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Abstract

We present work towards claryfing whether and how the idea
of agents as “subsystems” of an underlying (artificial) uni-
verse can be captured formally. For this we propose formal
notions of a universe, a decomposition into subsystems and a
criterion to prefer some choices of such decompositions over
others. Universes are modelled by finite Markov chains, a
decomposition is an information conserving set of subpro-
cesses induced by partitions of the state space and our cri-
terion prefers decompositions that improve predictability by
minimizing stochastic interaction. Using very simple exam-
ples we find three different classes of Markov chains, with
respect to their “decomposability”. Our approach also high-
lights the fact that the stochastic interaction of multivariate
finite Markov chains crucially depends on the chosen multi-
variate structure of the state space.

Introduction
Motivation
In this publication we address two problems, how to describe
a given system as a composition of subsystems (in this paper,
only two), and how to pick suitable descriptions among the
possible ones. Note, when we say subsystems, we use this
term at first in an intuitive way, without having a rigorous
definition. Furthermore, we will use “decomposition” and
“description” interchangably as a shorthand when referring
to a description as a composition of two subsystems.

The individual subsystems induced by a description
should be suitable to represent both agents and environ-
ments. Here the agent and its environment could be from
biological systems, robots or virtual creatures. This means
the class of original systems and the subsystems themselves
must be general enough to at least model these three sce-
narios. Additionally each description should conserve all
information about the original system.

Concerning the criterion used to pick descriptions we are
eventually seeking one that checks whether the two subsys-
tems can be seen as an agent-environment pair (in other
words, form a perception-action loop) and not just a pair
of arbitrary subsystems. Note that such a criterion would
have to be able to detect agency in the subsystems. We leave

this problem to future work. Here we are satisfied with a
weaker criterion, one that can be interpreted to measure the
“twoness” of the decomposition. Several concepts can be
interpreted in this way: a first candidate would be the in-
dependence of the two subsystems from each other; a sec-
ond related but not necessarily identical concept would be
the self-determinedness or autonomy of the individual sub-
systems; a third would be an increase in simplicity of some
kind achievable by a decomposition.

There are two scenarios where describing a system as a
composition of subsystems is of interest and our approach
might be applied in the future. In the first, take the perspec-
tive of an external observer of an artificial universe (e.g. a
cellular automaton like the game of life). There is to our
knowledge no established way to define subsystems which
represent interesting entities/objects (say gliders). In artifi-
cial life the interesting entities are those that are the most
life-like. The subsystems we seek should be able to repre-
sent those and the criterion we seek should pick them out. In
the second scenario, take the perspective of an agent subject
to a sensor input stream. If indeed decomposing the input
stream makes it simpler to process, the agent could bene-
fit from this. Additionally, it has been argued (Salge and
Polani, 2011) that detecting other agents has merits in its
own right. Roughly speaking, other agents produce more in-
formation relevant to an agent than is available in other parts
of the environment. This suggests, that in a very general
way it is advantageous for an agent to view its sensory input
stream as being composed of subsystems, some agents and
one environment.

Related work

Our work is strongly influenced by Kolchinsky and Rocha
(2011). They investigate how learning a model of some
given system (a multivariate Markov chain) can be improved
by modeling it as a composition of independent subsystems
(also Markov chains). In case of a low number of samples to
learn from, they find that indeed the predictive error of the
model is lowest for a composite model. Their approach is es-
pecially convincing in the scenario of an agent subject to an
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input stream; the agent modeling the stream as a composite
system gaining predictive power in comparison to modeling
it as a non-composite one. So in this sense decomposition
simplifies prediction for the agent. Note that they vary the
compositions of models that are being learned not the de-
scriptions of the original system itself. As we will see the
same predictive error can also serve as a useful criterion in
the latter case.

