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Abstract

We examine the effects of proportional-integral control on the
fitness and genetics of an evolving swarm. Introducing con-
trollers with a set point designed to distribute birds equally
across the food in a given simulation increases the rate at
which the birds accumulate energy, but also increases the rate
at which they expire. We find that the amount of food the
birds gather is not dependent on the force of the feedback
controllers but on the quality of information they transmit.
The trends we observe can help to understand and improve
the results of a wide variety of systems exhibiting swarm dy-
namics.

Introduction

Swarming and flocking behavior is ubiquitous throughout
biological and physical systems of all scales. Bird flocks,
schools of fish, bacteria (Munoz et al., 2007), and even
chemical reactions (Sayama, 2011) are prime examples of
non-equilibrium dynamical systems. Simulations to de-
scribe these phenomena were first developed by (Reynolds,
1987). Remarkably, the overall motion is governed by rela-
tively simple rules detailing behavior of individuals and their
interactions with neighbors. Motivated by both the desire
to achieve greater biological control of evolving ecosystems
(Holt and Hochberg, 1997; Roderick and Navajas, 2003) and
recent advances in swarm robotics (Rubenstein et al., 2012),
we introduce an environmental control mechanism and ex-
plore the evolutionary consequences of environmental feed-
back control.

In this paper, we explore the interaction between an evolv-
ing swarm and an environmental feedback controller. We
consider a flock of birds with localized energy sources that
provide birds with the energy necessary for their survival. In
real-life systems the behaviors of agents evolve over succes-
sive generations in order to favor the most successful. Nat-
ural selection is accounted for in our model by an energy
system where birds expire and are replaced by offspring of
the remaining population.

We introduce control into our system in the form of
local proportional-integral-derivative (PID) controllers that
are capable of attracting and repelling birds. These PID

controllers drive the system towards a particular state de-
fined by the PID controller, allowing the system to be op-
timized. Optimization of heterogeneous swarms has sev-
eral applications, such as commercial pollination with fly-
ing agents (Berman et al., 2011b,a), electric power systems
(Fukuyama et al., 1999), and general optimization problems
(Eberhart and Kennedy, 1995). Furthermore, recent ad-
vances in robotics have made it possible to experiment with
large-scale physical swarms of robots (Rubenstein et al.,
2012), allowing novel swarm control techniques to be easily
tested.

The Evolution of Swarms

Since the original proposal of the Boids algorithm
(Reynolds, 1987), the collective dynamics of swarms has
been a common topic of study in artificial life. While many
studies focus on the effects of swarming algorithms on col-
lective dynamics, we focus specifically on the evolution of
swarms. In (Spector and Klein, 2002), the evolution of sim-
ple swarming parameters is used in conjunction with a vi-
sual simulator to study emergent dynamics. This study was
later extended to a radical degree with endogenously evolv-
ing computer program controllers for agents in the evolving
swarm (Spector et al., 2005). Other work utilizing evolu-
tionary algorithms in conjunction with swarming behavior
has mostly been pursued in the context of particle swarm
optimization, such as (Zhang and Xie, 2003). We develop
our model based upon (Spector and Klein, 2002), to main-
tain an experimentally tractable degree of complexity.

Model

Simulation is performed in 3D with the Brevis simulator
(Harrington, 2014), a scientific and artificial life simulator.
Brevis provides simulation and visualization capabilities via
the Java JVM and the programming language, Clojure. One
particular feature of importance in swarming simulations is
neighborhood detection. Brevis provides a nearest neigh-
bor algorithm, allowing for fast lookups of operations com-
monly used in swarm algorithms.

