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can be obtained as a result of LSA.
We postulate that Hebbian learning rules (Hebb, 1949) are

not only sufficient to implement LSA in a spiking neural
network, but that the use of spiking neural networks actu-
ally leads to the following emergent properties of Hebbian
rules: exploration of the space of possible connections, stim-
uli differentiation, active strengthening of synapses after the
execution of desired behavior, and synaptic pruning after
the execution of undesirable behavior. LSA therefore re-
lies on principles from both classes of reward theory cited
by Marom, with the important addition of synaptic pruning.

Hebbian rules are often inaccurately summarized with the
sentence “cells that fire together, wire together.” This sen-
tence originates from the observation that in biological neu-
ral networks, when two neurons connected by a synapse
fire at a short time interval from each other, their synap-
tic strength will change (Markram et al., 1997). But the
sentence incorrectly pictures the actual interactions between
two connected excitatory neurons:

• If neuron A fires just before neuron B, the weight of the
synapse conducting signals from A to B will increase.

• If neuron A fires just after neuron B, the weight of the
synapse conducting signals from A to B will decrease.

Therefore the actual dynamics of Hebbian rules depend
on the delay between the two spikes and the timing of those
spikes: cells that do fire together might well get unwired
from each other. Furthermore, there are different mecha-
nisms for inhibitory neurons leading to even more complex
synaptic weight dynamics (Caporale and Dan, 2008). In this
paper, we use Spike-Timing Dependent Plasticity (STDP,
Caporale and Dan (2008); Song et al. (2000)) as an imple-
mentation of Hebbian rules for spiking networks. We fo-
cus on STDP between excitatory neurons exclusively. We
demonstrate three hypotheses concerning LSA:

1. STDP alone is sufficient to realize LSA at the level of an
individual synapse.

2. STDP-enabled neurons are able to react selectively to si-
multaneous simulations in several synapses.

3. Therefore, STDP-based LSA scales up to the level of an
entire network.

Additionnaly, we show that this implementation is robust
to noise, has a high success rate and is computationally fast.

Design
Spike-Timing Dependent Plasticity
We implement STDP as proposed by Bush et al. (2010). The
equations and resulting weight variation are shown in Fig. 1,
representing a situation where a neuron NA and a neuron

\Delta w = A (1- \frac{1}{\tau})^s
\Delta w = -A (1- \frac{1}{\tau})^{-s}

Figure 1: Spike-Timing Dependent Plasticity (STDP):
weight variation ∆w of the synapse from neuron A to neu-
ron B depending on the relative spike timing s = tB − tA.
A = 0.1; τ = 20 ms.

NB fire within s ms of each other. The weight of the synapse
transmitting signals from NA to NB varies as:

wt = wt−1 +∆w . (1)

We fix a maximum value to the weight: if w > wmax, w
is reset to wmax. In the experiments identified as such, we
also apply a decay function to all the weights in the network.
The decay function is applied at each iteration t as:

∀wt, wt+1 = 0.9999995wt . (2)

In the experiments, we simulate either minimal networks
of 2 or 3 excitatory neurons with one output synapse each, or
fully connected networks of 100 neurons (Recurrent Neural
Network, or RNN). The RNN is composed of 20 inhibitory
neurons and 80 excitatory neurons. Synapses are mod-
elized by directed connections between two neurons (self-
connections are proscribed). Every neuron is connected to
each other neuron by a synapse of synaptic weight w. The
output weights are positive for excitatory neurons and neg-
ative for inhibitory neurons. The weights are initially set to
random values (uniform distribution, 0 > w > 5 for connec-
tions from excitatory neurons and −5 < w < 0 for connec-
tions from inhibitory neurons ). In both the minimal network
experiments and the RNN-based experiments, the weight of
each connection between excitatory neurons is updated at
each iteration of the simulation according to the STDP rule.
We do not apply STDP on input and output connections of
inhibitory neurons.