Another approach is taken by Balduzzi (2011). He tries
to detect emergent subsystems (stochastic processes in gen-
eral) in a given system (also a multivariate stochastic pro-
cess, the game of life is used as an example). Here, the sub-
systems are not chosen once and stay fixed over time, but
are composed out of different “units” (groups of variables)
at different timesteps and can even skip timesteps altogether.
The criterion used to select good choices of subsystems is
dependent on how much information (in a specific sense)
the different units convey about each other. While this crite-
rion is related to how predictive one unit is of another, this
work is not easily comparable with the present one. It is re-
lated mainly through the perspective of viewing subsystems
as phenomena of an underlying system. This view is also
applied specifically to the glider in the games of life by Beer
(2013). This is an in depth study of an interesting example
of a subsystem in a larger system but up to now the method
depends strongly on a preidentified structure.

The system (univariate Markov chain) and subsystems
(induced subprocesses) defined by Görnerup and Jacobi
(2008) are also used by us. The subsystems are only inves-
tigated individually though and compositions that conserve
information about the original system are not considered. As
a criterion for choosing subsystems the Markov property is
used. The Markov property can be interpreted as measur-
ing self-determinedness. We will also employ it but instead
of looking directly for Markovian subprocesses we focus on
properties of the composition of the subsystems.

One of the authors has previously proposed emergent de-
scriptions (Polani, 2004). Given a stochastic process, emer-
gent descriptions are a set of stochastic processes that con-
tain all information about the original process, are mutually
independent and apart from a single one are information
conserving. The subsystems we propose here necessarily
fullfill the first requirement and a dynamic version of the
second one; the third one is not taken into account here.

Once a system has been decomposed into subsystems
there are further measures taking into account the interaction
of processes that could be used to quantify the suitability of
the decompositions. An example employing a framework
similar to this paper would be the autonomy measures by
Bertschinger et al. (2008).

Methods
System
As an extremely simple model for the original system we
assume we are given a stationary finite univariate Markov
chain1 {Xt}t∈I (we also refer to it as the universe process)
defined by the transition kernel (or Markov matrix)

p(x′|x) := px,x′ := Pr(Xt+1 = xt+1|Xt = xt) (1)

as the right hand side is independent of t in the stationary
case. Our assumption is that the universe process should be
Markov, as there is nothing external influencing it and there-
fore also nothing external to store information about past
states in. In the case of the agent facing an input stream this
assumption is of course a crude approximation. Choosing
finiteness and time discreteness is done for the great reduc-
tion of technical issues compared to more general frame-
works. Importantly, stationarity may be seen as an approx-
imation, as different choices of subsystems may be most
suitable at different times. We choose a univariate process
because multivariate processes pre-impose a compositional
structure. Moreover, in the finite case each of the variables
of the multivariate process takes values in a finite state space;
such a process can always be transformed into a univariate
process.

Decomposition via coordinatizations
The decompositions we propose describe the original pro-
cess via a composition of processes induced on partitions
of the state space. The subsystems are then those induced
processes. To ensure that the original process {Xt}t∈I can
be retrieved from the subprocesses {At}t∈I , {Bt}t∈I we
choose the partitions (we abuse notation and also call them
A,B) such that they form Cartesian coordinates of the state
space X = A × B.2 For each choice of two such partitions
A,B we then have a bijective map f(A,B) : X → A × B.
This map is obtained as follows, denote by fA(x) : X → A
the function mapping x to the element a (also called a block)
of the partition A that it belongs to, and analogously for B.
Then define

f(A,B)(x) := (fA(x), fB(x)) = (a, b). (2)

It is easy to see that the inverse is equal to the intersection of
the blocks a and b, which is a unique state x in this case:

f−1
(A,B)(a, b) := {x : x ∈ a ∩ b}. (3)

1Either we choose the index set I as the integers or we initialize
the process in its stationary distribution at some time t = t0 and let
it run indefinitly.

2This condition ensures for the purpose of this paper the more
general requirement, that the subprocesses lose no information
about the original process, i.e. H(Xt|At, Bt) = 0 at all times
t, where H denotes the Shannon entropy.
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The fact that X = A×B ensures that there is always exactly
one x in this intersection. For the rest of this paper we will
refer to such a pair of partitions as a coordinatization.

