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Abstract 
The paper describes how, in an Artificial Chemistry under flow 
conditions, the set of organisations form a lattice. The 
consequences of this are described, in particular how a series of 
theorems, valid for lattices, can be applied to more easily 
discover the complete set of organisations. An algorithm is then 
developed that uses such theorems to explore such lattice. The 
algorithm is applied first to the NTop Artificial Chemistry and 
then to an extension of it. Due to its complexity this system is 
also suggested as a benchmark case to test new Artificial 
Chemistries’ algorithms.  

Introduction 
In 1994 Walter Fontana and Leo Buss introduced the concept 
of Organisation to represent the fixed points in Constructive 
Dynamical Systems (Fontana and Buss, 1994a, 1994b, 1996). 
Looking at Dynamical Systems they observed how they could 
predict only quantitative dynamics, and no qualitative 
development. True novelty could never appear through 
Ordinary Differential Equations. But novelty is inherent in 
this world. And it is unpredictability is what makes the world 
so interesting. So, to describe how a system could transform 
the qualitative space of possibilities, they presented the 
concept of Constructive Dynamical Systems. Those were a 
molecular based system, where new molecules could be 
generated through the interaction of existing ones. Such 
system was thought as a model for the macro-molecules inside 
a cell, but this was just one of the possible examples, of such a  
general theory. 
Using standard dynamical systems as a metaphor, they then 
went on describing what would be the equivalent fixed points 
in their system; points where no novelty would appear, and 
called such cases Organisations. A set of molecules would be 
an organisation if, and only if, for each molecule inside the 
set, there was a reaction among the molecules in the set that 
would produce it; and, given any reaction among the 
molecules of the set, the result would always be a molecule of 
the set. The first property was called Self-Maintenance and the 
second Closure. A set satisfying both of those properties 
would be called an Organisation.  
Later (Dittrich, Speroni di Fenizio, 2007) Organisations were 
then renamed Semi-Organisations when it became clear that 
those properties were not enough to permit to those sets to be 
dynamically stability. Organisations were so re-defined as 
special Semi-Organisations where it is possible for all the 
reactions among molecules inside them to be active, and have 
no molecule type diminish. 
Studying Organisations and Semi-Organisations, it was soon 
found that under quite common assumptions, those structures 
would form a Lattice. It should be noted that this it is not 

always true for every reaction system, but it is true if we 
assume that every molecule has a certain probability to 
disappear (i.e. every molecule would have an out-flux greater 
than zero). Those systems were every molecule has an out 
flux were called Flow Systems to distinguish them from the 
more general General Reaction Systems (Dittrich, Speroni, 
2007). It should be noted how all of Fontana and Buss’ 
models had an out-flux applied to each molecule that would 
destroy it at the same speed at which others were produced. 
So those models were Flow Systems, and the set of 
organisations would form a Lattice. 
Other Flow Systems are also possible; for example if we 
consider cells, and thus cell growth, although it is not true that 
each molecule has a certain probability higher than zero of 
being excreted, it is true that as the cell grows the relative 
concentration of each molecule that is not generates 
diminishes, having the same effective result as if each 
molecule was subject to an out-flux. Then when the cell 
reproduces the average amount of that molecule halves, 
eventually reaching zero after enough reproductions. Thus the 
set of molecules inside a cell form a Flow System, and the set 
of possible Organisations in a living system form a lattice. 
Vice-versa, the reaction system in the atmosphere of a planet 
is not a Flow System, but a General Reaction System, and the 
Organisations do not form a lattice but just a Partially Ordered 
Set. Flow Systems and General Reaction Systems are not the 
only possible type of Artificial Chemistries: a more detailed 
analysis can distinguish also Catalytic Flow Systems as a 
specific type of Flow System where each molecule reacts in a 
catalytic way. In other words they are not used up in the 

Catalytic Flow 
Systems

Flow Systems General Reaction 
Systems

All molecules in each 
reaction are catalytic;  
all molecules have an 
out flux

All molecules have 
an out-flux

No requirements on 
the out-flux nor on 
which molecules are 
catalytic

each semi-
organisation is an 
organisations

some semi-
organisations are 
organisations

some semi-
organisations are 
organisations

both organisations and  
semi-organisations 
form a lattice

both organisations 
and  
semi-organisations 
form a lattice

neither organisations 
nor  
semi-organisations 
form a lattice

Table 1: Different type of Artificial Chemistries produce sets of 
organisations with different properties.

