different motor con-
ditions, and based solely on the different patterns of environ-
mental feedback produced by these conditions. The success-
ful evolution of agents in this task demonstrated the ability
of environmental feedback alone to drive behavioral selec-
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Figure 5: Playback performance. Plots (a)-(c) show the agent’s normal performance (solid line) and playback performance
(dashed lines) for the wheels only (red), walking only (yellow), and walking and wheels (blue) conditions. Average perfor-
mances for the normal and playback conditions are shown in plots (d)-(f).
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Figure 6: The effect of removing the object. The top row shows the agent’s average performance as a function of the time when
the object is removed, averaged over horizontal positions of the object. The bottom row shows density plots of performance as
a function of the object’s horizontal position and the time of removal.

tion. Next, a detailed analysis of the behavior of the best
evolved agent was performed. Preliminary experiments pro-
vided quantitative evidence in support of the claim that the
behaviors produced by the agent differ significantly. Next,
experiments where the agent’s environmental feedback was
removed at different times during each trial, by removing the
object that the agent is supposed to catch, showed the agent’s
fundamental reliance of continuous environmental feedback.
Finally, experiments where the agent was switched between
motor conditions at different times demonstrated the robust
behavioral mechanism that the agent employs, and further
confirmed the agent’s reliance on continuous environmental
feedback.
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