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Figure 7: Evolution of the evaluation averages of the popu-
lations.

the behavior of moving away from the poisonous fruits (Fig-
ure 8b), as a consequence of the fact that individuals who eat
poisons may “die” sooner.

(a) (b)

Figure 8: Robot Behavior. (a) The line represents the robot’s
path, starting at (0,0). Note that its path passes through the
fruits (+) while deviates from poisons (◦). The line is not
always touching the fruits because the graph is showing the
center of the objects and, in the simulation, the eye’s mesh
only needs to touch the fruit’s mesh. (b) Motor and poison
sensor activities. Note that when a poison is sensed (posi-
tive values of solid line), there is a peak of negative signal
on motor activity (dotted line), which leads to a backward
movement.

An important characteristic to point out about the robot’s
behavior is how the high level foraging behavior is per-
formed with low level behaviors of direction adjustment.
One sensor of the eye alone cannot determine the direction
to follow in order to catch the sensed fruit, since it only cap-
tures the distance to the fruit. Therefore, the robot needs
to change its position to be able to use the three sensors to
find out the missing information. This behavior is shown in
Figure 9, where we can see the robot turning left to use the
right side of a sensor’s FOS to follow the fruit. Since the
three sensors are slightly displaced with respect to one an-
other, when a fruit leaves the FOS of a sensor, it is possible
to determine to what side an adjustment of direction needs
to be made. (Figure 6b).

Regarding the modulatory activity, one particular con-
troller evolved with modulatory neurons. With this action,
the robot exhibited two ways of search. A local rotation,
searching for near food and, when no fruit was caught, it

1 2 3

4 5 6

Figure 9: Direction adjustment behavior. Note that, to catch
the fruit, the robot approaches it using the right side of the
FOS, instead of the FOS’s center. The top frames show the
moment that it senses the fruit and then turns left. The bot-
tom frames show the robot catching the fruit following its
“side sensing”.

gradually increased its rotation radius, until it found a fruit,
and then passed to the local search again. Figure 10 shows
the joint activity of the modulatory neuron, stimulated with
the energy sense (signal continuously increasing while no
food is collected), and the changing of the motor activity.

Timestep

Signal Strength

Figure 10: Motor activity (dotted line), energy sense sig-
nal (dashed line) and modulation activity (solid line). Note
that these three activities are synchronized. When the robot
catches a fruit (decrease in dashed line), it searches another
one locally (decrease in dotted line). If no fruit is eaten, it
gradually increases the search radius (increase in solid and
dotted lines).

Conclusion
We described a controller for behavior generation of au-
tonomous virtual characters. We argue that natural behav-
iors can emerge if the behavior controllers are designed
properly, taking into account emergence principles. Such
a controller must be capable of adapting itself to the body
and to the environment. Thus, it needs to be able of modify
itself in contact with the world.

The controller uses neuromodulation for changing its dy-
namics on the fly, while adapted throughout the generations
by the genetic algorithm. In animal brains, the neuromodu-
lators are directly related to memory functions and indirectly
to learning. In our experiment, they allowed modifications
in behaviors patterns according to environmental changes.
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We also presented a simple novel way of genetic encoding
ANNs, describing simple arrays evolvable with a canonical
genetic algorithm. Those arrays are able to evolve neural
networks with growing topologies, and, at the same time, is
possible to evolve multiple characteristics of an agent.

We showed the capabilities of our controller through
an application involving the foraging behavior of a virtual
robot. The robot was able to learn how to use its own move-
ments to compensate for the insufficiency of sensory data in
order to accomplish the objective of catching fruits, showing
a complex foraging behavior consisting of minor position
corrections toward the goal. It is worthwhile to point out
that when the plasticity of the controller was increased with
modulatory actions, more elaborate strategies have emerged.

The results of our experiments show that the emergen-
tist approach is indeed capable of producing the intimate
coupling between agent and environment required for nat-
ural behavior. This fact is clearly illustrated by the strategy
developed by the virtual agent to compensate for its primi-
tive visual sensory apparatus, showing a high level behavior
composed of minimal movements extremely connected with
the conditions of the world, rather than a simple and straight
“follow the fruit” behavior.

On the other hand, the simulations also show that the type
of behaviors which we were able to obtain are relatively sim-
ple and, at this point of the investigation, it is not clear how
to incrementally increase the complexity of the system in an
emergent way. However, the traditional techniques can pro-
duce behaviors with arbitrary complexity, by using more de-
tailed models and facts about reality, but paying the price of
some level of detachment with respect to the environment.
So, a natural question is whether it is possible to combine
ideas of the traditional and emergent approaches to obtain
the advantages of both sides.
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