Pietro Speroni di Fenizio (2015) The Lattice of Chemical Organisations. Proceedings of the European Conference on
Artificial Life 2015, pp. 242-248

DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch048
D

ow
nloaded from

 http://direct.m
it.edu/isal/proceedings-pdf/ecal2015/27/242/1903889/978-0-262-33027-5-ch048.pdf by guest on 23 M

arch 2025



reaction, while the prime material that generates the result is 
supposedly coming from a substrate of basic material floating 
around. Substrate to which each molecule eventually decays 
through the out-flux. Catalytic Flow Systems, Flow Systems, 
and Reaction Systems are quite different in terms of their 
relative properties (see Table 1).  
This paper aims to investigate the consequences of the fact 
that under flow conditions, the set of Organisations form a 
lattice. 

What does it mean to understand an Artificial 
Chemistry 
In this context understanding an Artificial Chemistry means 
having a list of all the possible organisations; for each 
organisation know what are the organisations directly above  
and below it. With the organisations A being directly above 
(directly below) the organisation B we mean that A contains B 
(B contains A), A > B, (A < B) and there is no other 
organisation C that contain B and is contained by A (that 
contain A and is contained by B), ∄ C such that A > C > B     
(∄ C such that A < C <B). Thus being able to predict, given a 
starting condition, where the system will likely evolve, and if 
we mix two different systems what the result of it will be. I 
am speaking here of broad qualitative prediction, not precise 
quantitative ones. Knowing what molecules will be present, 
while ignoring the relative quantities, is a satisfactory result. 
Suppose you have two test tubes; each with a different 
experiment of the same Artificial Chemistry (AC); each 
having a small out-flux, thus that we can be sure that the set of 
organisations of this AC is a lattice. 
If we consider the molecules inside, eventually they will 
express an organisation, as only the  molecules which can be 
generated will be present and all the others will be lost 
through the out-flux. What will happen if we join those two 
test tubes? Because the organisations in a Flow System form a 
lattice, we can immediately say that such action will generate 
the organisation union of the two organisations. And this exist 
and is unique because in a lattice the union of two elements is 
always present and unique. Of course if the organisations 
present in the two test tubes are one inside the other, then the 
union is trivially the biggest one. More interestingly we can 
ask: suppose we have two test tubes, where two organisations 
are expressed, A and B; suppose we want to add some 
molecules to both A and B without changing the organisation 
inside; what can we add? And the answer is: we can add 
anything from the organisation C, where C is the organisation 
intersection between A and B. Again we know that C uniquely 
exists because the set of organisations form a lattice. 
From this appears obvious that we do not only need to know 
the set of organisations, but also know the content of the two 
tables that given any two organisations A and B would tell us 
their union (A ∪ B) and their intersection (A ∩ B). 
Calculating those tables is also something that becomes more 
efficient by the fact that those organisations form a lattice and 
thus we can use theorems from lattice theory to calculate 
some of the results. 
Thus understanding the set of organisations gives us some 
clear, practical abilities to understand what happens in an 
Artificial Chemistry. And when this is a lattice, it all becomes 
easier. 

Basic Known Definitions from Previous Work 
In a reaction system a closed set C is a set of molecules such 
that given any two molecules their reaction is still contained 
in C. A semi-self-maintaining set S is a set such that given any 
molecule m that is consumed in S, there exist a reaction inside 
S such that m is produced. Any set that is both semi-self-
maintaining and closed is a semi-organisation. A self-
maintaining set S is a semi-self-maintaining set such that there 
exist a reaction speed for all reactions among the molecules in 
S, with each reaction speed higher than zero, and such that 
each molecule has a production rate higher or equal to zero. In 
laymen’s terms, a semi-self-maintaining set is a set where all 
molecules can be produced, and a self-maintaining one is one 
where this is globally possible. In Catalytic Flow systems the 
two coincide as every semi-self-maintaining set is self-
maintaining [Speroni di Fenizio, 2007].  
Given any set F, we can generate its closure as the smallest 
closed set containing F. This always exists (albeit it can be 
infinite in size, if the AC contains an infinite diversity of 
molecules) and it is unique; we will indicate this as GC(F).   
Given two closed sets, we can define the closed union (⨆C) as 
the closed set generate by the union of the two sets. Thus    
∀A, B, closed sets; A ⨆C B ≡ GC ( A∪B ). Similarly we can 
define, A ⨅C B ≡ GC ( A∩B ). And then if C is the set of 
Closed Sets, <C, ⨆C, ⨅C> will be a Lattice.  
Given any set F we can generate its semi-self-maintenance 
subset GsSM(F) as the biggest semi-self-maintaining subset 
contained in F. Again this exists and is unique. In a Flow 
System (but not in always in a reaction system), if we take a 
closed set C and we apply the operator GsSM(C) the result is 
still closed. So given any set F we can associate a semi-
organisation to it as GsO (F) = GsSM (GC (F) ). This can be 
expanded by defining the operator Generate Self Maintaining 
set: GSM (T) as the operator that returns the biggest Self 
Maintaining Set contained in T.  
Applying the equivalent definition of union and intersection 
among semi-self-maintaining sets, self maintaining sets, semi-
organisations, and organisations, we obtain that in Flow 
Systems the set of semi-self maintaining sets, self maintaining 
sets, semi-organisations and organisations are all lattices with 
their respective union and intersection. Thus if O is the set of 
organisations in a Flow System <O, ⨆O, ⨅O> is a lattice. But 
not necessarily in a reaction system. We shall now explore the 
consequences of this. 
Note: In the rest of the paper we shall use ⨆ to mean ⨆O and ⨅ 
to mean ⨅O. 

