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Abstract 

Foraging bees often search in complex natural environments for 
"target" flowers that they have learnt provide nectar rewards. To 
maximise efficiency, bees must avoid landing on "distractor" 
flowers that do not offer rewards, as this potentially wastes time 
and energy. This paper reports on artificial-life inspired agent-based 
simulations of two contrasting approaches different bee species use 
to scan for targets in a scene containing many flowers. The two 
scanning approaches simulated are a parallel scan typical of 
bumblebees that is not slowed by distractors, and a serial scan 
typical of honeybees that is faster than parallel scan for single 
element processing, but is slowed by the presence of distractor 
flowers. The simulations were conducted over a range of target 
densities, and over a range of target/distractor ratios, to evaluate the 
types of environment in which each scan mechanism is most 
effective. Serial scan was found to be generally more effective in 
environments populated with a single type of rewarding species of 
flower, and parallel scan appears to be relatively more effective in 
environments populated with a mix of rewarding and unrewarding 
flowers. Our results support the hypothesis that environmental 
factors led to the evolution of different visual processing 
mechanisms in honeybees and bumblebees. This establishes a firm 
basis for psychophysical research exploring how and why the two 
different processing mechanisms may have evolved in these 
animals. 

Introduction and Previous Work 
Foraging worker bees collect nutrition to sustain a beehive. 
Individual bees travel on “bouts” between their hive and 
flowers that may present nectar and pollen as nutritional 
rewards. Some bee species like honeybees (Apis mellifera) 
have colonies of foragers numbering in the thousands; while 
other species like bumblebees (Bombus terrestris) typically 
have less than 100 foragers (Frisch 1967, p.7; Duchateau and 
Velthuis 1988). Differences in search strategy between 
individual bees are amplified many times by the numerous 
bouts an individual travels during a day, many more times 
depending on the number of bees in a colony sharing that 
strategy, and more times still over a season or the life of a 
colony. The evolutionary relationship of different bee species 
and flowers is likely to have endured over many millions of 
years (Dyer, Boyd-Gerny et al. 2012), suggesting that 
selective pressure to evolve optimal solutions may exist in 
current day populations (e.g. examples throughout (Lythgoe 

1979)). The search strategy employed should therefore be 
adapted to local environmental conditions, maximising the net 
flow of energy into the hive to enable survival and 
reproductive success of the queen bee. Costs associated with 
unnecessary workers, or excessive flight and flower handling 
should be avoided, but this is not straightforward in complex 
natural environments (Burns and Dyer 2008). 
 
During a foraging bout, bees search for target flowers that 
they have learnt provide nectar rewards. Many social bees, 
like honeybees and bumblebees, exhibit flower constancy and 
tend to forage consistently from one type of rewarding flower 
as long as it continues to present rewards (Chittka, Thomson 
et al. 1999). However, in complex environments with many 
flowers, bees must avoid landing on unrewarding distractor 
flowers as this wastes time and energy (Burns and Dyer 2008). 
When the colours of target and distractor flowers are very 
different (e.g. blue and yellow as seen by humans), and there 
are only two flowers to choose between, bees can accurately 
assess the type of a flower presented to them (Giurfa 2004; 
Dyer, Spaethe et al. 2008). However, it isn’t currently well 
understood how bees make decisions in complex 
environments containing many flowers of different types, 
colours, target/distractor ratios and arrangements. For 
instance, in tropical forests, single trees with thousands of 
simultaneously blooming rewarding flowers, potential targets, 
may appear (Fig. 1a), and distractor flowers are not 
intermingled among them (Clark 1994). However, in 
temperate environments, diverse carpets of small herbaceous 
plants may include a scattered few targets peppered among 
numerous distractor species (Fig. 1b), or a uniform carpet of a 
single species may occur that is many meters across 
depending upon location or season (Fig. 1c). 

