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Abstract

A novel Artificial Life paradigm is proposed where
autonomous agents are controlled via genetically-
encoded Evolvable Mathematical Models (EMMs).
Agent/environment inputs are mapped to agent outputs
via equation trees which are evolved using Genetic Pro-
gramming. Equations use only the four basic mathematical
operators: addition, subtraction, multiplication and division.
Experiments on the discrete Double-T Maze with Homing
problem are performed; the source code has been made
available. Results demonstrate that autonomous controllers
with learning capabilities can be evolved as analytical math-
ematical models of behavior, and that neuroplasticity and
neuromodulation can emerge within this paradigm without
having these special functionalities specifieda priori.

Introduction
When looking to design an Artificial Intelligence (AI) capa-
ble of robust and adaptable behavior, one must first choose
how to represent such an agentin silico. Although many
such representations exist, two of the most common are
direct computer code representations, which can be pro-
grammed autonomously via Genetic Programming (GP)
(Koza, 1992; Poli et al., 2008), and Artificial Neural Net-
works (ANNs), which are computational models based on
the biological neural networks of animal brains that can be
designed using one of a variety of approaches (Floreano
et al., 2008).

Both of these representations require significanta pri-
ori design decisions. For a GP approach, one must choose
which programming operations to include (e.g., bit-shift,
and, or, xor, if-then-else, etc.), with a trade-off between
potential program capabilities and search space size (and
thus the ability of GP to find a solution). With ANNs, one
must choose from many different types (e.g., Feedforward,
Recurrent, Continuous-Time, Spiking, etc.), with trade-offs
that have not yet been systematically investigated (Floreano
et al., 2008). Other important design decisions for ANNs
include the type of activation function and the incorporation
of learning capabilities. Thus, to arrive at an agent represen-
tation appropriate for their task, a designer must first invest

a significant amount of time and computational resources.
Furthermore, any such design decisions introduce additional
experimenter bias into the simulation. Finally, complex be-
haviors require complex representations, adding to the al-
ready high computational costs of ALife algorithms while
further obfuscating the inner workings of the evolved agents.

We propose Evolvable Mathematical Models (EMMs), a
novel paradigm whereby autonomous agents are evolved via
GP as analytical mathematical models of behavior. Agent
inputs are mapped to outputs via a system of genetically
encoded equations. Only the four basic mathematical op-
erations (addition, subtraction, multiplication and division)
are required, as they can be used to approximate any ana-
lytic function, thus eliminating the need to determine which
operators to employ. More sophisticated operations can of
course be added at the will of the designer; however, the-
oretically the four basic ones constitute the minimal set of
operations required and accordingly the designer can be re-
lieved of much of the guessing game. Furthermore, since
agents are represented directly as mathematical equations,
the evolved agents are amenable to mathematical analysis
post facto.

The rest of this paper is organized as follows. In the next
section, previous work on evolving ANNs with learning be-
haviors and on Genetic Programming for agent control is
presented. This is followed by the algorithmic details of
EMMs. A Double-T Maze problem that requires learning
capabilities is then described, with the results of EMM ex-
periments in this domain presented in the subsequent sec-
tion. The source code for these experiments is provided.
Finally, conclusions and future work will be discussed.

Background
Neuroplasticity and Neuromodulation

Autonomous agents are often evolved as artificial neural
networks (ANNs). Typically, when one is evaluating an
ANN, either in simulation or hardware, the ANN’s connec-
tion weights are fixed. It is only when generating offspring
genomes that genetic operators such as mutation can mod-
ify the ANN’s weights. This is contrary to biological neural
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networks, however, where “neuroplasticity” allows for con-
nections between neurons to change during the lifespan of
an organism (Pascual-Leone et al., 2005). Neuroplasticity
(or “plasticity” for short) is what enables biological organ-
isms to learn, modifying the way they react to certain inputs
from the environment.