Useful Theorems 
There are several theorems from Lattice theory which can 
help in mapping the lattice of organisations, and thus 
understanding better an Artificial Chemistry. Generally 
speaking if we have two organisations A, B then                     
A ⨆O B = GSM (GsSM (GC (A ∪ B))). Those calculations can be 
long, so if we can shortcut the calculations just by working on 
the knowledge we already have this speeds up sensibly the 
work. In passing we note that in a Flow System for all sets A, 
although GSM (GsSM (A)) = GSM (A), it is usually faster to 
calculate it as GSM (GsSM (A) ) as |GsSM (A)| < |A|, and GsSM 
being an algebraic operator is usually faster to calculate than 
GSM. 
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Theorem 1: If A, B and C are elements in a Lattice              
<L, !, !>, then we know that (A ! B) ! C = A ! (B ! C).  
Now suppose that we have two organisations, S, C, and we 
are interested in calculating T = S " C. If we can express S as  
S = A " B then T = S " C = (A " B) " C =A " (B " C). And if 
we know the value of B " C (for example, B " C = R) then              
T = S " C = A " R. Similarly if we need to calculate A " R. 
Since R = B " C then S " C = A " R. So calculating the union 
of one of those relations will solve also the other. Same 
reasoning can be applied for the intersection. 

Theorem 2: Suppose we have three organisations, A, B and C 
with A contained into B and B contained into C                  
(thus A < B < C ). And let R be a fourth organisation. If we 
want to calculate B " R; and we know that A " R = C " R 
then B " R = A " R. In other words if we have two 
organisations, A and B and, when interacting with an external 
organisation R both will give a particular result S (that is        
S = A " R = C " R), then every other organisation in between 
A and C if united with R will be equal to S.  

Theorem 3: Suppose we have two organisations, A, S with    
A < S then A " S = S then we can consider that given any 
other organisations B, such that A " B = S, for every 
organisation C such that A < C < S then C " B = S. 
Symmetrically for every D such that B < D < S, A " D = S. 
But since C " B = C " S, and B < D < S then C " D = S. 
So once we calculate a single union we can fill in several 
entries of the Union Table. The same symmetric reasoning, 
with exactly the same dual theorem, can be applied for the 
intersection. We will now use those theorems to find the 
lattice of all organisations. 

Finding the Lattice of Organisations 
Let M be a set of Molecules, with a reaction * such that         
" a, b # M: a*b # M ! $. Let <M, *> be an Artificial 
Chemistry. Let <O, ", #> be the lattice of Organisations over 
<M, *>. 
We need to find all the organisations in O. Let us start by 
assuming that we have two basic organisations, the empty set 