Apart from the obvious biological interest foraging raises 
(Pyke 1984), understanding bee foraging has many practical 
implications for agriculture where globally, crop bee-
pollination is directly responsible for 35% of worldwide food 
production and is worth an estimated 153 billion Euro 
annually (Kjøhl, Nielsen et al. 2011, pp.1-49). Bee pollination 
is also essential for natural ecosystem management (Hegland, 
Nielsen et al. 2009). It is therefore imperative that we 
understand how different bee species operate in different 
environments. This also provides insight into how potential 
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temporal or spatial mismatches in bee-pollinator and/or flower 
blooming may be affected by predicted changes in 
environmental conditions (ibid.). Furthermore, understanding 
bee visual attention mechanisms is relevant to artificial vision 
and search system design (Srinivasan 2011). 

 a 

 b 

 c 
Figure 1: Sample flower distributions: (a) flowering tree, 
(b) patchy temperate carpet, (c) uniform temperate carpet. 

Biological background. Following recent experiments with 
live free-flying bees, Morawetz and Spaethe (2012) propose 
that bumblebees (Bombus terrestris) conduct what appears to 
be a limited parallel style visual scan for targets that is not 
significantly slowed by increasing the number of distractors, 
while honeybees (Apis mellifera) use a serial styled scan that 
is faster for decisions where only targets are present, but is 
slowed considerably when distractors that must also be 
processed by the visual system are present. These different 
spatial attention mechanisms are potentially required to allow 
an organism with finite information processing capacity to 
handle the essentially infinite complexity of applying vision in 
natural environments (Treisman and Gelade 1980; Treisman 
and Gormican 1988; VanRullen, Carlson et al. 2007). 

The study on free-flying honeybees and bumblebees 
(Morawetz and Spaethe 2012) used differently coloured paper 

targets known to stimulate the trichromatic (UV, blue and 
green sensitive (Dyer, Paulk et al. 2011)) colour processing 
system of bees. This type of behavioral testing relies on the 
fact that individual bees can be trained to visit a target colour 
by associating a sucrose solution which the bees collect as 
nutrition, whilst the distractor stimuli offer no reward to bees 
who therefore avoid this colour. This scenario is biologically 
relevant since flowers may only offer rewards in certain 
temporal cycles, and there are some that mimic rewarding 
flowers and try to obtain pollination through deception (Dafni 
1984; Dyer, Paulk et al. 2011). The Morawetz and Spaethe 
(2012) study was conducted in a controlled arena with stimuli 
presented at set visual angles. The number of targets and 
distractors was systematically varied. The results showed that 
increasing the number of distractors led to a significant 
increase in the decision-making time for honeybees, consistent 
with theories of a serial search mechanism (Treisman and 
Gelade 1980; Treisman and Gormican 1988; VanRullen, 
Carlson et al. 2007). However, in bumblebees a different 
processing system was observed. While decisions for finding a 
target with only a single distractor were about 1.5 times as 
long as for honeybees, increasing the number of distractors 
did not significantly affect the decision-making time of 
bumblebees. This type of decision-making is consistent with a 
parallel visual search (ibid.). In the current study we use 
simulations to test the implications on nectar gathering 
effectiveness, as a biologically relevant measure of fitness, for 
parallel and serial scanning mechanisms. 

Simulation background. Experiments with free-flying bees 
require marking and tracking individual animals moving 
freely in 3D space, making it difficult to collect sufficient 
reliable data to answer iterative questions about optimal 
mechanisms in multiple environments. Hence, we employ an 
agent-based model (ABM, or individual-based model, IBM) 
simulating parallel and serial scanning bees in different 
environments. Our artificial bees (a-bees) search a grid world 
populated by target and distractor flowers. We systematically 
sweep through a biologically relevant range of target densities 
and target/distractor relative abundances, aiming to determine 
the environmental floral distributions in which each visual 
scan mechanism is likely to be effective in real world 
scenarios. The simulations allow us to interpret the factors that 
influence how and why bees make decisions, and the 
subsequent colony-level benefits that may act as biologically 
relevant factors for reproductive success (Burns 2005; Burns 
and Dyer 2008). 

Where bee behaviour varies between individuals or where 
local environmental conditions influence individual decision-
making, ABMs offer a powerful approach for understanding 
the intricate interactions and emergent outcomes of these 
complex systems (Huston, DeAngelis et al. 1988; Judson 
1994; Grimm 1999; DeAngelis and Mooij 2005; Grimm and 
Railsback 2005; Grimm, Revilla et al. 2005; Dorin, Korb et 
al. 2008). ABMs have been used to model bee behaviour since 
the 1980s (Hogeweg and Hesper 1983). For example, they 
have been used to understand bee foraging strategies in 
keeping with empirical data whilst considering recruitment, 
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homing and memory of food source location (Vries and 
Biesmeijer 1998); and to show that the benefits of recruitment 
by honeybees is dependent on the density of flowers within 
certain environments (Dornhaus, Klügl et al. 2006). ABMs 
have also been applied to understand the impact of flower 
constancy under conditions where flower rewards become 
available or unavailable cyclically (Dyer, Dorin et al. 2012).  