Network model
For the implementation of the network, we use the spiking
model of cortical neuron proposed by Izhikevich (Izhike-
vich, 2003). This model has two main advantages: it can
be tuned to accurately reproduce the dynamics of differ-
ent types of cortical neurons, and it is computationally ef-
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v’ = 0.04v2 + 5v + 140 - u + I
u’ = a (bv - u)

a = 0.02
b = 0.2
c = - 65 mV
d = 8

a = 0.1
b = 0.2
c = - 65 mV
d = 2

If v ≥ 30 mV
Then v = c, u = u + d

2 
Differential equations of the Izhikevich model

Figure 2: Equations and dynamics of regular spiking
and fast spiking neurons simulated with the Izhikevich
model. The spiking figures are reproduced with permis-
sion from www.izhikevich.com. (Electronic version of the
figure and reproduction permissions are freely available at
www.izhikevich.com)

ficient which allows for real time experimentation. It is cur-
rently the model with the dynamics the closest to biological
neurons: networks based on this model exhibit biologically
plausible behaviors, either spontaneously (delta and gamma
rhythms, polychronization (Izhikevich, 2006)) or by rely-
ing on learning schemes (conditioning with delayed reward,
(Izhikevich, 2007)).

The Izhikevich model has two main equations and a reset
condition; the parameters and dynamics of regular spiking
excitatory neurons and fast spiking inhibitory neurons are
summarized in Fig. 2. We do not discuss here the details
of the model; for the understanding of this paper it is suffi-
cient to know that v (mV) is the membrane potential of the
neuron, u the membrane recovery variable, I (mV) the sum
of synaptic inputs and externally injected currents, and ∆t
(ms) is the time resolution. We fix the time resolution to
∆t = 1 ms.

A specificity of the Izhikevich model is the role of “noisy
thalamic inputs” (refered simply as “noise” in this paper). In
this model, a noise variable mi is added to the input of each
neuron at each iteration. This noise regulates the global level
of activity of the network: with no noise at all, the connec-
tions in a small network do not provide sufficent stimulation
to lead to sustained activity. With too much noise, the net-
work enters a state where all neurons are continuously spik-
ing. We choose m as a variable with a zero-mean Gaussian
distribution and a standard deviation of σ. m takes a differ-
ent value at each iteration and for each neuron Ni.

When a neuron Nj fires, each other neuron has its input
variable augmented by the weight of the input connection
with Nj . Therefore at each iteration, the input I∗i received

by a neuron Ni from all other neurons is

I∗i =
n∑

j=0

wj,i × fj , (3)

fj =

{
1, if Nj is firing
0, otherwise

(4)

with n the number of neurons in the network, wj,i the weight
of the connection from Nj to Ni, and wi,i = 0.

An external input e, for example corresponding to a stim-
ulation from an electrode, can be added to the input of a
neuron. The total input in one neuron at each iteration is
therefore

Ii = I∗i + ei +mi . (5)

Experimental protocol
We perform two types of experiments. In the first type of
experiment (Experiments 1 and 2), we study the basis of
STDP-based LSA in a minimal network of 2 or 3 neurons. In
the second type of experiment (Experiment 3), we show that
LSA scales up to the level of a RNN with 100 neurons. The
task that must be learned in the RNN experiments is syn-
chronous population coding: we choose groups of neurons
in the network and a firing pattern for each group. The com-
bination of groups and firing patterns constitutes the “de-
sired behavior” that the network must learn to exhibit in re-
sponse to external stimulation.

The training protocol is as follows: (1) The experimenter
defines the desired behavior; (2) External stimulation is ap-
plied until the desired behavior appears, or until a time de-
lay is reached; (3) The stimulation is removed; (4) Step 2
and 3 constitute one training cycle; they are repeated until
the delay between the beginning of the stimulation and the
apparition of the desired behavior is systematically under a
fixed value (behavior learned).