Hebbian learning, which is based on how learning is
thought to occur in biology (Hebb, 1949), can be used to im-
plement plasticity in ANNs (Floreano and Mondada, 1996).
In this paradigm, local learning rules∆wij are evolved for
each network connection weightwij . After each timestep
t of an ANN’s lifespan, each of its connection weights is
updated using its associated learning rule

wt+∆t
ij = wt

ij + η∆wt+∆t
ij , (1)

where0 ≤ η ≤ 1 is the evolvable learning rate. An example
learning rule∆wij is the “plain Hebb rule,” defined as

∆wt+∆t
ij = (1− wt

ij)v
t
iv

t
j , (2)

wherevti is the output of neuroni at the current timestep.
In the learning paradigm described above, connection

weights are adjusted at every timestep throughout the life-
time of an agent. This differs from biological systems which
are theorized to use “neuromodulation” to control and stabi-
lize learning (Bailey et al., 2000).

To improve learning algorithm performance, the Analog
Genetic Encoding (AGE) algorithm, an encoding method
based on biological gene regulatory networks that can evolve
both the connections weights and structure of an ANN (Mat-
tiussi and Floreano, 2004; Dürr et al., 2006), was modified to
allow for Hebbian learning which could be enabled and dis-
abled via neuromodulatory signals (Soltoggio et al., 2007;
Durr et al., 2008; Soltoggio et al., 2008). In this approach,a
generalized Hebbian rule from (Niv et al., 2002) was modi-
fied to include a modulatory signalm:

∆wt+∆t
ij = mtη

(

Avtiv
t
j +Bvti + Cvtj +D

)

(3)

whereA, B, C andD are evolvable parameters that deter-
mine the importance of the different types of Hebbian learn-
ing and0 ≤ mt ≤ 1 is the current strength of the sig-
nal produced by one or more special modulatory neurons.
These modulatory neurons operate in a manner similar to
regular neurons, taking inputs from other neurons in the net-
work through network connections and generating their out-
put valuem using an activation function.

Fixed-Weight Learning
Learning behaviors have been observed in several fixed-
weight ANN-based experiments as well. Fixed-weight re-
current neural networks seem to be able to accomplish cer-
tain tasks requiring learning, as the recurrent neural connec-
tions can act as a type of memory (e.g., (Stanley et al., 2003;

Soltoggio et al., 2008)). Continuous-time recurrent neural
networks (CTRNNs) have also demonstrated learning capa-
bilities, sometimes even outperforming plastic neural net-
works (Jesper and Floreano, 2002; Tuci and Quinn, 2003).

Genetic Programming for Agent Control
Genetic Programming (GP) can be used to evolve au-
tonomous controllers as computer programs. In the first
such experiment (Koza and Rice, 1992), controllers were
represented as variable-length trees containing sensor inputs
and four preprogrammed macros, such as “if-less-than-or-
equal.” Programs that could control a simulated robot to find
a box in an irregularly shaped world and push it to a wall
from four different starting configurations were evolved.

A linear implementation of GP was used to evolve ma-
chine code to control a Khepera robot in (Nordin and
Banzhaf, 1995, 1997). This work was recently extended in
(Burbidge et al., 2009; Burbidge and Wilson, 2014), where
machine code was evolved using Grammatical Evolution.
Here, agent genomes are binary strings that are mapped to
their machine code phenotypes via a prespecified generative
grammar.

GP has also been used to evolve competitors for the
RoboCup robotic soccer tournament. The team “Darwin
United” was evolved using GP with a variety of possible
operations, including basic mathematical operators, reading
and writing to memory locations and executing a variety of
programmer-designed subroutines (Andre and Teller, 1999).
A simple GP approach was also used to evolve robot goalie
behaviors in (Adorni et al., 1999). This work is the most
similar to our Evolvable Mathematical Models paradigm
presented below, as it is evolving mathematical equations
as trees for robot control. However, these experiments were
performed on a relatively simple task (especially consider-
ing the amount of information provided to the controller),
had only one equation tree/agent output, employed two ad-
ditional operators (sine and cosine), and did not allow for
extra state variables/equation trees to be evolved.

Evolvable Mathematical Models
Our Evolvable Mathematical Models (EMM) algorithm uses
Genetic Programming (GP) to evolve mathematical mod-
els of behavior. An earlier version of this algorithm that
evolved one ODE per agent output (i.e., there were no extra
state variables) was presented in (Grouchy and D’Eleuterio,
2010) and implemented in (Grouchy and Lipson, 2012). The
core idea is that one can evolve autonomous agent con-
trollers as mathematical equations that map from agent in-
puts to outputs.