In this current study we use ABMs to understand the potential 
colony level benefits of the empirically determined visual 
scanning behaviour discovered in honeybees and bumblebees. 
Specifically, we hypothesise that if environmental conditions 
like flower density have been a factor in the evolution of 
different bee species’ visual search mechanisms (Dyer, 
Spaethe et al. 2008; Morawetz and Spaethe 2012), then there 
should be evidence of biologically plausible flower 
distributions best suited to foraging by bees employing the 
different mechanisms. 

Simulation Method 

The ABM we have designed simulates the components 
pertinent to testing the hypothesis just stated, while 
eliminating irrelevant factors – KISS.1 In detailing the 
simulation here we discuss aspects of real bee behavior 
included or excluded to test our hypotheses. The system was 
implemented entirely in the C programming language but 
there is nothing in our model that could not be built in any 
other similar language by following the description below. 

Artificial-Bees (A-Bees) 
Bees are central place feeders that leave their hive to search 
for nutrition. We model bees as software agents, a-bees, 
foraging within a virtual bounded foraging patch. The patch is 
uniformly divided into square grid cells. At most one virtual 
flower can occupy a grid cell. An a-bee also occupies a single 
grid cell with or without a flower. In this section we detail a-
bee behaviour, the simulated environment and the relationship 
of these aspects of our model to reality. 

We model bee colonies of 60 foragers. The exact number is 
not critical since we eliminate inter-agent communication and 
population density effects by ensuring that, in essence, each a-
bee exists in a world of its own. Inter-agent effects are 
complicating factors that would change the viability of 
different visual scan mechanisms for hives of different size 
and under different environmental conditions. In keeping with 
KISS described above, the simulation eliminates these to 
reduce one key problem to its basic form. 

Honeybees have evolved a complex language for 
communicating target whereabouts to one another (Frisch 
1967, pp.321-328). This is of particular benefit in 
environments where targets appear in large clusters 
(Dornhaus, Klügl et al. 2006). This communication system is 
likely to impact on the effectiveness of different bee species’ 
                                                             
1 Keep It Simple, Stupid (Axelrod 2003). 

visual scanning techniques, but we have avoided introducing it 
here in order to establish a baseline for comparing only the 
visual scans of honeybees against those of bumblebees 
(Dornhaus and Chittka 1999). 

Bees can use vision and olfaction to help find flowers; e.g. 
(Streinzer, Paulus et al. 2009). Our model only considers 
visual scan. Our a-bees can distinguish between targets and 
distractors with 100% accuracy. This is biologically plausible 
for saliently different colours (Giurfa 2004; Dyer, Paulk et al. 
2011). 

Bee spatial acuity is relatively poor compared to human 
vision, and in real life bumblebees can only detect a plant’s 
cluster of 3-5 flowers (each flower of 2.5cm diameter) at a 
distance of approximately 0.7m (Dyer, Spaethe et al. 2008; 
Wertlen, Niggebrugge et al. 2008). Detection appears to 
approximate a step function, so we model it as distances 
>0.7m — not detected, distance <0.7m — 100% chance of 
detecting a flower that is present. Our foraging patch model is 
based on a grid world of square cells of dimension 0.35m, so 
an a-bee can see flowers in its Moore neighbourhood (8+1 
cells, n=1), but no further. 

An individual a-bee keeps track of the flowers it has visited 
and will not visit a flower twice in a single foraging 
simulation. This is biologically plausible and the ability is an 
important aspect of bee foraging behavior (Giurfa, Núñez et 
al. 1994). An a-bee will move into a grid cell towards a target 
if it has not visited that target before. It will then visit that 
target (to collect the modeled nutritional reward), taking a 
parameterised amount of time, VisitTime. Real bees do have a 
central foveal region in which they may see detail better. 
However its operation in complex environments for different 
species has been poorly studied (but see (Morawetz and 
Spaethe 2012)). For simplicity we eliminated this factor here; 
a-bees are not directionally biased in their visual scan.2 We 
model the two bee scan mechanisms as follows. 