In this way we obtain an alternative decription of the orig-
inal process {Xt}t∈I and can set:

p(a′, b′|a, b) := p(f−1
(A,B)(a

′, b′)|f−1
(A,B)(a, b)). (4)

Note that in general the induced subprocesses interact
with each other, so that we obtain two interacting stochas-
tic processes. This seems suitable for representing an agent-
environment pair which was one of our requirements. At
least it is not uncommon to model such interaction in this
way; often in the context of perception-action loops (Klyu-
bin et al., 2004; Bertschinger et al., 2008; Ay et al., 2012).

To generate coordinatizations, we note that each map
f(A,B) an be visualized as a way of filling an |A| × |B|
grid with the states of X . We will call this grid the coor-
dinatization grid. Then rows correspond to the blocks of A
and columns correspond to the blocks of B. For example, if
f(A,B)(x) = (a, b), the state x will appear in the grid at the
intersection of row a and column b. Each coordinatization
then corresponds to coordinatization grid and vice versa.

We note though that if we rename the blocks in A (B) this
has no influence on the properties of the process induced on
A (B) or on the partitions they represent. Renaming the
blocks in A (B) corresponds to permuting rows (columns)
in the coordinatization grid. We therefore can reduce the
number of coordinatizations that we have to investigate by
choosing only one of each set of coordinatizations that can
be obtained via row or column permutations of their asso-
ciated grids. This can be achieved for example by always
mapping state x = 1 to the top left corner; mapping states to
the top row such that their values are increasing to the right;
and to the leftmost column such that their values are increas-
ing downwards. Instead of |X |! ways of mapping the states
to the grid (and a resulting |X |! coordinatizations) there are
only |X |!/|A!||B!| possibilities of this kind. This is still too
big a number to check for larger systems, but we can already
obtain some interesting insights from analysing small ones.

Coordinatizations and modularizations
Coordinatization of a univariate process as defined above
results in a bivariate process. The method could easily
be extended in order to obtain multivariate processes with
3, 4, 5... subprocesses by using 3, 4, 5, ...-dimensional coor-
dinatization grids. In this sense any finite multivariate pro-
cess is already a generalized coordinatization of some un-
derlying univariate finite process. Given a multivariate pro-
cess of k variables it is possible to combine multiple of those
variables (e.g. the first few in one group the rest in another)
in order to get a bivariate process i.e. a coordinatization (this
is a case of what Kolchinsky and Rocha (2011) call modu-
larization). We want to stress that by combining variables

of a multivariate process i.e. by modularization, not all pos-
sible coordinatizations can be obtained. Only if the process
is viewed as univariate and the coordinatizations are con-
structed from there, all possible ones are obtained. In other
words modularizations result in only a subset of the possible
compositional structures. This can be seen when consider-
ing a bivariate process as given, combining variables further
is then not possible anymore, so only one coordinatization
(the given one) can be obtained by modularization. Yet if the
process is defined on state space X and any given structure
is ignored, there are |X |!/u!v! possible ways of mapping the
states in X into a u × v coordinatization grid and as many
coordinatizations for each pair u, v of factors of |X |.

Criterion
To choose the most suitable among the coordinatizations
we calculate the stochastic interaction (Ay and Wennekers,
2003) I(A,B) (Eq. 5 below) with respect to the coordinatiza-
tion (A,B) and look for those that minimize it. This can be
motivated for both scenarios, the external obeserver and the
agent perspective.

In case of the external observer, note that stochastic inter-
action measures in a specific sense inhowfar the system dy-
namics is more than a composition of independent subpro-
cesses. Conversely, a low stochastic interaction indicates the
composition of independent subprocesses. For a coordinati-
zation a low stochastic interaction can then be interpreted as
a measure of “twoness”.

Next take the perspective of an agent, who assumes that its
input process is a composition of independent subprocesses
and models it as such. If the predictive error can be reduced
by this assumption the agent would have a good reason to
make it. As Kolchinsky and Rocha (2011) have argued, the
predictive error of a model is the sum of two terms, the error
due to the assumed composition and the error due to imper-
fection of the learned model. The error due to the assumed
composition is quantified by the stochastic interaction and
is independent of other features of the learning method or
model. The second term of the predictive error (or risk) then
quantifies the error due to the imperfection of the parame-
ters of the composite model. This error decreases with the
number of samples available to the learner. We do not focus
on this second term here but want to find the coordinatiza-
tion which minimizes the “baseline error” i.e. the stochastic
interaction which a possible learned composite model can
reach in the best case.

