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Abstract

This paper addresses the problem of autonomous behaviors
of virtual characters. We postulate that a behavior is regarded
as autonomous when the actions performed by the agent re-
sult from the interaction between its internal dynamics and
the environment, rather than being externally controlled. In
this work, we argue that an autonomous behavior is an agent’s
solution to a given problem, which is obtained through a pro-
cess of self-organization of the dynamics of a system that
is composed of the agent’s controller, its body and the en-
vironment. That process allows the emergence of complex
behaviors without any description of actions or objectives.
We show a technique capable of adapting an artificial neu-
ral network to consistently control virtual Khepera-like robots
by means of simulated reproduction, with no measure of the
robots’ fitness. All the robots are either male or female, and
they are capable of evolving different kinds of behaviors ac-
cording to their own characteristics, guided solely by the en-
vironment’s dynamics.

Introduction
Contextualization

In this paper, we address the problem of autonomous be-
haviors of virtual characters (Shao and Terzopoulos (2007);
Whiting et al. (2010)). A behavior is considered autonomous
when the actions performed by the agent result from a close
interaction between its internal dynamics and the circum-
stantial events in the environment, rather than from external
control or specification dictated by a pre-defined plan.

That definition of autonomous behavior seems to entail
an apparent contradiction to the process of creating virtual
characters. Given that true autonomy implies no predefined
behaviors, how is it possible to design the internal dynamics
of an agent that is supposed to interact autonomously with
its environment? The attempt to answer that question led us
to investigate ways of obtaining behaviors by emergence.

Emergence can be described as the appearance of a sys-
tem’s global characteristic that cannot be found in any of its
parts (Klaus and Mainzer (2009)). For example, although
a portion of water at normal temperature is in the liquid
state, we cannot say that a single water molecule can display
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this property. In general, the emergent properties are asso-
ciated with dynamical patterns that get established through
the interactions among the component parts of the system.
In our particular case, the system should be considered as
composed of the agent itself, defined by a virtual body and
a controller, together with every aspect of the environment,
both the objects and the lawful regularities that hold in the
virtual world. In this setting, we define the notion of emer-
gent behavior as follows: the behavior of a virtual character
is called emergent when it is not explicitly described in any
of the components of the system, and arises as a result of the
dynamical interaction of the components, and their specific
individual properties.

It is useful to think of the emergent behavior as an agent’s
solution to a given problem, which is obtained through a
process of self-organization. Indeed, the real world’s bi-
ological agents constantly come up with new behaviors to
overcome challenges and to adapt to a changing environ-
ment. The emergence of a new behavior reflects the process
of reorganization of the internal structures of the agent. In
nature, this self-organization process is controlled mainly by
Darwinian evolution dynamics: generation of diversity and
natural selection.

These ideas have inspired many researchers to attempt to
evolve neural controllers for virtual characters using Genetic
Algorithms (GA) (Sims (1994); Nogueira et al. (2008); Pilat
and Jacob (2010); Palmer and Chou (2012)). So, instead of
anticipating and modelling all the ways in which the agent
could possibly behave, the idea is to describe a task to be
achieved (that is, to create a virtual environment with chal-
lenges for survival), and let the evolutionary process shape
the virtual agent’s control dynamics. That is expected to lead
to the emergence of behaviors, which not only solve the task,
but also are coherent with the capabilities of the agent’s body
and with the environment’s characteristics.

We argue, however, that that approach leads only to a
weak form of autonomy, because the GA guides the self-
organization process using a predefined objective function.
So, in that sense, behavior is still externally described. In
nature, the quality or fitness of an agent depends on its in-
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ternal constitution and the way it couples with the environ-
ment. Hence, the (natural) selection criteria also constitute
an emergent characteristic of the system. In this work, in
order to achieve a higher level of autonomy, we present a
technique for obtaining emergent autonomous behaviors of
virtual characters without an externally specified objective.