Parallel scan. An a-bee using a parallel scan (Fig. 2) 
processes all of the information it sees about flower locations 
in its visible range simultaneously. This process takes the 
“parallel a-bee” a constant amount of time, ParallelTime, 
regardless of how many flowers it can see and regardless of 
whether these are distractors or targets. It is as if in 
ParallelTime the bee forms a mental image of the whole 
visible scene and recognises the closest target, while ignoring 
all non-targets. 

A parallel a-bee will move towards an unvisited target it sees 
that is drawn from a uniform random distribution of available 
target flowers. If it finds no target, or no flowers at all, it will 
conduct a random walk as discussed shortly. 

                                                             
2 However, we did test the impact of bias in the a-bees’ 
preferred direction of travel (below). 
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MoveTime

No

1 pass takes 
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Figure 2: The foraging cycle of a parallel visual scan a-bee. 

Serial scan. An a-bee using a serial scan (Fig. 3) examines 
one flower in its visible region at a time, selecting flowers to 
investigate from a uniform random distribution across 
available flowers. It takes this “serial a-bee” the parameter 
value SerialTime to examine each flower, until it finds a 
target, or until it has examined all the flowers it can see and 
finds no targets. A serial a-bee always moves towards the first 
unvisited target it sees in its scan. It stops scanning as soon as 
it finds an unvisited target. In the absence of unvisited targets 
or any flowers at all, the serial a-bee conducts a random walk 
as discussed below. 

A-bee movement. As long as all a-bees, regardless of 
parallel/serial visual scanning mechanism, apply the same 
movement strategies, we can assess the relative benefits of the 
scanning mechanisms free from interference introduced by 
movement strategies that are themselves complex and worth 
independent study (Waddington 1980). Hence it is especially 
important here to eliminate unnecessary complications from 
the simulation. Since we are concerned with bee decision-
making times and unconcerned about bee travel times, we 
don’t require a-bees to return to a hive and therefore don’t 
model one. A-bees do not run out of nectar storage; they 
accrue it indefinitely during a simulation run. 

In parameter MoveTime simulation time-steps an a-bee can 
move into any cell in its Moore neighbourhood, or choose to 
remain in its current cell. But in which direction should it 
head? If it sees a target flower, as discussed above, it will 
move towards that. In the absence of target flowers, a-bees 
conduct either a random walk or a biased random walk around 
their Moore neighbourhood depending on the experiment. 

Start
Serial Scan Bee

Make exploratory 
random move

Select random 
unvisited 

unscanned flower

Add target to 
visited list

Clear scanned 
flower list

No

Yes

Harvest target

Any unvisited, 
unscanned flowers 

visible?

Add flower to 
scanned list

Yes

No

Yes
1 cycle takes SerialScanTime

1 pass takes 
MoveTime + VisitTime

1 pass takes 
MoveTime

No

Move to selected 
unvisited target

Is selected flower an 
unvisited target?

Any visible 
unvisited flowers?

 
Figure 3: The foraging cycle of a serial visual scan a-bee. 

While an ordinary random walk between grid cells is not a 
biologically realistic foraging strategy, it provides a 
convenient baseline against which we compare the impact of a 
biased random walk derived from a study of real bees’ 
directional preferences (Waddington 1980, Fig. 1). The 
probability of a biased random walking a-bee selecting a 
specific cell from its Moore neighbours in the absence of 
suitable target flowers is given in Fig. 4. As can be seen, it 
prefers to continue straight ahead, but is not completely averse 
to changing direction. We investigated these two navigational 
strategies to determine if they had any impact on the relative 
success of the visual scan techniques. 

0.13 0.17 0.20

0.07 0.17

0.130.06 0.07

?

0.17 0.13 0.07

0.20 0.06

0.070.17 0.13

?

 
Figure 4: Probability of movement relative to (example) 
current headings of an a-bee following a biased random walk. 
Values calculated from (Waddington 1980, Fig. 1). 