For a bivariate stochastic process like the coordinatiza-
tions the stochastic interaction is defined as3

I(A,B)(X
′|X) = KL [p(A′, B′|A,B) || p(A′|A)p(B′|B)]

(5)

3For the general definition we refer reader to Kolchinsky and
Rocha (2011) and Ay and Wennekers (2003).
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KL[.||.] denotes the Kullback-Leibler divergence, which is
in this case defined as

KL [ p(A′, B′|A,B) || p(A′|A)p(B′|B)] :=
∑

a,b

p(a, b)
∑

a′,b′

p(a′, b′|a, b) log p(a′, b′|a, b)
p(a′|a)p(b′|b) .

The marginalised transition kernels p(a′|a), p(b′|b) are cal-
culated from the transition kernel of the original process and
a given starting distribution (e.g. the stationary distribution)
p(x):

p(a′|a) :=
∑

x′:fA(x′)=a′,x:fA(x)=a p(x
′|x)p(x)

∑
x:fA(x)=a p(x)

, (6)

p(b′|b) :=
∑

x′:fB(x′)=b′,x:fB(x)=b p(x
′|x)p(x)

∑
x:fB(x)=b p(x)

. (7)

Procedure
The procedure we use for the analysis of the examples below
is then the following. We start with a given transition ker-
nel p(x′|x) (or the according Markov matrix with elements
px,x′ = p(x′|x)) of a finite Markov chain with state space
X = 1, ..., |X |. Next, we calculate the stationary distribu-
tion p(x) as the left eigenvector v to the eigenvalue λ = 1
of (px,x′). We then generate the candidate coordinatizations
(A,B) via the coordinatization grid. Finally, among the co-
ordinatizations obtained in this way, we look (brute force)
for the coordinatizations that minimize the stochastic inter-
action, Eq.5, which represent arguably the most “natural”
decompositions of {Xt}t∈I into two subsystems. For those
coordinatizations we also check the Markov property for
each of the two induces subprocesses {At}t∈I and {Bt}t∈I .
This can be done by checking that for any blocks a, a′ ∈ A
the total probability

∑
x′∈a′ p(x′|x) to transition from any

x ∈ a to a′ is independent of x (Kemeny and Snell, 1976).

Examples
We study the ideas discussed above in a class of simple sys-
tems.

Imagine a box (agent) moving on a m × n grid wrapped
around at the edges. The agent can only move up, down,
left, or right (not diagonally), and does so with probability
1/4 in each direction at every timestep. This system then
has mn states, so the state space X = {1, ...,mn} and ev-
ery agent position corresponds to a state of the system. To
make the explanations more transparent, we fix which po-
sition of the agent corresponds to which state x. Starting
with x = 1 in the top left corner, enumerate the top row
and continue always from left to right with all other rows
(cf. e.g. Fig.1). Note that this can be chosen arbitrarily.
All that matters is how these states are mapped to the grid
which defines the coordinatization. The latter is an |A|×|B|
grid, and even though the products |A||B| = mn = |X |

are necessarily equal, |A|, |B| can be a pair of factors of
|X | different from m,n. For example, let m = 3, n = 4
then X = {1, ..., 12} and the tuples (|A|, |B|) can be any
of (2, 6), (3, 4), (4, 3), (6, 2) where the last two possibilities
correspond to substituting A and B and will reveal no more
than the first two.

We now look at this system for different m and n.

Let m = 3 and n = 3: The world grid then looks like
this:

and the state space is X = {1, ..., 9}. Because the states
of the system are just positions on the grid, as mentioned
before we label the positions with the states x in the way
shown in Fig. 1. Just to give an impression, the |X |× |X | =

Figure 1: World grid labelled with states {1, ..., 9} in the
way mentioned in the text.