The core features of the simulation are a population of
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Figure 1: Example of a feedback-controlled evolving swarm and environment simulated with Brevis (Harrington, 2014). Green
regions are attractive, blue are repulsive. Pink dots are food, colored cones are birds.

evolving birds, a set of energy sources, and a feedback con-
troller (discussed later). The birds in our simulation use
a simple algorithm to update their accelerations. For each
bird, we consider the first bird and the first food in its list of
neighbors, if any exist within the simulation-defined neigh-
borhood radius (200 units, in this case). For both the neigh-
boring bird and food, the direction vector from the bird to
the neighboring object is multiplied by a constant, depend-
ing on whether that neighboring object is considered close
to or far from the bird. This vector will be O if no neighbor
of that type exists. The acceleration of the bird is updated
to be the sum of these two vectors and passed to Brevis to
update their position and velocity.

Energy

Each bird and food has an energy associated with it. A bird’s
energy will decrease at a constant rate (0.25 units/time),
while a food’s energy will increase at a constant rate (0.1
units/time). The change in energy in each iteration is pro-
portional to the time step of that iteration. In these simula-
tions we use a fixed time step of 1. If a bird collides with
a food it gains energy at a rate of 0.005 units/time, and the
food loses energy at a rate of 0.005 units/time. Also, if two

birds collide with each other, they will both lose 0.001 units
of energy. When a food reaches zero energy, it will be re-
moved from the simulation and a new food will be created at
a random position. When a bird reaches zero energy, it will
die and be removed from the simulation, and a new mutant
bird will be created at a random position to replace it.

Evolutionary Algorithm

A genome is associated with every bird, made up of the in-
formation used to update their accelerations. Each bird has a
distance associated with food and a distance associated with
other birds. If a neighbor is closer than the corresponding
distance, it is considered close; otherwise, it is considered
far. Each bird also has four coefficients for determining ac-
celeration with respect to neighboring objects: close food,
far food, close birds, and far birds. The distance genes range
over the nonnegative numbers, while the coefficients can be
positive or negative. These genes are all listed below.

Genes
e neighborC: Neighbor coefficient for close behavior

e neighborF: Neighbor coefficient for far behavior
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neighborD: Neighbor distance

foodC: Food coefficient for close behavior

foodF: Food coefficient for far behavior

foodD: Food distance

Every time a bird runs out of energy, its replacement will
obtain a mutated copy of a genome of a bird still alive in the
simulation. The mutation consists of multiplying the exist-
ing value by a random number picked from an even distri-
bution between 0.5 and 1.5. This serves as the fitness evalu-
ation of our simulation. Birds which are fit are able to keep
themselves alive longer, and by doing so they are more likely
to have their genes copied when a new bird is created.

Feedback Control

Feedback control serves a variety of purposes in engineered
systems, as it allows for real-time correction. Many algo-
rithms exist which allow the feedback controller to calcu-
late or learn what control parameter will move the system
towards the set point. We adopt a proportional-integral-
derivative (PID) algorithm as our feedback controller (As-
trom and Hagglund, 1995; Astrom and Murray, 2008).

Many biological systems naturally self-organize, and of-
ten utilize control techniques to achieve this organization.
Insects, such as ants, bees, and termites, deposit pheromones
to indirectly coordinate with their colony. This stigmergic
communication aids in collective behaviors such as nav-
igation, defense, and brood care. In previous work, we
found that stigmergic communication can improve the per-
formance of teams of heterogenous agents in real-time strat-
egy games by communicating agent density and state infor-
mation (Olsen et al., 2008). However, in the work at hand,
we consider a top-down environmental feedback controller
that regulates agent density.

PID Controller

Originally developed to control the heading of large ships,
the PID control algorithm is now used in a variety of con-
trollers, such as thermostats and automobile cruise controls
(Minorsky, 1922). We specify the desired state of the sys-
tem, or set point, and the PID controller modifies parameters
of the system until it is in that state. Formally, the output of
the PID as a function of time is given by

de(t)
dt ’

t
u(t) = kpe(t) + ki/ e(r)dr + kq (1)
0

where e(t) is the error, defined as the set point minus output:
e(t) =S — u(t). (2)

The constants kj,, k;, and kg simply adjust the weight of
the proportional, integral and derivative terms, respectively.