Representation
An EMM-based agent is represented as a system of equa-
tions, with one equation for each of theN experimenter-
defined outputsvi in the simulation. Additional “extra”
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equations can be added through an “add-equation” mutation
(similar to the concepts of Automatically Defined Functions
and Architecture-Altering Operations (Koza, 1994)). An
agent’sN ′ extra equations do not have associated agent out-
puts; however, they modify agent outputs indirectly via their
incorporation into those equations that affect agent outputs
directly. Therefore, an agent is fully specified by its system
of state equations

v
t+∆t = f

(

u
t,vt

)

(4)

and its evolvable initial conditionsvt=0. Here,

v = [v1, v2, ..., vN , vN+1, ..., vN+N ′ ]
T (5)

and

u = [u1, u2, ..., uM ]
T
, (6)

whereM is the number of experimenter defined inputs to
the agent and

f (u,v) = [f1 (u,v) , f2 (u,v) , ..., fN+N ′ (u,v)]
T (7)

are the agent’s genetically encoded state functions.
For all experiments presented here, tree structures were

used to represent the EMMs in the agent genome, as in
canonical GP. Only the four basic mathematical operators
are allowed (addition, subtraction, multiplication and divi-
sion), from which any analytic function can be approxi-
mated. A real-valued variable-length vector was used to rep-
resent an agent’s initial conditionsvt=0 in the genome.

A genome containsN + N ′ equation trees, one for each
output and extra state variable of the system. Each tree con-
tains a collection of terminal and nonterminal nodes. The set
of possible terminal nodes is comprised of all possible real
constants and variables (i.e., input, output and extra state),
while the set of possible nonterminal nodes is composed of
addition, subtraction, multiplication and division. The num-
ber of “child” nodes (subtrees) of a nonterminal node is two,
as all four of the basic operations have an arity of two. An
example genome for an agent withN +N ′ = 2 is shown in
Figure 1.

Evolution
Initialization. The random initialization of theN initial
equation trees in each initial genome (e.g., at generation 0
in a genetic algorithm) is done using the “ramped half-and-
half” method from GP. This method is a combination of two
methods, the “full” and “grow” methods. For both meth-
ods, a maximum depth (i.e., the maximum number of edges
that need to be traversed to reach a node, starting from the
root node) is specified. In the “full” method, nonterminal
(i.e., operator) nodes are randomly generated until the max-
imum depth is reached. At the maximum depth, only termi-
nal (i.e., operand) nodes are created. In the “grow” method,

Figure 1: An example EMM for an agent withN +N ′ = 2.
The two trees, along with the two initial valuesvt=0

1 and
vt=0
2 (not shown), are how the agent’s EMM is encoded in

its genome.

as in the “full” method, only terminal nodes are created at
the maximum depth. The difference is that before the max-
imum depth is reached, randomly generated nodes can be
either terminal or nonterminal nodes (with equal probabil-
ity), allowing for a wider range of potential tree shapes. For
all experiments presented here, half of the trees are gener-
ated with a maximum depth of 1, while the other half have a
maximum depth of 2. Terminal nodes are set to a randomly
chosen variable or a random constant with equal probability.
Initial genomes do not contain any extra state variables, i.e.,
N ′ = 0. Initially, constants are randomly selected and initial
output valuesvt=0 are set to random values.

Sexual Recombination. Sexual recombination allows for
large jumps in the search space through combining two par-
tial solutions. Any such genetic operation requires two par-
ents to produce an offspring genome. Otherwise, a single
parent’s genome is cloned to produce an offspring genome.
In EMMs, tree-level sexual recombination occurs in a fash-
ion similar to crossover in GP.

An offspring genome is initially generated as a clone of
the first parent. If a tree in the offspring genome is selected
to undergo tree-level recombination, one of its nodes is se-
lected at random and replaced with a randomly selected sub-
tree from the second parent. Randomly selected nodes have
a probability of 0.1 of being terminal nodes. If there are
subtrees below the selected node in the offspring’s tree, they
are discarded. The subtree from the second parent can come
from any of its equation trees. This allows for partial so-
lutions to be reused and to be copied to different equation
trees. This subtree grafting operation is similar to the sub-
tree mutation operation described below. If the subtree be-
ing copied over references extra state variables that are not
present in the offspring genome, the equations for those state
variables are copied to the offspring genome from the sec-
ond parent. An offspring genome is subject to a variety of
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genetic mutations, even if it has been produced via sexual
recombination.