Artificial Foraging Environments 
A colony’s foraging environment is modeled as a bounded 
world of 571×571 square grid cells. Cells represent 0.35m2. 
Hence, the simulated foraging site is 200m across. 
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Target flowers offer a reward of 1 unit to every a-bee that 
visits them. Distractor flowers offer no reward.3 Flowers are 
distributed differently across the patch depending on the 
experiment, as described in the next section. 

Experiments 
We conducted experiments to determine the impact of various 
flower distributions on the relative success of colonies 
composed either entirely of parallel a-bees, or entirely of serial 
a-bees. The simulation parameters described below are 
summarised in Table 1. 

Target-only experiments. In some environments, bees only 
encounter a single flowering species during a foraging bout 
(Fig. 1a & 1c). This is often the case under tropical conditions 
where massive flowering trees can be encountered, or in 
homogeneous agricultural fields. In experiments conducted to 
model these conditions, colonies of serial and parallel a-bees 
foraged in patches containing only targets. The number of 
target flowers in the patch was increased systematically to 
occupy from 0% to 100% of the grid cells. Serial and parallel 
visual scanning mechanisms were compared at each density. 
Flower positions were distributed uniform randomly across 
the patch in each case. These experiments were primarily used 
to inform the choice of target density to be used in the Target 
and distractor experiments described next. 

Target and distractor experiments. In order to ascertain the 
relative impact of distractor flowers on the serial and parallel 
visual scanning mechanisms, distractors were placed in the 
foraging patch among a fixed number of targets. In our 
simulation, distractor flowers form a single class of non-target 
flower. In the wild there may be many species of distractor. 
However, our simulation remains biologically relevant since, 
as detailed in section Biological background, when distractor 
flowers are of saliently different colour to targets, bees 
reliably distinguish between them. 

For the Target and distractor experiments, the density of target 
flowers in our simulated patch was fixed at 10% of the grid 
cells. There were three reasons for this density choice: 

(i) Since we are measuring the relative success of the two 
visual scanning mechanisms by recording the total number of 
reward units gathered during the simulations, we always 
require some target flowers for a-bees to harvest. 

(ii) To maximise our ability to distinguish differences between 
visual scan mechanisms we need to provide sufficient targets 
that foraging a-bees do not exhaust the supply of unvisited 
targets during a simulation run. 

(iii) We need to sweep across a wide range of distractor flower 
densities. By fixing targets at 10% we have from 0% up to the 
remaining 90% of grid cells to populate with distractors. 

                                                             
3 Actually, a-bees never visit distractors as they distinguish 
flower types with 100% accuracy. This is consistent with 
empirical data for bees visiting saliently different coloured 
flowers (Giurfa 2004). 

Our Target-only experiment results demonstrated that 10% 
target density met all three requirements. These results are 
described below. Hence, during Target and distractor 
experiments, the number of distractors in the patch was 
increased systematically to occupy from 0% to 90% of the 
grid cells. The two visual scanning mechanisms were tested at 
each distractor density. Flowers were distributed uniform 
randomly across the patch in each case, simulating a temperate 
environment with different numbers of distractors positioned 
among targets (Fig. 1b). 

Environment  
Patch size 571 × 571 cells, bounded 
Patch grid cell size 0.35 × 0.35m 
Colony size 60 parallel, or 60 serial scan a-bees 
  
A-bees  
Flower presence 
detection accuracy 

100% from neighbouring cell or 
cell shared with a flower 

Flower type 
recognition accuracy 

100% from neighbouring cell or 
cell shared with a flower 

Storage capacity Infinite 
Visited flower 
memory length 

Every flower visited in a 
simulation run 

Flower visit 
(VisitTime) 

1 simulation time step 

Complete field of view 
parallel scan 
(ParallelTime) 

3 simulation time steps 

Single serial scan 
flower examination 
(SerialTime) 

2 simulation time steps 

Movement in Moore 
neighbourhood 
(MoveTime) 

1 simulation time step 

  
Simulation  
Duration 1000 simulation time steps 
Number of runs 20 per data point 

Table 1: Main simulation parameters. 

Simulation verification 
We tested that the simulation behaved according to the 
specifications above. Tests included that a-bees were: 

- Correctly following their respective visual scanning 
mechanisms in assessing visible flowers; 

- Remembering visited target flowers; 
- Not exhausting the global target flower supply; 
- Not exhausting the local target flower supply. 