Proposed Solution

In this paper, we study the emergence of autonomous behav-
iors of virtual Khepera-like robots with:

e Non-interpreted simplified “vision” sensors;

e Controller consisting of an Artificial Neural Network
(ANN);

e Adaptation through simulated sexual reproduction.

We show that our technique is capable of generating mul-
tiple behaviors in a population of robots: foraging, mating
and obstacle avoidance. In our experiments, we could also
observe different behaviors according to the gender of the
robot and a complex use of the sensors for navigation.

In “Related Works” Section, we discuss the attempts of
the community in obtaining autonomous behaviors of artifi-
cial agents. One notice a research trend that seeks to reduce
the amount of external information provided to the system,
moving from the traditional objective-driven GA to a com-
pletely environment-driven evolution, using ideas based on
reproduction dynamics, similar to our work.

In “Controller” Section we describe the controller used in
our virtual robots and the genetic encoding we developed
to evolve it, since our simulated reproduction technique is
based on the exchange of genetic material between a pair of
robots of opposite genders. In “The Experiment” Section,
we report the experiments, explaining the constitution of the
robots and of the environment, and analyzing the dynam-
ics of the whole system. The obtained results presented in
“Behaviors” Section and final discussions are made in con-
clusion.

Related Works

Evolutionary computation has long been used as a tool
to develop autonomous behaviors in artificial agents (Sims
(1994); Palmer and Chou (2012)). Most works address be-
havior as a domain specific problem, and, traditionally, have
proposed solutions, which, a priori, fix the objectives the
agents need to achieve and the metric to evaluate how well
the agents perform the task of meeting the objectives. How-
ever, there are also efforts along the line of creating tech-
niques that incorporate additional aspects of natural selec-
tion in order to obtain greater complexity and autonomy of
behaviors. In this section, we will briefly discuss the re-
search path from the explicitly objective-driven canonical
genetic algorithm to environment-driven open-ended evolu-
tion (Bredeche and Montanier (2012)).
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Objective-driven evolution

The Virtual Reality community has extensively applied GAs
in order to create virtual worlds automatically, in which
autonomous characters present convincing behaviors. The
proposed techniques are usually problem-oriented, with the
evolutionary processes guided by fitness functions designed
according to the expected behaviors of the characters. Some
examples are the distance-based fitness of the walkers from
Sims (1994) and Nogueira et al. (2008), or the speed-based
fitness of the light followers from Pilat and Jacob (2010).
Palmer and Chou (2012) went one step further by proposing
a distributed GA that coevolves an interacting population of
virtual hunter robots, instead of evolving a single individual
at a time without taking into account possible interactions
among them. However, the agents reproduce according to
their relative fitness, based on a harvest score. The main
characteristic of these works is the generation of behaviors
that solve the problem in a way that is implicitly designed in
the objective function.

Indeed, addressing the problem of autonomous behaviors
through a problem-oriented technique, such as the canonical
GA, leads to the evolution of agents capable of solving a sin-
gle problem at a time. In order to achieve behavioral diver-
sity, Schrum and Miikkulainen (2010) studied fitness-based
shaping of behaviors to multiobjective domains, by dividing
problems into a set of goals, i.e., a group of multiple fit-
ness measures. A battle domain involving a scripted virtual
fighter and a group of virtual monsters is used to illustrate
the technique. The monsters had to maximize the inflicted
damage, to minimize the received damage, and to maximize
their life span. Another study that focuses on behavioral di-
versity is presented by Lehman and Stanley (2011), and sug-
gests that one should abandon specific objectives and guide
the search towards the novelty of solutions. These works
attempt to overcome GA’s lack of behavioral diversity by
proposing ways of evolving several objectives simultane-
ously. However, each problem an agent should solve has to
be properly predefined, because it is selected through some
type of performance measure.