Tree Mutation. Tree mutations (as well as extra state vari-
able mutations and sexual recombination) can occur when a
parent genome is being copied to its offspring. This means
that mutations can only occurbetweengenerations. Agent
genomes remain fixed throughout an agent’s lifetime.

These mutations are implemented in a manner similar to
GP. If a tree is selected to be mutated, one of a variety of
mutations is applied:

• Point Mutation. A point mutation performs one of sev-
eral operations on a single randomly selected node in the
tree:

– Perturbation of a constant.This operation can only be
performed if the tree in question contains one or more
constants. The operation adds a random value to a ran-
domly selected constant.

– Mutation of a nonterminal node.This operation is per-
formed if a perturbation of a constant was not done and
if a randomly selected node is a nonterminal. A new
nonterminal operation is randomly selected from the set
of addition, subtraction, multiplication and division.

– Mutation of a terminal node.This operation is per-
formed if a perturbation of a constant was not done and
if a randomly selected node is a terminal. One of two
mutations occurs, with equal probability. The chosen
terminal is either mutated to a randomly chosen vari-
able or it is mutated to a random constant.

• Subtree Mutation. This operation selects a random node
on the original tree and replaces it with a new random sub-
tree. This new subtree is generated in an identical fash-
ion to initial trees (see “Initialization” above). A small
variation to the standard subtree mutation was also added.
With a given probability, the roles of the subtree and the
original tree are swapped, i.e., a random node on the ran-
domly generated subtree is replaced with the entire origi-
nal tree and this becomes the new tree of the offspring.

Add-Equation Mutation. An offspring is subject to “add-
equation” mutations, as well as those mutations described
above. This mutation produces a new equation tree of depth
1 or 2 using the “ramped half-and-half” method described
previously. A new variablevj , j > N is added tov. This
is the variable that the new equation tree will be modifying.
The new variablevj is also randomly incorporated into a
randomly selected existing equation, either through a point
mutation or a subtree mutation (with equal probability), as
described above. Finally,vt=0

j is set to a random value.

Initial-Value Mutation. An offspring’s initial valuesvt=0

are subject to mutation as well. If an initial value is to be mu-
tated, it will either be set to a new random value or perturbed

by a value drawn from a given distribution. These two types
of initial value mutations occur with equal probability.

Equation Reduction. When an offspring genome is pro-
duced, it is checked for possible equation simplifications
with a probability of 0.1. For example, the computation0+1
will be reduced to1. Results in (Grouchy and D’Eleuterio,
2010) demonstrated that this improves both solution quality
and execution times.

If an extra state variable is not referenced anywhere in
the offspring genome (excluding the variable’s own equation
tree), that variable and its corresponding equation tree are
discarded.

Execution
An EMM-based agent’s behavior over the course of its life-
time is determined as follows:

1. Sett = 0

2. Setvi = vt=0
i , i = 1, ..., N, ..., N +N ′

3. Updateut with current agent inputs (i.e., current sensor
values)

4. Evaluatef (ut,vt)

5. Update agent output and extra state variablesv
t+∆t =

f (ut,vt)

6. Run agent for∆t timesteps using agent output values
vt+∆t
i , i = 1, ..., N

7. Sett = t+∆t

8. Go to step 3 (unless the end of the agent’s lifespan has
been reached)

The above steps apply to agents operating in a simulation
environment as well as to embodied robotic agents operating
in the real world. Steps 3-6 are equivalent to propagating
agent inputs through an ANN to produce agent outputs for
a single timestep of an agent’s lifetime in an ANN-based
experiment.

Double-T Maze Experiments
In its simplest form, a T Maze test consists of a series of tri-
als where a robot starts in the home position, choses one of
the two “arms” of the maze to visit and collects the reward
at the end of that arm. In some cases, the robot is automat-
ically returned home once the end of the maze is reached,
whereas in others part of the task is for the agents to find
their own way home. For each trial, one arm of the maze
contains a high reward, while the other contains a low one.
The purpose of this task is to demonstrate learning. A suc-
cessful agent should search both arms for the high reward,
and then return to the high-reward arm of the maze in sub-
sequent trials. If the reward is moved, the successful agent
should search for and relearn its new position. A Double-T
Maze has four arms instead of two, while still only having
one high reward (Figure 2). In a discrete maze environment,
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Figure 2: A discrete Double-T Maze. “A” is the agent, “r”
are low rewards and “R” is the high reward.

agents must decided to move straight for one unit, or turn
left or right, requiring only a single output variable.