Experiments and Results
1. SDTP-based LSA in a single synapse
We design the first experiment to study the weight variation
in one synapse between two neurons (Fig. 3). We control
the external stimulation e0 in N0 under 3 conditions sum-
marized in Fig. 4: (a) Stop the stimulation if N1 fires; (b)
Start the stimulation if N1 fires; (c) Stimulate N0 whatever
the behavior of N1. The delay between two training cycles
is 30 ms (except in (c) where the stimulation goes uninter-
rupted). We set the stimulation as e0 = 2 mV and the noise
standard deviation as σ = 10. These parameters are chosen
rather arbitrarily as there is no network effect to take into
consideration. The initial weight is w0,1 = 5.

At the beginning of the experiment, the synaptic weight is
comparatively low and N1 fires in reaction to both the firing
of N0 and the high random noise m1. STDP is applied to the
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Figure 3: Experimental setup: the minimal network counts
2 neurons and 1 synapse. Random noise m is added as input
to both neurons. An external stimulation e0 is applied to N0.
The dynamics of e0 depend on the experimental conditions.
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Figure 4: The three conditions used in Experiment 1 sum-
marized as a raster plot. The rectangles represent neuronal
spikes. The external stimulation e0 causes N0 to fire rhyth-
mically; firing of N0 causes stimulation in N1. In real con-
ditions, the noise and synaptic weight variations cause less
regular spiking.

minimal network, causing the weight w0,1 to vary according
to the results in Fig. 5.

During a training cycle in (a), firing of N1 causes the stim-
ulation in N0 to stop, therefore N0 stops firing. N0 lastly
fired just before N1 did, so as a result of STDP, w0,1 is
strengthened. This stronger weight in the synapse eventu-
ally leads to N1 firing directly in reaction to the firing of
N0; the delay between the application of the stimulation to
N0 and the firing of N1 decreases with time. In other words,
the minimal network learns to immediately produce the be-
havior leading to stimulation removal. The learning consists
in associating a given stimulus (external stimulation of N0)
with a behavior (firing of N1).

In (b), random firing of N1 causes the stimulation in N0

to start (therefore N0 starts firing). N1 fired just before N0

starts firing, so w0,1 is decreased by STDP: the pre-synaptic
neuron N0 will have less and less influence on the post-
synaptic neuron N1. The synaptic weight finally reaches 0.
The network learns to avoid the behavior that causes stimu-
lation (firing of N1). The same behavior that was learned in
(a) is now avoided.

Figure 5: Weight variation in one synapse depending on the
effect of post-synaptic neuron firing. The principle of LSA is
verified: behaviors conducting to stimulation avoidance are
reinforced via synaptic strengthening or synaptic pruning.
The default dynamics of STDP lead to weight strengthening
in neutral conditions, behavior which can be partly avoided
by applying a decay function.

In (c), N0 is continuously stimulated. The synaptic weight
increases slowly but continuously: as long as the firing of N1

is not clearly the cause of the external stimulation of N0, the
connexion will be slowly strengthened. The slow increase of
the weight, as opposed to stable variations around the initial
value of 5, is explained by two factors. First, N0 contributes
to the stimulation in N1. Therefore, N1 if more likely to
fire after N0 fired: spikes of N1 will on average be closer
to the last spike N0 than to its next spike. This leads to
w0,1 being reinforced; in return, this stronger weight causes
smaller time delays between the spikes of the two neurons.
This can potentially be exploited as an exploratory behavior,
but in practice, in large networks it leads to a state of weight
saturation where all neurons are constantly firing. One way
to deal with the issue is to apply a decay function on the
weights. In our network, noise is mainly responsible for the
exploration process, so we apply the decay function to avoid
weight saturation.