9 × 9 Markov matrix (px,x′) of this system then looks like
this

(px,x′) =




0 1
4

1
4

1
4 0 0 1

4 0 0
1
4 0 1

4 0 1
4 0 0 1

4 0
1
4

1
4 0 0 0 1

4 0 0 1
4

1
4 0 0 0 1

4
1
4

1
4 0 0

0 1
4 0 1

4 0 1
4 0 1

4 0
0 0 1

4
1
4

1
4 0 0 0 1

4
1
4 0 0 1

4 0 0 0 1
4

1
4

0 1
4 0 0 1

4 0 1
4 0 1

4
0 0 1

4 0 0 1
4

1
4

1
4 0




. (8)

Next, we choose a factor of |X | as the cardinality |A| of
the partition A which will be the number of states of the
induced subprocess. This determines also the cardinality of
B as |B| = |X |/|A|. In the present case, where |X | = 9 we

Foundations of Complex Systems and Biological Complexity

ECAL 2013 1102

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/ecal2013/25/1099/1901449/978-0-262-31709-2-ch165.pdf by guest on 29 Septem
ber 2023



Figure 2: This illustrates the naive coordinatization of the
3 × 3 world. We show the world grid and overlay the
coordinatization, the tupels in each grid position denote
f(A,B)(x) = (fA(x), fB(x)) where x is the state label fixed
to the grid position as described in the text. The left (right)
diagram highlights the partition A (B) with each block a (b)
given the same color.

can only choose |A| = |B| = 3 as a nontrivial factorization.
Thus, the world grid and the coordinatization grid look the
same. Before we calculate the natural coordinatization, let
us look at a particular candidate coordinatization, which for
lack of a better term we call the naive coordinatization.

For this, map the states x into the coordinatization grid in
just the same way that we mapped them into the world grid,
i.e. f(A,B)(x) = (�x/|B|�, x mod |B|). Then the position
of the box on the grid is represented by the tuple (a, b) where
a denotes the row and b the column. In Fig.2 we visualize
the two partitions A and B and also indicate the resulting
labelling of the states (and therefore positions) of the box.

One salient feature of this coordinatization is, that the dy-
namics can be specified easily:

p(a′, b′|a, b) =





1
4 a′ = a± 1, b′ = b
1
4 a′ = a, b′ = b± 1

0 else.
. (9)

Surprisingly, this is not the “natural” coordinatization
from our perspective here, its stochastic interaction is
I(A,B)(X

′|X) = 1. Yet, there are two coordinatizations that
reduce the stochastic interaction I(A,B) to zero. For both,
the two partitions A and B are shown in Fig.3. Note that
we can transform them into each other by “transposing” the
gridlabelling which is due to the fact that we can just ex-
change A and B. To get an intuition for the solutions which
let the stochastic interaction vanish, note that instead of rows
and columns, now the blocks divide the world grid into its
diagonals. We also found that the induced processes of each
of those coordinatizations are Markov.

Let m = 2 and n = 4: Choose |A| = 2 so that |B| = 4.
Similarly to the 3×3 world, the naive coordinatization leads
to a stochastic interaction of I(A,B)(X

′|X) = 1 and we find
6 different coordinatizations for which it vanishes. In all of
the later, partition A consists of the blocks formed by the two
diagonals “winding around” the world grid (at least they can

Figure 3: The two different coordinatizations of the 3 × 3
world process. Each row corresponds to a different coordi-
natization. Again we highlight partition A (B) in the left
(right) diagram and indicate f(A,B)(x) = (fA(x), fB(x)) at
each grid position. Focussing on the first coordinatization
(top row), notice that when the agent is in the central po-
sition and goes up or right, the first coordinate (the block
of partition A) changes from 1 to 2 in both cases, and if it
goes down or left it changes form 1 to 3 in both those cases.
This means that with probabilities pA(2|1) = pA(3|1) =
1/4 + 1/4 = 1/2 the agent switches the A blocks. Simi-
larly, for upward or leftward movement the B block changes
from 1 to 3 for downward or rightward from 1 to 2, hence
pB(2|1) = pA(3|1) = 1/2. Done similarly for all grid po-
sitions, we see that this is the same as if we had two in-
dependent agents switching between three positions at each
timestep.

always be arranged like this via permutation of the columns
of the coordinatization grid) see Fig. 4. The blocks of par-
tition B take a variety of forms. Again all subprocesses are
Markov.