The specific T Maze chosen for these experiments was the
discrete Double-T Maze with Homing requirements used in
(Soltoggio et al., 2008), although certain experimental set-
tings may vary slightly owing to a lack of details in the orig-
inal paper and a lack of available source code. This version
was selected for several reasons. This problem domain has
only been solved with plastic ANNs; fixed-weight ANNs
have so far been unsuccessful. Furthermore, the Double-
T Maze is very difficult, requiring agents to choose repeat-
edly one of four different movement patterns depending on
where they find the high reward. If agents have yet to dis-
cover the location of the high reward, they must search up
to four different maze arms (requiring four different move-
ment patterns) sequentially. Adding to the difficulty is the
requirement that agents must return home after reaching an
end of the maze. This doubles the size of each of the four
movement patterns. For example, to get to the top left part of
the maze an agent must turn left, then right. To then return
home, the agent must turn left, then right again. There is a
unique four-turn pattern for each of the four arms (LL-RR,
LR-LR, RL-RL, RR-LL).

The main point of this experiment is to demonstrate that
EMMs can solve this challenging task. However, we attempt
to tackle this problem using the same number of fitness eval-
uations as in (Soltoggio et al., 2008).

Problem Definition. Agent fitness is evaluated over a se-
ries of trials. For each trial, the agent is evaluated for a maxi-
mum of 35 steps, with each step consisting of one evaluation
of the agent’s equations and the execution of one move (for-
ward or turn) based on the agent’s outputv1. A trial begins

with the agent at the “home” position. If an agent executes
a turn command while not on a “turn” position (i.e., while
on the home position, one of the four reward positions or
in a corridor) or executes three consecutive “move forward”
commands on a turn position, this is considered a “crash.”
Crashes end the current trial, returning agents to the home
position and subtracting 0.4 from their total fitness. If an
agent completes a trial without returning to the home posi-
tion, a penalty of 0.3 is applied to their total fitness. If the
agent reaches one of the three low-reward arms of the maze,
a score of 0.2 is added to their fitness. The high reward arm
yields a fitness boost of 1.0. When an agent reaches the end
of a maze arm, it is automatically turned180◦. Corridors
and turn points last for three forward steps each.

Agents have access to four inputs, “turn,” “maze end,”
“home” and “reward” (u1, u2, u3 andu4, respectively). The
turn input is set to 1.0 when the agent is on a turning point,
0.0 otherwise. The maze-end input is set to 1.0 when the
agent is at the end of one of the four maze arms, 0.0 oth-
erwise. The home input is set to 1.0 when the agent is at
the home position, 0.0 otherwise. Finally, if the agent col-
lects a low reward, the reward input is set to 0.2 for one step.
Collecting a high reward sets the reward input to 1.0 for one
step. The reward input is 0.0 at all other times.

Agents have one outputv1. If v1 < −0.33, the agent
performs a left turn and then moves forward one unit. If
v1 > 0.33, the agent performs a right turn and then moves
forward one unit. Otherwise, the agent moves forward one
unit in its current direction. All inputs and references to
variablesvi, i = 1, ..., N + N ′ are subject to noise by
adding a random value taken from the uniform distribution
[−0.005, 0.005] at each equation evaluation.

Agent fitness is evaluated on a set of 200 trials, with the
high reward randomly positioned for the first trial. The high
reward is randomly repositioned after a randomly selected
number of trialsHt, with 35 ≤ Ht ≤ 65. Reward reposi-
tioning happens three to four times per 200 trial run, with
Ht being regenerated after every repositioning. During the
evolutionary runs, the first four high reward positions were
forced to be distinct. This was not enforced for the 100 sets
of 200 trials used for testing top agents.