This simple experiment with a minimal network validates
Hypothesis 1: STDP alone is sufficient to realize LSA at the
level of an individual synapse. In a minimal network with a
single synapse, the synapse is strengthened to reinforce post-
synaptic firing if it leads to removal of pre-synaptic stim-
ulation; the same synapse is pruned if post-synaptic firing
causes pre-synaptic stimulation. Therefore STDP is suffi-
cient to realize Learning by Stimulation Avoidance at the
level of a single synapse. Additionally, by running exper-
iments with different values of external stimulation e0 and
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Figure 6: Augmented experimental setup: 3 neurons and 2
synapses. Random noise m is added as input to all neurons.
The dynamics of the external stimulations e0 and e2 are dif-
ferent and depend on the experimental conditions.

noise m, we find that the learning speed tends to decrease
when the noise level or the stimulation level are decreased.
For example, reducing the noise standard deviation to σ = 5
and the stimulation to e0 = 1 leads to a weight of only 10
in the reinforced synapse after 100 000 ms, compared to a
weight of 30 in Experiment 1. Both high noise and high
stimulation values tends to increase the firing rate of N1,
which increases the learning speed. This leads to the para-
doxical observation that noise increases the performance of
the minimal network. Furthermore, the results still hold for
extremely low signal to noise ratio (high noise, low stimu-
lation). In the next experiment, we validate Hypothesis 2
and show that the minimal network is capable of selective
learning.

2. Effect-based differentiation of stimuli
In Experiment 2, we add one neuron to the minimal network
(Fig. 6). The noise standard deviation is reduced to σ = 5 to
account for the increased stimulation in the network (due to
both w2,1 and e2). The external stimulations e0 and e2 vary
independently between 0 mV and 2 mV. N0 is stimulated
until N1 fires, then e0 is stopped for 30 ms. N2 is stimulated
by e2 during those 30 ms. So the firing of N1 causes external
stimulation in N2, but stops external stimulation in N0. The
network must tell apart these influences despite the noise:
we expect w0,1 to increase as a realization of LSA, since
firing of N1 is beneficial to N0 (it stops the external stimula-
tion). Meanwhile, the firing of N1 is detrimental to N2, as it
causes external stimulation: if LSA is realized, w2,1 should
decrease. These are indeed the results of the experiment, as
shown in Fig. 7: w0,1 (in blue) increases and w2,1 (in red)
decreases at the same time. This result is explained by the
fact that despite the noise, there are overall more spikes of
N0 just before spikes of N1 than just after, leading through
STDP to an increase in weight. Similarly, there are overall
more spikes of N2 just after spikes of N1 than just before,
leading to an decreasing weight.

We also perform a variant of this experiment where the

Figure 7: Parallel processing of two input synapses in one
neuron.

stimulation in N0 stops 5 ms after the firing of N1 (instead
of stopping instantly). Therefore not only the causality be-
tween the spikes of N1 and the end of the stimulation is
delayed, but additionally the stimulations in the two pre-
synaptic neurons N0 and N2 overlap for 5 ms. Despite
these additional difficulties, the results stay qualitatively the
same as in the original experiment, with an increased learn-
ing speed (w2,1 reaches 0 at t ≈ 40 000 ms). The increase
in speed is due to the increased firing rate of N0 as a con-
sequence of stimulation building up during the additional
5 ms.

These results validate Hypothesis 2: one neuron can re-
ceive simultaneous signals from two synapses and proceed
to prune one while strengthening the other. Therefore the
neuron will react differently to two stimulations with con-
flicting effects.

3. Synchronous population coding in a larger
network
What works for one neuron may not work in a more com-
plex network where all neurons influence each other, and
where these influences are much more difficult to tell apart.
In Experiment 3, we test the scalability of LSA in a network
of 100 neurons, all connected to each other by synapses with
initially random weights. Related works suggest that in large
random networks, having around 20% of inhibitory neurons
(as in the mammalian cortex) is important for the dynam-
ics of the network (Izhikevich, 2003; Connors and Gutnick,
1990). Therefore we set 20 of the neurons (N0 to N19) as
inhibitory neurons.