The effects of sexual gender discrimination were also in-
vestigated through evolutionary computation. Zhang et al.
(2009) proposed a GA that uses a population consisting of
male and female individuals, and a fitness function based on
a model of the Baldwin effect. The work is concerned with
the sexual reproduction in GA, and presents numerical simu-
lation benchmarks in order to show improvements regarding
convergence speeds, prevention of premature convergence
and ability to solving high dimension problems. That work
incorporates another feature of natural selection to GA: the
gender differentiation. However, it does not specifically ana-
lyze the effects of this new feature on the generated behavior.

Da Rold et al. (2011) studied the effects of gender deter-
mination on behavior through a simulation with male and fe-
male robots in a virtual world containing energy resources.
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The reported results show that the robots acquired differ-
ent patterns of behaviors according to the gender and to the
pregnancy status of the females. However, the sexual dy-
namics was not incorporated into the evolutionary algorithm
itself, since a simple GA was used, with a fitness function
based on the number of matings. Mating consists in a con-
tact between two robots of opposite genders in which the
female robot gets a psychological pregnancy (i.e., it does
not generate offspring), remaining in that state for a specific
amount of time, during which it cannot take part in another
mating. For the GA, each gender constitutes a different pop-
ulation, which are evolved separately, although the evalua-
tion of the individuals depends on the interaction between
the two types of robots. The exhibited behavioral diversity
is related to the fact that agents with different characteristics
have to solve the same problem in different ways, suggesting
that gender determination is an important aspect of natural
selection. However, the way this feature is exploited in that
work still shows the convergence of solutions to a predefined
problem.

All the works discussed so far have the common charac-
teristic of a centralized evaluation of the agents’ fitness. A
paradigm shift is presented in Embodied Evolution (Watson
et al. (2002)), a distributed evolutionary algorithm embod-
ied in physical robots. In that work, the agents have a re-
production function explicitly defined in terms of their en-
ergy level, in such a way that the genes that control robots
with higher energy levels have greater probability of spread-
ing out, while those that control robots with lower energy
levels have greater probability of being replaced. The envi-
ronment is endowed with energy resources, and the robots
that are capable of benefiting the most from them are the
ones that will spread their genes. Notice that, although the
robots develop a behavior that is not directly selected, one
can still say that the probability associated with the repro-
duction function plays the role of a fitness function, because
it is explicitly designed to select individuals according to the
preconception that those with higher levels of energy are the
fittest ones.

Environment-driven evolution

In the environment-driven evolution approach, no fitness
function is described, and the evolution is carried out by en-
vironmental pressures. That is, there is no explicit evalua-
tion of an individual in order to select it or not, but the better
performing individuals will naturally spread out according
to the dynamics of the whole system.

Bredeche et al. (Bredeche and Montanier (2010); Bre-
deche et al. (2012)) applied this idea to evolve a pop-
ulation of autonomous real robots. They developed the
Environment-driven Distributed Evolutionary Adaptation
algorithm (EDEA), and showed that their algorithm is ro-
bust to the so called reality gap: a swarm of real robots is
able to evolve efficient survival behavior strategies, with no
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fitness function being ever formulated. Although their work
is presented mainly from an engineering point of view, many
interesting conceptual discussions arise in this context, most
of them independent of particular implementations.

The authors observe that the key to EDEA is the implicit
nature of fitness function, that may be seen as a result of two
motivations (Bredeche and Montanier (2010)):

e extrinsic motivation: agent must cope with environmental
constraints in order to maximize survival, which results
solely from the interaction between the agent and the en-
vironment around (...);

e intrinsic motivation: set of parameters (ie. “genome”)
must spread across the population to survive, which is im-
posed by the algorithmic nature of the evolutionary pro-

Therefore, genomes are naturally biased towards

producing efficient mating behaviors (...).

cess.