$, and M: $, M # O. Those will be the top and the bottom 
organisations in the lattice. Every lattice with a finite number 
of elements has always a top element (the union of all the 
elements, also called the 1) and a bottom element (the 
intersection of all the elements, also called the 0). So we start 
by taking the bottom element as the organisation generated by 
the empty set, and the top element as the organisation 
generated by the set of all molecules.    
One obvious solution to find all organisations is to check 
every single subset of M, which means checking 2|M| subsets. 
If M is big this could be impractical or simply impossible. 
Let’s look at ways in which we can exclude some sets without 
testing them. In fact without even listing them. 
To reach O we are going to build a chain of sub-lattices of 
organisations, N0 < N1 < … < Nm = O, with N0 the sub-lattice 
generated by the empty set and by the set of all molecules:                   
N0=<{G0($),GO(M)},",#>. Note that given a set of 
organisations P, it is trivial to build a sub-lattice out of it just 
by taking the closure respect to " and #. 
Thus once we have the sub-lattice Ni, and we find another 
organisation H, we can calculate Ni+1 as GC"# (Ni ! H). Where 
with GC#" (P) we indicate the set of all organisations that can 
be generated by recursively applying the organisation union, 
", and the organisation intersection, #, between organisations 
in P and the organisations generated in this process.  
When we are doing this we also store two tables, the Table of 
Unions of Ni: T"i, and the Table of Intersections of Ni: T#i. In 
general for every A, B in Ni, T"i will store A " B and T#i will 
store A # B. And being Ni a sub-lattice, we know that both                
A " B, A # B # Ni. Thus we know that if the tables T"i T#i
are complete with every union and interaction calculated, and 
the result is an organisation known we do not have to proceed 
further, and we have found a sub-lattice. It is important that 
this process of calculating all the organisation union and 
intersection is made as efficient as possible. In this we are 
helped by the fact that O is a lattice, and thus we can apply the 
theorems listed above. 

Adding one molecule at a time 
Let us start by assuming we have a sub-lattice of organisations 
Ni, then " B # Ni, we need to test all the molecules that are 
not in B, so " e # M \ B, we need to study Be . Calculating 1

Be leads to 3 possible outcomes:  
1) Be = B; 
2) Be = C with e % C and B < C; 
3) Be = C with e # C and B < C. 

In the first case we will say that e, in the context of B, goes 
down (case 1); goes by the side (case 2); or goes up (case 3). 
So we go through all the molecules and we store for each 
molecule e, if in the context of B, e goes upward, downward, 
or sideward. We also store the generated organisation Be. 
For each new organisation H that we find, we expand Ni into 
Ni+1 by adding the organisation to the list of known 
organisations, and calculating the union and intersection 
closure. Of course, if B ! {e} = C, with C already a known 
organisation, we don’t need to test Be at all, and we know we 
are in case 3. 

Note: In this paper we will indicate briefly GO({e}!B) as Be, for every molecule e, and similarly if we need to test a set adding 1

two molecules, e, f, we will indicate GO({e}!{f}!B) as Bef.

BA

S

C D

Figure 1: Theorem 3. If A " B = S, any organisation C between A 
and S united with any organisation D between B and S will 
always produce S. We do not need to calculate C " D. 
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Once we have finished exploring what happens by adding one 
molecule to a specific organisation, we continue with the next 
organisation, still maintaining the memory of all the 
molecules that added to B go up, on the side, or down.  
Also note that if Be goes sidewards generating C, then Ce will 
go downward, so we do not need to test it. 
Once we have finished exploring for each known 
organisations (which included the new ones we might have 
found in the meantime), what happens when we add one 
molecule, we need to consider what happens when we add 
two molecules. This is where some shortcuts will be possible. 

Adding more than one molecule at a time 
Let us start by saying that if we have two sets of molecules x, 
y, and two organisations B and C, with B < C, we do not need 
to test Bx if we can prove that Bx = Cy. Because we will 
already consider the organisation generated by Bx, when we 
consider the organisation generated by Cy. Let us suppose we 
take an organisation B, and two molecules e, f in M\B. Do we 
need to test Bef? We need now to look at the combinations 
depending if e or f of upward, downward or sideward: here we 
find a symmetric matrix with 6 different cases (see table 2): 
If e goes up, than Be = C thus for every f, Bef = Cf. So any 
organisation that would be found through Bef will be found 
through Cf. So if either e or f goes upward, we do not need to 
test Bef. This clarifies cases 1, 2 and 3. We will immediately 
state that we are going to test Bef in case that both e, f go 
downward. And this clarifies case 6. 

We need now to explore case 4 and 5. Let us suppose that e 
goes sideward, while f goes downward. So we are in case 5; 
do we need to test Bef? Since Be goes sideward, there exist an 
organisation C such that Be = C with e ∉ C and B < C. So Bef 
will be equivalent to test Cef. And since C > B than we will 
simply test this as part of testing C.   
Finally let us consider the case where both e and f go 
sideward. In this case Be = C; Bf = D. Thus there exist an 
organisation H such that C ⨆ D = H. Now Bef = Hef, but B < 
H, so we do not need to test it as part of B. And the result is 
that we only need to test sets of molecules such that all the 
molecules in this set go downward (table 3).  