P
kpe(t)
Setpoint I ¢
Error —=| k;/ e(r)dr > Process |— Output —=
0
D k de(t)
d dt

Figure 2: Illustration of the PID Controller.

The goal of the PID controller is to obtain the output such
that the set point is obtained, or equivalently when the error
is zero.

In our simulation we have a tile floor, and each tile is asso-
ciated with a feedback controller. The input to the controller
is the number of birds within a certain radius of the center
of the tile. The set point Sy, of the controller in each tile
specifies the number of birds which should be in that radius,
which we have defined as

Bto[al
Stite = —— Frads 3
' Eotal

where B represents birds and F' represents food. Our sim-
ulation ensures that, Biou1/ Fiowl 1S constant, so Sgje o< Frag-
We see then that the more food within a specified radius of
a PID controller, the higher the set point and thus number
of desired birds in that tile will be. It is important to note
here that our simulation does not use periodic boundary con-
ditions, so birds that fly far from our tile floor will not be
subject to PID control, but still expire when they reach zero
energy.

For our control algorithm, we consider only the first two
terms of the PID algorithm. The output of the controller as
a function of time becomes

u(t) = kpe(t) + k‘i/o e(r)dr. 4)

The proportional term makes a tile attractive if there are
fewer birds locally than the set point, and repulsive if there
are more birds than the set point. The integral term helps to
overcome any steady-state error that may exist in our system
due to overshoot and undershoot caused by the proportional
term alone. For example, a bird outside an attractive tile’s
radius may circle that tile as it experiences a constant force;
the integral term means the accumulated error will gradu-
ally make the tile more attractive in this situation, and the
bird will be pulled inwards.
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Figure 3: Average fitness for varying values of PI magnitude and k;. Note the sharp increase in accumulated energy between

PI magnitudes of 0 and 0.01

Experiments

All of the following experiments are conducted in Brevis
(Harrington, 2014) for 50,000 timesteps. We sample over 3
parameters of the feedback controller: strength of feedback
control, integral magnitude, and range of control. Each pa-
rameter set is tested on 10 unique random seeds.

Strength of Feedback Control

Our first set of experiments consist of varying the parameters
of our PI control on simulations with low (5 food) and high
(25 food) food density. Each experiment has 50 birds. Our
control experiment has no feedback. When we introduce
feedback, we have a parameter which we multiply the output
of our PI controller by to modify the magnitude of its effect.
We considered a somewhat logarithmic series of values for
this parameter: 0.01, 0.03, 0.1, 0.3, and 1. The greatest of
these values roughly corresponds to the maximum force felt
by birds in the no-feedback experiment.

Integral Magnitude

We also consider a range of values for our integral constant
k; of 0.001, 0.003, 0.01, 0.03, and 0.1, holding the propor-
tional constant k,, at a fixed value k, = 1. Ata k; of 0.1 the
accumulated error can saturate extremely quickly, so we do
not consider values greater than this.

Range of Feedback Control

The final parameter we vary is the size of our feedback con-
troller. To do this, we select three different radii of increas-
ing size, corresponding to: the circle circumscribing the tile
associated with the controller, the circle inscribed in the 3x3
neighborhood of tiles around the controller, and the circle
circumscribing the neighbors in the cardinal directions.

Results

There are two primary statistics in our simulation that indi-
cate the fitness of the birds: the rate at which they expire,
and the rate at which they accumulate energy. A lower death
rate and a higher energy gathering rate would correspond
to fitter birds. We expect that having a feedback controller
to distribute the birds evenly across the food could improve
all aspects of their fitness. However, the results that we see
indicate that introducing control increases the rate at which
the birds accumulate energy, but it also increases the rate at
which they expire.