A low correlation between the two motivations can increase
the problem’s complexity, since it will possibly imply con-
flicting objectives. Thus, an efficient environment-driven al-
gorithm must address a “trade-off between extrinsic and in-
trinsic motivations as the optimal genome should reach the
point of equilibrium where genome spread is maximum (e.g.
looking for mating opportunities) with regards to survival ef-
ficiency (e.g. ensuring energetic autonomy)” (Bredeche and
Montanier (2010)).

The idea of environment-driven evolution fits well with
our analysis of emergent autonomous behavior, since both
claim that the evolution of the system should be guided by
the dynamics of the interactions among its component parts.
In this sense, to be precise, we can say that the evolution is
not only environmentally driven, but also population-driven,
or better, system-wise driven. We note that every aspect of
the system may offer an opportunity for improving adapta-
tion, in ways that cannot be foreseen a priori. Individual
characteristics of the agents and specific behaviors cannot
be judged ‘good’ or ‘bad’ in isolation, but depend on the
behavior of the rest of the population, and on the current
dynamics of the system. The experiment in Bredeche et al.
(2012) illustrates this point well, where one can see that the
individual behavior of going towards the ‘sun’ is ‘good’ (i.e.,
favors reproduction) because a large number of robots in the
population also tend to do so. From this perspective, we can
say that there is not even an implicit fixed fitness function,
since the dynamics of the system may change, and so the
conditions for adaptation also may change. In other words,
the implicit fitness function may be considered as another
emergent aspect of the system.

In this paper, we study the emergence of autonomous be-
havior of virtual agents, using environment-driven evolu-
tion. Simulations gave us greater flexibility and allowed us
to implement robotic sexual reproduction, a feature that is
still impractical to obtain in real world experiments. There-
fore, we could explore additional aspects of the emergence
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of autonomous behaviors, investigating, for example, the ef-
fects of population size and resources fluctuation on com-
petitive behavior, the system’s ability to follow alternative
evolutionary paths, and the impact of gender differentiation
on the generation of behavioral diversity.

The Controller
The Neural Network

The controller is essentially a Continuous Time Recurrent
Neural Network (CTRNN), whose neurons are modeled in
the following general form:

dyi 1
dt 77'1‘

(*yﬂrzwjif(sj) +1) ey

j=1

where ¢ is time, y; and 7; are, respectively, the internal state
and the time constant for each neuron 7, w;; is the weight of
the jth input synapse of neuron i, s; is the state of the neuron
linked to the jth input synapse, f() is the activation function
of a neuron and I represents a constant input to neurons.

Furthermore, we also use two types of neurons that do not
have internal dynamics: the afferent and the efferent neu-
rons. An afferent neuron, whose internal state is the value
of one of the network’s input, cannot receive input from an-
other neuron. The afferent neurons constitute the network’s
input layer. An efferent neuron, on the other hand, is part
of the network’s output layer, and its internal state is the av-
erage of the internal states of all the neurons connected to
it.

The Genetic Encoding

The controller of each robot is encoded into two chromo-
somes. The first chromosome encodes the stimulus / (Equa-
tion 1), and the second, which we call the Network Chromo-
some (NC), holds the gender of the robot and the description
of the ANN itself. This grouping was chosen so that a “male
brain” could evolve together with a “male gene”, and a “fe-
male brain” could do so with a “female gene”, while the
same constant I could be tested with different networks.

The NC is defined according to a simplified version of
Matiussi’s Analog Genetic Encoding (AGE) (Mattiussi and
Floreano (2007)) focused at evolving a CTRNN for the con-
trol of virtual characters. To create the synapses, AGE de-
fines an alignment score: a network-specific interaction map
that leads to a complex chromosomal representation. Our
proposal keeps the idea of an implicit interaction between
genes that encode the synapses. However, we specify a sim-
pler similarity function, which not only makes it possible
to describe the chromosome as a simple binary array, that
encodes the parameters of the network in a more straightfor-
ward way, but also maintains the advantageous properties of
AGE’s interaction maps for ANNs evolution.