The experimental protocol is as follows: 10 neurons (N20

to N29) are chosen as input neurons and externally stimu-
lated (e = 0.8 mV). We monitor the activity in 20 output
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Initialization
Exploration

LearningLearning

Behavior learned

Figure 8: Time delay between the beginning of the stimu-
lation and the apparition of the desired firing pattern. The
network goes through different phases; a learning curve is
clearly visible. By the end of the experiment, the network
exhibits the desired firing pattern consistently and rapidly
after the beginning of the stimulation.

neurons and define the task to be learned as follows: in
a group of 10 output neurons (group A, N30 to N39), at
least 4 neurons should fire simultaneously at time t (reso-
lution = 1 ms). In a different group of 10 neurons (group
B, N40 to N49) and at the same time t, less than 4 neu-
rons should be firing. The condition on group B ensures that
we avoid a trivial solution where all 100 neurons synchro-
nize their spikes. When the desired firing pattern is obtained
from the outputs, we stop stimulating the input neurons. If
the desired firing pattern is not obtained after 10 000 ms,
the stimulation is also stopped. In both cases, the stimula-
tion starts again 500 ms after stopping. The experiment lasts
600 000 ms. The noise standard deviation is σ = 3 and the
maximum weight is wmax = 15.

Fig. 8 shows the learning curve of the network. At the be-
ginning of the experiment, the desired output is obtained at
random delays after starting the stimulation. This is an ini-
tialization phase where Izhikevich networks are subject to a
few highly synchronized bursts (see also Fig. 9). After the
initialization phase, there is an exploration phase where the
stimulation is often stopped because the maximum stimula-
tion time is reached, and seldom because the desired out-
put was recorded. The exploration phase is followed by a
learning phase, where the learning curve decreases steeply to
short reaction times. Towards the end of the experiment, the
desired output is obtained within short reaction times (less
than 2 000 ms after the start of the stimulation). Fig. 9 shows
the evolution of the network’s firing patterns. The initializa-

X 20

X 20

X 20

NBNBB

NANAA

Ninput

X 20
a) Initialization

b) Learning

NBNBB

NANAA

Ninput

c) Behavior learned

NBNBB

NANAA

Ninput

Ninhibitory

Nreservoir

Nreservoir

Ninhibitory

Nreservoir

Ninhibitory

Figure 9: Raster plot showing the temporal firing of the net-
work at different phases of the experiment. The global ac-
tivity of the network shows a particularly clear distinction
between the dynamics of the input neurons and the other
groups (input neurons fire less often than other neurons, due
to reduced input weights from the rest of the network). The
insets show the gradual partial desynchronization of the dif-
ferent groups.

tion phase (a) is dominated by long, sparse, highly synchro-
nized bursts involving all neurons. At the learning phase (b),
these completely synchronized bursts have been replaced by
more temporally distributed firing. After the desired behav-
ior is learned in (c), the raster plot shows high global activity
of the network, with short, strongly structured bursts.

We ran the same experiment on 10 additional randomly
generated networks (10 min of simulation time). Out of
these 10 networks, 7 reached a reaction time systemati-
cally inferior to 2 000 ms after only 5 min of simulation.
For these networks, the average reaction time after learning
(t > 5 min) was 108 ms. The average reaction time of the
remaining 3 networks was 1 056 ms after 5 min. All 10
networks showed an increase in the frequency of apparition
of the desired output pattern and a decrease of the reaction
time. To summarize, all networks successfully learned to
exhibit the correct output pattern, each with an average reac-
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Initialization Exploration

Figure 10: Results of Experiment 3 with no inhibitory
neurons in the network. The initialization phase is as long
as in the original conditions, but the network is stuck in the
exploration phase and never reaches the learning phase.

tion time inferior to 2 s. Therefore Hypothesis 3 is validated:
LSA is scalable to networks of 100 neurons.