The feedback control manages to help some birds locate
and stay near the food, so they are able to collect more en-
ergy overall. This can be seen Fig. 3 with a sharp increase in
accumulated energy as soon as the magnitude of PI control
becomes greater than zero. As the force of the PI control
continues to increase, the amount of energy gathered by the
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Figure 4: Average fitness for varying tile radii.

birds remains roughly constant. If we imagine a given layout
of food, it is likely that there is an optimum distribution of
birds across that layout. As we increase the force exerted on
the birds by the feedback controller, the genes of the birds
will change to compensate for the increased force in such
a way that they still distribute themselves evenly across the
food. Going from no control to some level of control pro-
vides additional information to the birds, allowing them to
locate food more easily. Increasing the force of that control
does not provide them with any new information, so it does
not improve their fitness.

Varying the integral constant of the PI control informs us
of what the optimum constant should be. For both low and
high food density, we see a maximum of food accumulated
when k; = 0.01, shown in Fig. 3. When k; is too low, the ac-
cumulated error barely provides any information compared
to the proportional term about what force a controller should
be exerting. When k; is too high, the accumulated error will
quickly saturate, resulting in behavior akin to a proportional
term with some time lag. When k; is at a near-optimum
value, it will allow each controller to compensate for any
steady-state error which may occur. While increasing the
magnitude of the feedback does not improve the fitness be-
cause it does not provide additional information, the integral
constant affects the quality of the information provided by
the controllers, which is why it has a more noticeable im-
pact on the amount of energy the birds accumulate.

Increasing the magnitude of the PI control does negatively
impact the fitness of the birds as well. Particularly in the
low food density case, it will cause the birds to expire at a
higher rate. The same trend exists for increasing values of
k;, since higher integral constants will allow for a greater
force to be exerted by the controllers, meaning it will have
similar effects. We believe increasing the amount of feed-
back increases the death rate because there exists the possi-
bility that there will be large regions of the simulation with-

out any food. Since the set point of controllers in this region
will be 0, if they exert a force on the birds it will only ever
be repulsive, due to accumulated error. If birds are intro-
duced into the simulation in these large repulsive regions, it
is likely that they will be pushed away from the inner part of
our simulation where all the food is located. This decrease
of fitness as a result of the introduction of feedback control is
not one which needs to exist, but simply a result of our spe-
cific implementation. It may be avoided with a change such
as only allowing the controllers to exert a positive force of
varying magnitude on the birds.

The effects of the radius around a feedback controller for
which a bird or food is considered nearby are shown in Fig.
4 and are rather straightforward. In the low food density
case, we see a decrease in the bird death rate for increas-
ing tile size. This agrees with our earlier analysis that large
regions of repulsive tiles will cause the birds to expire at a
higher rate. When the tile radius is larger, more tiles will
have food nearby. This will result in more tiles which will
tend to be attractive and fewer tiles which will tend to be
repulsive, so fewer birds will be pushed outside the region
containing the food. Tile radius does not have an effect on
the rate at which the birds accumulate energy. This is likely
because the birds are able to get the same amount of in-
formation from the feedback controllers regardless of their
radius. If neighboring controllers overlap, the information
about where the bird should go exists in the difference be-
tween their outputs. Tile radius may have more of an effect
in a system where the controllers are not equidistant from
one another.

Looking at the genomes of the birds for varying param-
eters provides us with more information about the effects
of PI control. In practically every simulation the distance
for considering food to be far or close converged to O for
all birds; the ability to have two coefficients did not grant
enough extra information to be necessary. This makes it
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Figure 5: Effective food coefficient gene observed for varying values of PI magnitude and k;, along with its standard deviation.
The effective food coefficient is the value the birds actually use, as in nearly all simulations the food distance converged to 0.

easy to analyze the food coefficient, as we can simply aver-
age across the far coefficient. For every parameter we varied
we can see a trend that this food coefficient increases as that
parameter increases. Since we performed mutation by mul-
tiplying the value for a gene by a random number centered
at 1, simulations which converge to a greater value will have
a greater standard deviation.