In implicit interaction, while the neurons are explicitly
described in the chromosome, the synapses are implicitly
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defined, since they are formed by the interaction between
genes, and not by a gene itself. To decode the ANN, we
basically follow a two-step process:

1. Read the chromosome and extract the neurons and their
respective input and output “ports”, which we call “Neu-
ronic Terminals” (TR);

2. Create the synapses from the interaction between the TRs.

This encoding scheme allows us to easily search augmenting
topologies of neural networks.

In our work, a chromosome is an array of bits in which
a single bit defines a “gender gene”, and each group of 32
bits afterwards defines a regular gene. The single bit “gender
gene” was introduced in order to enable sexual reproduction.
The other genes are defined by a tuple < id, v >, where id
identifies the encoded element, i.e., whether it is a neuron
or a TR, and v is a value that indicates a property of the
encoded element.

To decode the NC, we read the first bit to determine the
gender of the robot, and then we read each subsequent gene
(group of 32 bits) isolating its identifier from its value. A
gene identified as a neuron creates a neuron element in the
network. In the decoding sequence, any TR gene that ap-
pears before the first neuron gene is ignored; and after each
new neuron gene, only the first two TR genes are considered.
The first of those valid TR genes determines its input termi-
nal, while the second TR determines its output terminal. The
value of a neuron specifies its time constant 7; (Equation 1),
and the values of the TRs are used to calculate the synapses’
weights between the neurons.

The first eight bits of the gene hold the id and are decoded
according to Table 1. Note that the probability P(T'R) is
greater than P(N), since we expect more synapses than neu-
rons.

Table 1: Genes’ identifiers

Id value H Meaning
0<id <51 Neuron (N)
52 < id < 255 || Neuronic Terminal (TR)

The last 24 bits of the gene encode the value v, which is
linearly mapped into a floating-point number in the range
[—1, 1]. If the value is related to a neuron gene, the result is
directly attributed to the time constant of the neuron. If re-
lated to a TR, it is further used to calculate a synapse weight
according to the equation:

eb-(i+ o)

RS 2

w(i,0) =
where w is the weight of a synapse that links an output termi-

nal of value o with an input terminal of value 7. The symbol
nb indicates the total number of bits that represent the value
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(24 bits), and eb is the number of equal bits at the same po-
sition between the binary representations of ¢ and 0. We also
defined an existence condition empirically to increase topo-
logical diversity: if |eb/4] mod 3 = 0 then w(i,0) = 0.
The whole process of network decoding is shown in Figure
1.

& Bk-+1 8k+2 8k+3 Bk k+5
] <30, 18M> | <120, 10M> | <240, am> [ <40, 85M> [ <125 11.5M>] <200, 6M> | -

4
0.374

Decoding
Chromosome

Creating
Synapses

Figure 1: Building the network: First we decode the neu-
rons and their respective terminals, then we apply Equation
2 to each pair of terminals to create the synapses. Only one
synapse was created due to the existence condition (see text).

Regarding the input and output neurons, suppose that the
robot has s sensors and m motors. In order to keep some
structure of the ANN in the chromosome, we fix the first
s genes that encode neurons to be afferent neurons, while
we set the last m genes that encode neurons to be efferent
neurons, that is, the inputs of the network are described in
the beginning of the chromosome, the internal neurons are
defined in the middle of the chromosome and the outputs are
placed in the final part of the chromosome.

The Experiment
System description

Our simulation was developed with the Irrlicht 3D En-
gine', with physics provided by the Bullet Physics Engine.
The environment is populated by simulated “male” and “fe-
male” robots that live in a square room, bounded by walls,
and filled with randomly distributed fruits (Figure 2), from
which the robots can get energy to live.

The robots have cylindrical bodies. A black box in the
cylindrical surface represents, at the same time, the eye, the
mouth and the genitals of the robot and determines its front
part. The robots guide themselves through the environment
using their vision, obtain energy by eating fruits and repro-
duce through mating. Each of these functions are better de-
scribed next.