We performed different versions of this experiment, and
found several interesting properties. First, the network never
exhibits the trivial solution (all neurons firing simultane-
ously) even when there is no condition on group B. Sec-
ondly, the synaptic weights never follow a trivial distribu-
tion, where the input neurons directly cause the firing of
the output neurons (winput,A = wmax). The fact that the
initial weight matrix is random is certainly the biggest fac-
tor explaining the complex distribution of the final weights.
Thirdly, removing inhibitory neurons and setting all 100
neurons as excitatory prevents the network from learning
(Fig. 10); all synaptic weights increase until saturation of
the network. It is possible that inhibitory neurons prevent the
network from forming too many recurrent excitation loops.
Finally, we performed the experiment with no stimulation
(e = 0 mV) as a null hypothesis. Fig. 11 shows that this
condition does not lead to learning of the firing pattern, as
expected.

Discussion
Although there is no consensus on the definition of learn-
ing, we believe that Experiments 1 and 2 qualify as learning
in it simplest expression: the minimal network’s behavior
changes to adapt to external influences. One neuron learned
to fire when the network was “rewarded” by stimulus re-
moval, and the same neuron learned not to fire when the net-
work was “punished” by the the application of a stimulus.
These experiments serve as simplifications to explain the re-

Initialization Exploration

Figure 11: Results of Experiment 3 with e = 0 mV. The ini-
tialization phase is as long as in the original conditions, but
with no way to differentiate the correct firing pattern from
other firing patterns, the network has no proper exploration
phase and does not reach the learning phase. The desired
firing pattern stops being exhibited.

sults of Experiment 3. In Experiment 3, the network starts
in a random state, with no knowledge about itself, the envi-
ronment, or the task that should be learned. The input neu-
rons are no different from the two types of output neurons
or from the reservoir neurons; all these groups are randomly
chosen by the experimenter. The rule governing the stimu-
lation pattern is also unknown by the network. Furthermore,
initially most spikes in the network are due to strong ran-
dom noise (the noise’s standard deviation is more than three
times as big as the stimulation). Noise is usually an issue in
artificial networks, and in artificial systems in general. But
here as in biological systems, the action of noise is mostly
non-detrimental. It is even beneficial, as random firing is
necessary to kick-start the learning process.

In true reinforcement learning fashion, the network learns
entirely by interacting with the experimental environment
and finds the correct output leading to stimulation avoid-
ance. This “correct” output can be any combination of si-
multaneously firing/not firing neurons; the location and even
the number of neurons implicated in the rule are unknown to
the network. Despite the huge search space of all these pos-
sible combinations, and despite the impossibility of learning
progressively as would be the case with a fitness function
(in our case the output is either correct or incorrect, nothing
in-between), the network correctly learns its ascribed task.
Furthermore, the task is learned after less than 5 min of sim-
ulation time on average (about 3 min in real time using a
rather slow laptop PC and a non-optimized programming
language).
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To summarize, our method allows temporal and popula-
tion coding; it is robust to noise; it is simpler that most ex-
isting learning approaches for spiking networks and requires
a smaller number of neurons; it is fast; it works with a wide
range of parameters. In experiments yet unpublished, we
find that the network can learn complex sequences of ran-
domly chosen temporal patterns (polychronization) and can
perform cost analysis over several stimulation sources. It
also exhibits more classical forms of learning like Pavlovian
conditioning.

On the other hand, one issue of this implementation is that
it is not easily scalable. At the moment, either the noise level
or the number of connections must be manually adjusted
when working with networks of hundreds or thousands of
neurons. This suggests that the network should be used in
small modules or pathways loosely connected to each other.
The true impact of all parameters (noise, stimulation, num-
ber of neurons and of connections, maximum weight) must
be further studied in future works. Another issue not treated
in this paper is the possibility to use other types of neurons
with different dynamics.

Conclusion
The principle of Learning by Stimulation Avoidance yields
promising results, and can be easily implemented in spiking
networks. STDP might not be the only possible implementa-
tion of LSA, but associated to the Izhikevich network model,
it leads to unique robustness and versatility. We believe that
the implementation of LSA presented in this paper deserves
to be submitted to more challenging tasks.
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