To summarise: So far the algorithm proceeds as follows: 

Let L0 be the starting sub lattice of organisations; 
let O be the set of organisations known; 
let Up, Down, Side  be empty dictionaries; 
for each organisation B in O: 
 for each m not in B ∪ Down[B] ∪ Up[B] ∪  Side[B]: 
  calculate Bm; 
  if Bm = B:  
   Down[B].add(m); continue; 
  if Bm not in O: 
       calculate Li+1 from Li, Bm, using the theorems above;  
   expand O with Li+1 \ Li; 
  if m not in Bm: 
   for each organisation in Li+1, C between B and Bm: 
    Up[C].add(m) 
   Down[Bm].add(m) 
   Side[B].add(m) 
  else: Up[B].add(m) 

At this point a sub lattice Ln will be discovered with a general 
structure with all the organisations that can be reached by 
adding one molecule at a time, and applying the union and 
intersection operations. This is not the complete lattice yet. 
For each organisation O we need to add the organisations 
generated by adding to O to every possible set S made up with 
molecules from Down[O]. In this case we can distinguish in 
four possible results (one more than before):  

1) downward case: OS = B;  
2) upward case:      S   ⊂ OS;   
3) sideward case:    S   ⊄ OS, S ∩ OS = ∅;  
4) diagonal case:     S   ⊄ OS, S ∩ OS ≠ ∅. 

The fourth case, the diagonal case, is the new one and happens 
when S is partially contained in OS. Again, as we build the 
sets S from the smallest to the biggest we do not need to check 
the organisation generated by any set that has a subset T such 
that O < OT. The proof follows the exact same structure as the 
proof above.  
So given any organisation discovered we need to test it by 
trying to expand it with the molecules not in it, one by one. 
And with every subset of the “downward” molecules. While 
we do not need to test a set of “downward” molecules if it 
contains any subset which is upward, sideward, or diagonal. 
So the obvious thing to do, is to start with the smaller 
organisations, with the smaller subsets, and slowly build our 
way up.  

Table 2: Will adding two molecules at the same time to an 
organisation produce novelty? Depends on what each molecule 
does by itself. Six cases are possible.

cases
e goes

Upward Sideward Downward

f goes

Upward 1 2 3

Sideward 2 4 5

Downward 3 5 6

Table 3: If we consider two molecules at the same time and add them 
to an organisation, this can produce novelty that would not be found 
through other ways only in one case.

cases
e goes

Upward Sideward Downward

f goes

Upward ✓ ✓ ✓

Sideward ✓ ✓ ✓

Downward ✓ ✓ to test
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The “No Organisation Left Behind” theorem. 
We need now to prove that once the algorithm is followed, 
every organisation in the lattice of organisations will be found. 
This can easily be shown.  
Suppose by contradiction that C is an organisation in the 
Lattice that has not been found with the algorithm. Suppose 
that B is the maximal organisation contained in C found by 
the algorithm. Such organisation is unique because if there 
were multiple maximal organisations, the union of them 
would also be contained in C and would be known because (as 
part of the algorithm) we are studying the union of all the 
known organisations. Similarly we assume that C is the 
minimal organisation unknown above B. So B < C, A 
maximal organisation known under C, C minimal organisation 
unknown above B. Now we need to show that following the 
algorithm we would discover C, against the hypothesis. 
Let S be the set of molecules in C, but not in B; S = C\B. Thus 
obviously BS = C.  
If we consider any subset T of S, B < BT < C. Since B is self-
maintaining and C is closed, B ! GO (BT) ! C.  
Now, as part of the algorithm we explore one by one the 
subsets of S starting with the smaller one. For each subset T: 
either T goes upward letting C be discovered; 
or T goes sidewards or diagonal. But in this case there would 
exist an organisation D = BT, with B < D < C. Now if D is 
known, it would be against the hypothesis that B is Maximal, 
and if it is unknown, it would be against the hypothesis that C 
is minimal. So there cannot be a D such that D = BT. 
Thus for all T, T must go downward, eventually letting us test 
S and discovering C. Against the hypothesis. So this algorithm 
explores the full lattice of organisations. 
A preliminary version of the code is available at ( https://
github.com/pietrosperoni/LatticeOfChemicalOrganisations ) 