The robot’s vision is determined by three sensors posi-
tioned in the black box (the eye), as shown in Figure 3. Each
sensor is able to catch the normalized distance ([0, 1]) to the
nearest object inside its “Field Of Sense” (FOS) with respect

"http://irrlicht.sourceforge.net/
2http://bulletphysics.org/
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Figure 2: The environment.

to its reach (the maximum detection distance of a sensor).
The sensor that is located at the center of the eye is special-
ized to detect walls only, and has a FOS of 120° and a reach
of approximately 4 * r, where r is the radius of the robot’s
body. The other two sensors, placed at each side of the eye,
are able to sense male robots, female robots and fruits, and
have a FOS of 10° and reach of approximately 14 * r. Those
values were empirically chosen.

The wall sensor generates only one floating-point value
indicating the normalized distance to the wall. In addition
to the distance value, each one of the other two sensors also
generate three bits that indicate the type of object sensed,
i.e., a male robot, a female robot or a fruit. That means that
the whole vision apparatus generates nine values.

Figure 3: The distribution of the three vision sensors. The
dotted lines represent the FOS of the wall sensor. The
dashed lines and the dashed-dotted lines represent, respec-
tively, the left sensor and the right sensor of robots/fruits.

Furthermore, there are proprioceptive senses of fertility
and energy. The sense of fertility enables a male robot to
know when it is infertile (1 if infertile, O otherwise) and a
female robot to know when it is pregnant (1 if pregnant, 0
otherwise). The sense of energy enables a robot to know
its level of energy, which ranges from O (the robot is fully
energized) to 1 (the robot is totally exhausted). Therefore,
the strength of the signal allows the robot to perceive when
its energy is finishing. Thus, there are nine signals of vision
and two signals of proprioceptive senses, leading to an ANN
with eleven afferent neurons.

A robot has two motors, which are controlled by two ef-
ferent neurons respectively. When the first motor receives a
signal from its efferent neuron, it moves the robot forward in
case the value of the signal is positive, and moves the robot
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backward if the signal is negative. Likewise, the other motor
makes the robot turn right in the event of a positive signal,
and makes the robot turn left if the received signal is neg-
ative. The actions of the motors are simplified and are not
physically accurate. The amplitude of the signals generated
by the efferent neurons are increased 100 times, before they
are applied as the robot’s speed.

The energy level of a robot increases 7,500 energy units
(eu) whenever a fruit is eaten, i.e., when the robot touches
a fruit with its mouth. The maximum energy value is
100,000eu and continuously decreases in direct proportion
to the applied motor signals plus a value proportional to the
robot’s age. If the energy is exhausted, the robot dies and is
removed from the environment. Thus, for example, suppose
that o; and o- are the amplified output of the two efferent
neurons of the ANN and that ¢ is the robot’s age. Then, the
energy consumption C'is calculated according to the equa-

tion:
t

75.0°

Regarding the dynamics of fruits replacement, at each
time step, a new fruit is randomly placed in the room, pro-
vided that:

C = (Jo1| + |o2])* + (€)]

e The number of fruits does not exceed 30 fruits; and

o The total number of objects, i.e., the number of fruits plus
the number of robots, does not exceed the limit of 45 ob-
jects.

Simulated Reproduction

The simulation starts with 15 robots. If the population be-
comes smaller than 6 individuals, we place 15 new random
individuals in random positions. Each of these robots has its
energy randomly initialized with a value between 10,000eu
and 20,000eu. The genetic information is also randomly
generated. Since we have just one bit to express the robot’s
gender, 50% of the population consists of female robots.

Mating is consummated whenever a male robot’s genitals
(the black box) touch the body (any part of the cylinder) of
a fertile female robot. A female is fertile if its energy is
greater than 25,000eu. Since any robot has an initial energy
of 20,000eu at most, every female is infertile at first, and
needs to eat some fruits in order to reproduce.