Let m = 3 and n = 4: First let us choose |A| = 3
so that |B| = 4. Again the naive coordinatization gives
I(A,B)(X

′|X) = 1. The minimum stochastic interaction
is non-zero though, with 6 different coordinatizations reach-
ing a value of I(A,B)(X

′|X) ≈ 0.43 see Fig. 5. Notice,
that partitions which group together diagonals of the world
grid are impossible for the 3× 4 grid, because, as a diagonal
winds around the grid it only self intersects after traversing
the whole state space, so that there is essentially only one di-
agonal in each direction. Note also that all partitions B that
are part of the stochastic interaction minimizing coordinati-
zations do not induce Markov processes, while the partitions
A still do.

Now let us choose |A| = 2 so that |B| = 6 and the world
grid and the coordinatization grid are not of the same form
anymore. The coordinatizations with minimum stochastic
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Figure 4: The coordinatizations minimizing stochastic inter-
action for the 2×4 world process. The subprocesses induced
by the agent dynamics on the partitions B highlighted in the
right column are Markov. The same holds for the subprocess
induced on the partition A shown on the left.

interaction achieve a value of I(A,B)(X
′|X) ≈ 0.31 see Fig.

6, with both A and B inducing Markov processes. It can
be seen that both coordinatizations use the same patterns to
cover the world grid. In fact one can obtain the other by
permuting the columns of the world grid. The reason the two
coordinatizations are seen as different by our algorithm is
that in the coordinatization grid they cannot be transformed
into one another (see Fig. 7).

Let m = 2 and n = 3: In this case we can only choose
|A| = 2 and |B| = 3 which leads to three different coor-
dinatizations that achieve a minimum stochastic interaction
of I(A,B)(X

′|X) ≈ 0.19. The process induced on the par-
titions A is not Markov in theses cases while the process
induced on B is.

Discussion
Formally, our examples have revealed three different classes
of Markov chains. First, processes that allow coordinatiza-

Figure 5: The coordinatizations minimizing stochastic inter-
action for the 3×4 world process with |A| = 3 and |B| = 4.
Here the subprocesses induced by the agent dynamics on the
partitions B highlighted in the right column are not Markov.
Those induced on the partitions A in the left column are.

tions with vanishing stochastic interaction and Markov pro-
cesses as the two subprocesses. Second, processes for which
no coordinatization with vanishing stochastic interaction ex-
ists but whose coordinatizations that minimize stochastic in-
teraction induce Markov processes (e.g. the 3 × 4 world
with a coordinatization grid of 2 × 6). And third, systems
where the minimum but non-zero coordinatization contains
one subprocess that is not Markov (2 × 3 world). These re-
sults are summed up in the following table (“non-M” stands
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Figure 6: The coordinatizations minimizing stochastic in-
teraction for the 3 × 4 world process with |A| = 2 and
|B| = 6 which means the coordinatization grid is differ-
ent form the world grid, see Fig.7. Note that the index pairs
f(A,B)(x) = (fA(x), fB(x)) reflect the 2 × 6 coordinatiza-
tion grid. Also note that by switching columns 2 and 4 of
the grid in the first row one can obtain the grid in the second
row. Also note that the induced processes of all the partitions
shown here are Markov.

Figure 7: The coordinatization grid for the two different
|A| = 2 and |B| = 6 coordinatizations that minimize
stochastic interaction for the 3× 4 world process. Shown is
the way the states X = {1, ..., 12} are mapped to the blocks
of partitions A and B. The rows are the blocks of A and
the columns are the blocks of B. For example, in the left
coordinatization, state x = 5 is mapped to (a = 1, b = 3).

for not Markov and “M” for Markov):

m× n |A| × |B| Imin
(A,B) {At}t∈I {Bt}t∈I

2× 3 2× 3 0.19 non-M M
2× 4 2× 4 0 M M
3× 3 3× 3 0 M M
3× 4 3× 4 0.43 M non-M

2× 6 0.31 M M

The fact that the stochastic interaction vanishes for some
coordinatizations and for some not, shows that the stochastic
interaction depends crucially on the chosen coordinatization
of a stationary finite Markov chain. Systems that might not
seem decomposable, like the agent on the 3×3 grid with the
naive coordinatization, can in fact still allow clean decom-
positions like the “diagonal” coordinatization.