EMM Algorithm Details. For this task, an island model
is used1. Each of the 10 islands has a population of 100, giv-
ing a total population size of 1,000. Islands are arranged in
a ring formation, with the top agent from each island being
copied (migrating) to the left or right island every 20 gen-
erations. The direction of migration is constant across all
islands and switches after each migration. Each island pop-
ulation is tested on its own set of 200 trials, with all 10 sets
being regenerated after each generation. Tournament selec-

1The source code for these experiments is available for down-
load athttp://www.sr.utias.utoronto.ca/images/
downloads/grouchy_alife_2k14.zip.
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Figure 3: High reward location and maze end visited by a successful EMM agent for each trial of a 200 trial run. Locations
0,1,2,3 are indicated in Figure 2.

tion with a tournament size of 15 is used, and each island’s
top agent is cloned for the next generation (elitism).

When random constants are needed, they are selected
from the uniform distribution[−5, 5]. Random initial values
v
t=0 are set to values from the uniform distribution[−1, 1].

Offspring genomes are produced as a clone of a single
parent with a probability of 0.3, otherwise tree-level sexual
recombination can occur on one or more of the offspring’s
N +N ′ trees with a probability of0.5/ (N +N ′) per tree.
Tree mutations can happen to any offspring genome with
a probability of 0.1 per offspring tree, whereas an extra
state variable/equation tree is also added to a genome with
a probability of 0.1 per previously existing offspring tree.
Offspring are required to undergo at least one tree or add-
equation mutation. An initial value is mutated with a proba-
bility of 0.1/ (N +N ′).

If a tree mutation is to occur, it will be a point mutation
with a probability of 0.5, otherwise it will be a subtree muta-
tion. If a point mutation is to occur and the tree in question
contains at least one constant, a perturbation of a constant
mutation will happen with a probability of 0.5, adding a ran-
dom value taken from a Gaussian distribution with mean 0
and standard deviation 0.5 to a randomly selected constant.
During subtree mutation, the original tree and the randomly
generated subtree are swapped with a probability of 0.05.
Initial values are perturbed using a value selected from a
Gaussian distribution with mean 0 and standard deviation
0.25.

Output valuesv1 are capped to the range[−1, 1], how-
ever extra state variablesvj , j = 2, ..., N ′ are unbounded. If
there is a zero-divided-by-zero operation, or if any variable
exceeds the minimum or maximum allowable values of the
programming language being used, the current trial is termi-
nated. A maximum genome size of 200 nodes was imposed
across all experiments.

At the end of every generation, the top agent from each
island is tested on a fixed test set of 100 randomly generated
200 trial runs. Each experiment is run for 1,000 generations,
and the final result is taken to be the agent that performs
the best on the test set. This is notably different than the
experiments in (Soltoggio et al., 2008) where only the top
agent in the final generation is tested.

Figure 4: vt1 and vt3 values over time for the same EMM
agent and 200 trial run as shown in Figure 3.

Algorithm Test Score # Successful
µ σ

10 islands w/o extra eqns 95 10 0
10 islands w/ extra eqns 172 18 9
40 islands w/ extra eqns 186 5 18

Table 1: Double-T Maze results from 50 evolutionary runs.
A “successful run” has occurred if an agent scores 189.4 or
higher on the test set.µ is the mean andσ is the standard
deviation.

Results

For the test set used in these experiments, we calculated the
“worst-case perfect test score” to be 189.4 (the theoretical
maximum test score was calculated to be 197.24). This value
is the average score of a perfect agent across the 100 test
runs, assuming the agentalwayssearches each low-reward
arm once before finding the high reward (hence “worst-
case”) and always returns to the high-reward arm once it is
discovered (hence “perfect agent”). Thus we consider an
agent with a test score of 189.4 or higher to be a solution
to this Double-T Maze. Table 1 shows the results from 50
runs using the same test set, but with different initial popu-
lations and different training sets. The runs with 10 islands
use the same number of fitness evaluations as in (Soltoggio
et al., 2008), although with significantly more agents tested.
Results with 10 islands and extra equations/state variables
disabled are shown, demonstrating significantly worse per-
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formance and an inability to fully solve the task. Experi-
ments with 40 islands are also reported, demonstrating per-
formance improvements given more fitness and test evalua-
tions.

From these results, we can conclude that EMMs can suc-
cessfully solve this difficult task requiring learning. A suc-
cessful agent with a test score of 191.884 will be examined
further. Figure 3 shows how this agent performs on a single
200-trial run. The location of the high reward is shown for
each trial, as well as the maze arm visited by the agent. The
agent’s foraging pattern seems to be fixed: arm 1, arm 3, arm
2, arm 0, then back to arm 1 and the pattern repeats.