If mating occurs, the male robot gets infertile during 250
simulation steps and the female robot gets pregnant. The
new robot is placed adjacent to its mother, so the female
robots remains pregnant until she goes to a free place where
its child can be positioned. The child’s energy is initialized
with a value between 15,000eu and 25,000eu, which is taken
from its mother. Therefore, when, at the moment it gets
pregnant, a female robot has low energy (a value close to
25,000eu), there is a higher probability that it will die sooner.
After giving birth, the female gets infertile during 250 sim-
ulation steps to avoid a pregnancy right after the other.
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The chromosomes of the new individual are generated by
crossing over the parents’ chromosomes. Since a chromo-
some is simply an array of bits, the process of crossover
sets two breakpoints randomly, and exchange the bits be-
tween the pair of chromosomes at the defined range. Note
that this method can generate mutation by breaking a gene,
since it is defined by a group of 32 bits. This is expected to
create variability. We also apply an explicit mutation, ran-
domly changing bits in the chromosomes with a probability
of 0.1%. Since after the crossover we still have a pair of
chromosomes, we simply discard one randomly.

The genetic information of an individual encodes its ANN
directly. Therefore, when crossover takes place between a
pair of chromosomes of different individuals, the process
can be viewed as if pieces of each individual’s brains were
being exchanged. Consequently, the newly generated brain
can lead to a robot with behavioral traits inherited from both
parents.

Life Dynamics

Note that, according to the reproduction dynamics de-
scribed, if there is a high density of fruits and robots at the
environment, mating is relatively easy to occur and can oc-
casionally happen in a random way. In fact, this is neces-
sary to avoid endless resumptions of the population and to
bring some line of evolution. In so far as that the population
evolves, those individuals who present some type of strategy
are at a greater advantage and will impose new conditions to
the system, causing random behaviors to decrease.

Another important point to comment is the balance be-
tween the number of individuals in the population and the
amount of energy resources. According to the fruits’ re-
placement dynamics, if the population grows, the number
of fruits available reduces. Therefore, with scarce energy
resources in the environment, the robots with worse perfor-
mance will die. Note that, if the population size grows above
45, no fruit will appear and, thus, the robots that are less ef-
ficient will die before new fruits appear. That dynamics pre-
vents population explosion automatically and provides some
selective pressure, which guides evolution.

Behaviors

We ran the simulation several times and obtained mixed in-
teresting behaviors. Due to space constraints, we cannot
present the results of all the runs®. Therefore, we will focus
the discussion in a common recurring result: females tend to
seek food and males tend to look for mating. Furthermore,
the robots learned how to deviate from the wall and how to
use their simple vision to guide themselves through the en-
vironment efficiently and meet their needs. In Figure 4, a
sequence of frames shows two robots presenting the men-
tioned behaviors, which are detailed in the respective labels.

3Watch the video with multiple runs of our experiments:
https://www.youtube.com/watch?v=zyDdjD6d5CE
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Other interesting strategies also emerged from the popula-
tion in different simulation runs, always leading to the po-
pulation’s survival and stability.

Figure 4: Commonly observed behaviors. Note that the male
robot (the one with the arrow indicating his direction) fol-
lows the female robot that seeks the fruit. Another interest-
ing point to emphasize, is the complex use of the simple vi-
sion: the female senses the fruit with her left sensor (Frame
1), and then turns left (Frames 2 and 3) in order to use the
right sensor to determine the direction to follow, correcting
the movements and maintaining the object between the two
sensors (Frames 4 and 5). Frames 6, 7 and 8 show the fe-
male robot turning right in order to deviate from the wall
after catching the fruit.