On the other hand the processes for which no coordinati-

zation achieves a vanishing stochastic interaction and there-
fore resist clean decomposition can possibly be seen as fun-
damentally integrated units. Here comparisons to other mea-
sures of integration e.g. Balduzzi and Tononi (2008) suggest
themselves and will be pursued in future work.

More generally, our results seem to call for interaction or
integration measures that are independent of the coordina-
tization. A dependence on the chosen cardinalities |A|, |B|
(as in the 3× 4 world) may still be desirable though.

With respect to the scenario of an external observer, we
could show that if an artificial universe (e.g. cellular au-
tomata) is formulated in one specific coordinatization (pos-
sibly more than two dimensional, e.g. the game of life), this
coordinatization might not be the one best suited for decom-
posing it into subprocesses. Again recall the 3 × 3 world
grid; our system has actually been devised in the way of Eq.
9.

As already mentioned, the decomposition into stochastic
processes seems, if only through its generality, capable of
accomodating agents and environments, but our examples
are inconclusive on this matter.

From the perspective of an agent subject to an input
stream, it had been known that the assumption of composed
processes can help reduce predictive error. Kolchinsky and
Rocha (2011) have shown that given a multivariate process,
assuming that groups of variables form independent pro-
cesses can improve model learning. Our examples show
that if the multivariate structure of the process is ignored
more compositions of subprocesses can be found and might
reduce the predictive error further. We can interpret this in
the following ways: The multivariate structure might be im-
posed by the agents sensory apparatus. Then the modular-
izations of Kolchinsky and Rocha (2011) could be seen as
the best an agent can do. From our perspective the multi-
variate structure is not fixed though. This corresponds to
the situation where the sensory apparatus of the agent is not
fixed but can still be adapted (e.g. by evolution). A third
more speculative interpretation might be that the agent has
to “see through” the multivariate structure and actively con-
ceive the stochastic interaction minimizing decomposition
to optimize its predictive power.

Conclusion and outlook
Mathematically, we have proposed an approach for the de-
composition of stationary finite Markov chains into pairs of
subprocesses which retain all information about the original
process, we refer to this as coordinatization. Minimization
of stochastic interaction was used to determine “natural”
coordinatizations. Three different classes of finite Markov
chains showing different kinds of “decomposability” were
found in the simple examples treated here.

Importantly, our approach reveals that stochastic interac-
tion depends crucially on the chosen coordinatization. This
implies that for a given multivariate Markov chain, con-
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structing coordinatizations that ignore the given multivari-
ate structure might achieve cleaner decompositions than any
grouping together of the given variables (modularization)
can achieve. Such coordinatizations might in fact reduce
stochastic interaction to zero. Since stochastic interaction
is a lower bound for the predictive error of composite mod-
els (Kolchinsky and Rocha, 2011), our approach can in the
best case be used to boost the predictive performance of such
models.

In practice though the naive search method for the coor-
dinatizations minimizing the stochastic interaction is com-
putationally unfeasible. It remains to be seen if improved
search methods can move the approach into the efficient
realm.

From an artificial life perspective, we have argued for a
natural choice of decompositions of a system into two sub-
systems for the large class of finite Markov chains. This
choice can reveal ways to view and describe systems which
might otherwise be overlooked. In principle the subsys-
tems resulting from our decomposition (interacting stochas-
tic processes) seem suitable to represent an agent and its en-
vironment or two interacting agents. Whether our criterion
can be used to identify them remains an open question.

In the future we hope to extent our approach so that it can
serve artificial life researchers as an analytical tool in the
context of agent-environment systems or perception-action
loops.
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