For increasing PI magnitude, the forces exerted by the
feedback controllers will vary more rapidly with time as
the birds move around and the proportional term quickly
adjusts. This means that for birds to compensate to this
rapidly changing environment, they must be able to accel-
erate rapidly. This is why we see the positive relationship
between PI magnitude and food coefficient in Fig. 5. For
increasing values of k;, we see two different trends for low
and high food density. Increasing the integral constant will
increase the magnitude of the feedback controller’s output.
In the low food density simulations the large regions which
become repulsive do so because of accumulated error, so for
high k; the birds need to accelerate quickly towards the food
to cross these regions. In the high food density case k; will
similarly increase the overall output of the feedback, but the
birds do not have to deal with large repulsive regions. For
lower values of k; we still see a positive trend as the accumu-
lating error will result in changes that the birds need to react

to, albeit more slowly than the proportional term. However,
for higher values of k; the accumulated error will quickly
become saturated, resulting in what will often be a constant
attractive or repulsive force. As the strength of an attractive
force of this nature will be large relative to the other forces
on a bird, that bird will be more successful if it allows itself
to be pulled toward the food by the control instead of accel-
erating towards it on its own and overshooting the target.

The genes for neighbor coefficients display a similar be-
havior to that of the food coefficient, though the magnitude
of these values is considerably lower, as seen in Fig. 6. As
all the other birds will be attempting to find and stay close
to food, moving towards them will often result in moving
towards the food they are near. Since increasing the magni-
tude of control increases the food coefficient, it follows that
it will increase the bird coefficient as well.

Conclusions

We have introduced an environmental feedback controller to
a model of swarm evolution. This introduction of control
has a significant effect on simulation dynamics; however,
the benefit of control is clearly dependent upon the goal of
the evolving swarm. In this case, control does not reduce the
rate at which birds expire, but instead leads to an increase in
energy accumulation. This type of behavior is desirable in a
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Figure 6: The coefficient birds to determine their acceleration with respect to other birds. Since the bird distance gene did not
converge to 0, these values have been averaged over the coefficient birds would use at distance greater than 50, which is higher

than the average value of bird distance in any simulation.

number of situations, for example search and rescue, recon-
naissance, and crop pollination. Our model can be readily
extended to test other ideas relating to the control of evolv-
ing swarms, and opens new possibilities for studying the in-
terface between control theory and artificial life.

Future Work

In previous work we have introduced the use of gene regula-
tory networks to actively tune the parameters of a reinforce-
ment learning-based control algorithm, where the tuning al-
lows the behavior of controllers to change over time (Har-
rington et al., 2013). Introducing this additional layer to the
controller may allow controllers to adopt different modes of
control based on context.

To further explore the effects of a PI controller, we plan
to incorporate energy sinks in the form of stationary obstruc-
tions that take away energy upon collision. Currently, the av-
erage bird death rate increases as the magnitude of the con-
troller increases. We expect with the addition of sinks that
their associated PI controllers could repel the birds away,
and thus decrease the death rate.

We also plan to allow the PI controller to regulate mo-
tion in all three dimensions, rather than only the horizontal
plane. It would then be possible to place PI controllers on
the sources and sinks of energy themselves. The function
of the PI controller could also be modified, with the goal of
sustainability in mind, pushing birds more strongly towards
food sources with high energy as opposed to the nearest food
source.

In contrast to our PI controller that promotes convergence
toward the food, it would be interesting to implement a pes-
ticide that aims to repel birds from energy sources. We could
examine the genes that characterize fit birds in such a sys-
tem, and if a particular combination of genes can overcome

the pesticide. Furthermore, we could construct an optimiza-
tion problem of how to apply pesticide by introducing a cost
proportional to the pesticide strength. We would then search
for the minimum pesticide strength that successfully repels
birds.

We believe our PI control mechanism which functions
on an input of how evenly the birds are distributed could
have applications for particle swarm optimization (Zhang
and Xie, 2003). Using feedback to try to distribute the parti-
cles evenly through the search space could help to maintain
diversity while still utilizing the benefits of swarm behavior.
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