Where possible we also compared analytically derived values 
to simulation results. To ensure our a-bees’ simplistic random 
walk navigation strategy did not influence the relative success 
of the tested scanning mechanisms, we compared the results 
of this navigation strategy against a more plausible biased 
walk derived from empirical data. See the Results for a 
discussion of these experiments. 
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Results 
Target only experiments 
In these experiments the foraging patch was filled purely with 
target flowers. The number of target flowers was increased 
systematically from 10% to 100% of the grid cells in the 
patch. The effects of this increase on the amount of nectar 
collected are shown for colonies of parallel and serial a-bees 
(Fig. 5). All bees in these experiments executed an ordinary 
random walk. 
 
At target densities of 1 or 2 % there was a relatively low rate 
of nectar collection by a-bees with either serial or parallel 
search mechanisms (Fig. 5). A comparison of nectar collection 
success for colonies of a-bees using parallel (mean 4920±103 
units) or serial (mean 5323±118 units) visual search 
considering 10% target density and no distractors was 
conducted with a non-parametric Mann-Whitney U test (SPSS 
v15.0: IBM, Chicago, USA) for 2-independent groups of 
N=20 runs/group (Z=-5.383, p<0.001). Thus at 10% target 
density, a-bees with a serial search mechanism collected 
significantly more nutrition. As target flower density increases 
in the presence of no distractors, the serial search becomes 
increasingly more effective than the parallel search 
mechanism (Fig. 5). 

Figure 5: Graph of nectar rewards collected by colonies of a-
bees versus the percentage of grid cells occupied by target 
flowers. Data points are the mean of 20 simulations; error bars 
±1 std. dev. 

Target and distractor experiments 
In these experiments 10% of the foraging patch was randomly 
filled with targets. Distractor density was increased 
systematically from 0% to 90% of the total number of grid 
squares. The distractors were randomly distributed among the 
cells unoccupied by targets. The effects of this increase on the 
amount of nectar collected by colonies of parallel and serial a-
bees executing ordinary random walks and biased random 
walks are shown (Fig. 6). 
 
Considering first the a-bees executing an ordinary random 
walk. For distractor densities less than 1%, the serial scan 
mechanism outperforms the parallel scan (see Fig. 5 above, 

since the Target only experiment at 0% distractors, matches 
the experiment here at 0% distractors). However, parallel scan 
takes over as the most efficient mechanism at higher distractor 
densities, even where the number of distractors is much less 
than the number of targets. Parallel scan is clearly more 
efficient than the serial scan as distractor flower density 
increases beyond target density. 
 
The trends for a-bees conducting a biased random walk 
correspond directly to those for a-bees conducting an ordinary 
random walk, but with greater overall success for the former 
over the latter. The directional bias appears to enhance the 
speed with which a-bees’ locate unvisited targets. It does this 
in equal proportion for a-bees using parallel or serial visual 
scan and didn’t change the relative success of these 
mechanisms. 

Figure 6: Graph of nectar rewards collected by colonies of a-
bees versus the percentage of grid cells occupied by distractor 
flowers. Target flower density was fixed at 10%. Data points 
are the mean of 20 simulations; error bars ±1 std. dev. 

Discussion, Conclusions and Future Work 
In the current study we tested for the relative success of a 
serial scan as occurs in honeybees, and a parallel scan typical 
of bumblebees, considering previous evidence that honeybees 
evolved to forage in more tropical environments and 
bumblebees in temperate environments (Clark 1994; 
Dornhaus and Chittka 2004; Heinrich 2004; Dyer, Spaethe et 
al. 2008). This lead us to hypothesise that honeybees’ serial 
scan may be more effective in environments where targets 
were not interspersed among distractors, and that bumblebees’ 
parallel scan would be relatively more effective for foraging in 
heterogeneous environments where distractors and targets 
were intermingled. These hypotheses were supported by our 
simulation results as follows. 