Since we do not have to define any objective, there is no
variable to watch in order to follow convergence toward an
expected behavior. However, some values indicate the evo-
lution of the whole population, and the analysis of the re-
lations among those values allows us to objectively demon-
strate the emergence of the described behaviors.

The mean lifespan of the population over a period of time
is a good parameter to see the emergence of some strategy
of the population in order to survive. Another aspect that
can indicate characteristics of the behaviors is the correla-
tion between the male and female lifespans. Figure 5 shows
the mean lifespans of the population in the simulation run
described in Figure 4. Note that the female robots have con-
verged to a mean lifespan greater than that of male robots.
This is related to the fact that the female robots were always
searching for food actively, while the male robots caught a
fruit occasionally. However, both gender increased their ef-
ficiencies.

The average number of collected fruits and the average
number of matings are good parameters to analyze the be-
havioral characteristics of each gender. In Figure 6a we can
see that, in the analyzed simulation run, the female robots
converged to collect about 10 fruit on average during their
lifespan, while the average number of fruits collected by the
male robots is less than one, demonstrating the preference
of female robots for collecting fruits. In Figure 6b, we can
note the preference of the male robots for the mating be-
havior. However, it is important to mention that other runs
presented different strategies, such as, for example, the for-
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] Female

Figure 5: Mean lifespan of the population every 900 seconds
of simulation.

mation of clusters of robots, which increase the probability
of matings, and the presence of robots with both foraging
and mating behaviors, regardless of the gender.

The observation of the population size at a given time
along with the average number of collected fruits and the
mean lifespan, shows some aspects of the general behav-
ior of the whole population. Note that there is a peak in
the graph of Figure 6a before convergence around a certain
smaller value. Analyzing Figures 5 and 6a at approximately
the same time (about 4000 seconds and 1 hour, respectively),
we can see that as the robots learn how to catch fruits, there
is an increase in the mean lifespan. As described, the num-
ber of fruits placed in the environment depends on the num-
ber of robots. So, an increase in the mean lifespan leads
to population growth and, consequently, to reduction of the
available resources, hence reducing the average number of
collected fruits per robot. That leads to a balance of the pop-
ulation size, preventing population explosion, as shown in
Figure 7.

] Female
Male

Female

Figure 6: Average number of collected fruits and matings
every 900 seconds of simulation. (a) The greater number of
fruits collected by the female robots indicates their behav-
ioral tendency to foraging. (b) Note the increase of matings
with time. This shows a male preference to such behavior.

Conclusions

We described an artificial life system where virtual Khepera-
like robots developed multiple autonomous behaviors, with-
out any description of their objectives. The observed behav-
iors emerged solely from the self-organization of the dynam-
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Figure 7: Population size every 30 minutes. Note that with
2.5 hours of simulation, the population size increases to
about 45 individuals and then is balanced around this num-
ber due to shortage of resources caused by the large amount
of robots that developed the foraging behavior.

ics of the system. The robots were divided into genders and
were controlled by an ANN. We presented a genetic encod-
ing for the ANN, which allowed the adaptation of controllers
through simulated reproduction, providing an implementa-
tion of environment-driven evolution.

The system was capable of exhibiting several types of be-
haviors, according to the robots’ characteristics. A common
situation observed, was the emergence of mating behavior in
male robots and foraging behavior in female robots. A single
individual was also able to show multiple behaviors, such as
avoiding collisions with the walls and use of vision to pur-
sue its own objectives. Although different behaviors have
emerged from different simulation runs, the system was al-
ways able to show the evolution of robots presenting strate-
gies that led to an increase in the mean lifespan and in the
size of the population.

The results of our experiments show that the self-
organization of the system is capable of producing an in-
timate coupling between agent and environment, producing
complex and natural behaviors without any a priori descrip-
tion. This characteristic is clearly illustrated with the strat-
egy developed by the virtual agent to compensate for its
primitive visual sensory apparatus and to be able to find a
direction to an object, an information that is not originally
provided by the sensors.
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