The full system of equations (with rounding and simplifi-
cations) of this top agent is

vt+∆t
1 = ut

1v
t
2v

t
4 (8)

vt+∆t
2 = 5.92vt3/v

t
2 (9)

vt+∆t
3 = ut

2 − ut
4 − 0.69 (10)

vt+∆t
4 = −0.41ut

1v
t
7 (11)

vt+∆t
5 = −0.33vt6 (12)

vt+∆t
6 = 0.65− vt8 − (1.18/vt3) (13)

vt+∆t
7 = vt5 − 0.48 (14)

vt+∆t
8 = vt9(0.02v

t
9 + 0.05vt10 − 0.23)

− vt5 − 0.14vt10 + 0.48

(15)

vt+∆t
9 = 56.11ut

2 (16)

vt+∆t
10 = 0.80− vt4 (17)

Note thatv1 is the agent’s output variable and evolved initial
conditionsvt=0 are omitted. Figure 5 shows the relation-
ships between variables within this agent’s evolved equa-
tions. The only equation containing the variableu4 (the “re-
ward” input) is (10), and its corresponding state variablev3
seems to be modulating learning. The value ofvt3 is constant
at−0.69, except in the cases where an agent is at a maze end
(ut

2 = 1) and a low reward is collected (ut
4 = 0.2). In these

cases,vt+∆t
3 = 1 − 0.2 − 0.69 = 0.11. Figure 4 shows the

agent’s behaviors (i.e., its output valuesv1) and the values
of v3 over all timesteps from the same 200 trial run shown in
Figure 3. One can clearly see the neuromodulation-like be-
havior ofv3, as the agent output patterns (v1) do not change
whenvt3 = −0.69, however these patternsdo change when
vt3 = 0.11. A positive spike ofv3 seems to cause the agent
to try the next arm in its forage pattern (learning), while a
fixed negativev3 value causes the agent to revisit the same
arm (no learning). Thus neuromodulation-like behavior has
evolved without special neural structures having been spec-
ified a priori.

Conclusions
We have presented a novel Artificial Life paradigm that
uses Evolvable Mathematical Models (EMMs) as controllers
for autonomous agents. A Genetic Programming algorithm

Figure 5: Relationship between variables within the success-
ful EMM agent’s evolved equations. Inputs are shown in
blue, the agent’s outputv1 is red and the extra state vari-
ables are orange. Data require one timestep to traverse an
orange arrow, whereas input data traverse blue arrows in-
stantaneously. The state variablev3 is emphasized in green
as it plays the role of neuromodulator. The calculations per-
formed at each node are shown in (8) to (17).

was used to evolve systems of equations that map agent in-
puts to outputs. Functions are represented in the genome
as variable-length trees, one for each agent output, and are
composed of the four basic mathematical operators, addi-
tion, subtraction, multiplication and division, as well asin-
put and output variables and constants. These EMMs can
approximate any analytic function. Further trees and cor-
responding extra state variables can be added through an
“add-equation” mutation. Experiments were performed on
the challenging Double-T Maze with Homing domain, a
task previously only solved using artificial neural networks
with connection weight plasticity. Solutions to this domain
were evolved successfully using fixed-structure EMMs and
the same number of fitness function evaluations as a previ-
ous ANN-based experiment. These solutions demonstrated
neuromodulation-like learning behaviors without any spe-
cial neuroplasticity or neuromodulation structures having
been specifieda priori. Furthermore, evolved solutions are
readily examinable, as they are represented directly as math-
ematical equations and are thus amenable to mathematical
analysis.

The work presented here is intended as a first step to-
wards evolving autonomous agents as mathematical models
of behavior. Future work should look to improve the evolv-
ability of EMMs through alternative genetic encodings (e.g.,
Linear GP) and different types of evolutionary search. The
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results presented here demonstrate the ability of EMMs to
evolve behaviors similar to those produced by neuromodu-
lated plastic neural networks. A question that then arises is
whether EMMs can be evolved to model behaviors produced
by other types of neural networks, such as biological neu-
ral networks. Further experimentation on even more chal-
lenging domains are required to explore the effectiveness of
Evolvable Mathematical Models as autonomous agent con-
trollers.
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