Target only experiments 
The ratio of nectar collected by the parallel a-bees to that 
collected by the serial a-bees in an environment without 
distractors approaches 11,336:14,163 = 4:5. The serial 
mechanism is increasingly superior as target density increases. 
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This ratio can be derived analytically in the absence of 
distractors and a neighbourhood increasingly saturated with 
targets. For each traversal of the procedure in Fig. 2 a parallel 
a-bee requires ParallelTime + MoveTime + VisitTime to 
collect a reward unit. With our parameters (Tab. 1) this 
amounts to 3+1+1= 5 simulation time steps. A serial a-bee’s 
traversal of the procedure in Fig. 3 requires SerialTime + 
MoveTime + VisitTime = 2+1+1 = 4 simulation time steps to 
collect a reward unit. Hence, a serial a-bee takes 4/5 ths the 
time of a parallel a-bee to collect a reward unit in this 
scenario. 

We could have set our simulation parameters so that the a-
bees’ decision time wasn’t the most time-consuming activity 
in its foraging cycle. This would potentially be more 
biologically plausible given that decision times as measured 
by Morawetz and Spaethe (2012) were generally less than 1.5 
seconds (bumblebees) and 1.2 seconds (honeybees), and that 
the sum of travel and flower handling times may exceed these 
values in the real world by many seconds (Chittka, Gumbert et 
al. 1997; Chittka 2002). However, these time handling factors 
may also be complicated by interactions with other foraging 
insects in complex and competitive environments where being 
faster may allow the collection of rewards before competitors 
diminish resources (Burns and Dyer 2008). The impact of 
travel and flower handling times for real honeybees and 
bumblebees may impact on their relative success in different 
environments since each species may conceivably have 
differences in flight speed and flower handling skill under 
various real world conditions. But the scope of our 
experiments was only to test differences between the scanning 
mechanisms these species have been shown to employ. Hence, 
we neutralise flower handling and travel time differences by 
assigning equal values to VisitTime and MoveTime parameters 
for the two a-bee species. 

It was found that real bumblebees reduce their decision time 
slightly, by a statistically significant amount, as the number of 
visible targets increases from one to four (Morawetz and 
Spaethe 2012). Hence, the gap we report between parallel and 
serial mechanisms may be decreased slightly from that shown 
for our a-bees as target density increases (Fig. 5). 

Target and distractor experiments 
A distractor density of only 1% is sufficient to level the 
effectiveness of the serial and parallel scanning mechanisms. 
Any increase beyond this improves the parallel scanning 
mechanism’s superiority over the serial scan. This is 
interesting as it implies that in many biologically plausible 
scenarios, parallel search would be the more efficient 
approach for collecting nutrition from rewarding flowers 
whilst avoiding dissimilar colored distractors. Why then 
mightn’t honeybees have evolved a more efficient visual scan? 
A potential answer is provided in figure 5 where, in an 
environment with no distractors (as would be present in many 
tropical scenarios where large trees flower) fast serial search is 
more effective. Indeed, in studies that have compared the 
efficiency of honeybees at collecting nutrition in temperate 
and tropical environments, and where the capacity of the 

honeybees to recruit nest mates to share in resource gathering 
was experimentally manipulated, research has found 
honeybees to be most effective in tropical environments 
(Dornhaus and Chittka 2004). Thus our current findings that 
there are biologically plausible conditions that best suit either 
a parallel or serial search mechanism, adds weight to the 
possibility of environmental conditions leading to the 
evolution of different visual capabilities in different bee 
species (Dyer, Spaethe et al. 2008; Morawetz and Spaethe 
2012). 

As noted above, the biased random walk has no impact on the 
relative success of the scanning mechanisms. However in 
absolute terms, in our simulations, the turning bias we 
implemented improved the parallel a-bees’ foraging success 
by 20.48% (std. dev. 0.85) and the serial a-bees’ success by 
24.7% (std. dev. 2.4). This certainly leaves it open for those 
interested in optimal foraging to simulate more biologically 
plausible navigation schemes, however this was outside the 
scope of our study. 

Future work 
Our findings suggest it would be valuable to compare tropical 
and temperate floral distributions and how these may have 
affected the processing capabilities of different bee species. 
This work is potentially useful because it has been suggested 
that climate change may lead to either spatial or temporal 
mismatches in the availability of flower resources and 
pollinators (Hegland, Nielsen et al. 2009), and indeed such 
mismatches could be influenced by the visual capacities of 
bees. Currently this is unknown, and testing bee species of 
high pollination value with flowers of different patchiness 
may provide important insights for future resource 
management. 
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