Testing the Algorithm on the NTop 
To test out the system it was used the NTop Artificial 
Chemistry (Banzhaf, 1993, 1994). This artificial Chemistry 
uses boolean vectors of size 4 as molecules, which are then 
folded into 2x2 matrixes, to react. This results are 16 reacting 
molecules. One of those acts as an algebraic zero      (0 * a = a 
* 0 = 0, for every a) and it is usually eliminated. With the 15 
remaining molecules it is possible to obtain 54 organisations 
out of a space of 32.768 possible subsets. The Brute Force 
algorithm tests all those subsets. Instead the algorithm 

developed above was applied. The first step is to take two 
trivial organisations and the top, o1, and the bottom, o2, were 
taken. Then the bottom one was expanded, by adding one by 
one the 15 molecules. The first molecules led to o3. But the 3 
organisations (o1, o2, and o3) formed a sub-lattice so it was 
not possible to expand this further. Second, and third 
molecules also generated o3. The fourth molecule, added to 
o2, generated o4. But now it was possible to find o5 as         
o5 = o3 " o4. Again o1-o5 formed a sub-lattice. The next 
molecule generated o6 and permitted to find o7, o8 and o9. 
o10 lead to o11-o14; o15 all the way to o23. So each 
organisation found would usually bring others with it, easily 
calculated. Once the o1-o23 sub-lattice of organisations was 
found, all the organisations, that could be found by adding a 
single molecule to o2 had been discovered. Also each 
molecule tested was divided into downward, upward and 
sideward, thus simplifying the tests to do later on. Then the 
algorithm started expanding on those organisations. 
Expanding o3 did not discover any new organisation. As did 
o4, o5, …, o9. expanding o10 lead to o24 (and nothing else). 
Expanding o15 lead to o27, then to o32 and finally to o42. 
And then nothing else. At this point a sub-lattice was found 
where adding a single molecule to each of the known 42 
existing organisation would always lead back to a known 
organisation. o1-o42 was not just any sub-lattice, but a sub 
lattice that could not be pierced by adding a single molecule at 
a time. Then the algorithm started adding 2 molecules at a 
time. Expanding o6 it was possible to find o43 which then 
interacting with the other organisations generated o44 to o54. 
It was important to follow the algorithm, not just to 
understand it better, but because it showed a number of 
informations about the lattice. First and foremost the fact that 
the lattice has indeed a number of sub-lattices. Each new 
organisation found permit us to expand the space of the 
known organisations to the next sub-lattice in a chain that 
leads to the complete lattice. Although only 10 basic 
organisations calculated were necessary to generate the whole 
lattice, nothing tells us how to find those generators. Indeed 
finding a minimum number of generators, or just even any set 
of generators of organisations, is an open problem. 
It was also interesting to count how many relations among 
organisations needed to be calculated, and how many could be 
derived from the theorems. The results  (figure 2) suggests 
that as the number of organisations grows the number of 
organisations that needs to be calculated drops following a 
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Figure 2: NTop Original: Number of organisations in each 
subsequent sub-lattice; the complete lattice, 54 organisations, was 
found in 10 subsequent expansions.
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Figure 3: NTop Original: Percentage of Union or Intersection 
calculated by hand as opposed to extrapolated with the 
theorems.
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power law (making a straight line on a log-log plot). While the 
remaining relations can all be derived theoretically. 

Testing the Algorithm on the Expanded NTop 

To try the algorithm on a more challenging artificial 
chemistry, it was applied to an expansion of the NTop. This 
time molecules of size 9 were used, which then were folded as 
3x3 molecules. This gave 512 molecules. The folding can be 
done in 9! ways, and this both for the molecule on the right 
side and on the left side, thus producing 9! * 9! possible 
Artificial Chemistries. Then the resulting matrix will contain 
numbers between 0 and 3, and this will be mapped onto the 
set {0, 1}. This mapping can be done in 24 possible ways. The 
resulting boolean 3x3 matrix must then be unfolded, and this 
also can be done in 9! ways. So in total there are                    
24 * (9!)3 =1.9 * 1017 possible Artificial Chemistries. Many of 
those chemistries produce only a trivial lattice of organisation. 
For example a lattice that would only contain few 
organisations, or where every set was an organisation.  
In our case, if we consider the molecule !
a = [a1, a2, a3, a4, a5, a6, a7, a8, a9],   
the molecules was folded as 

[a1, a4, a7] 
[a2, a5, a8] 
[a3, a6, a9]  

when it would react on the left side, and as  
[a1, a2, a3] 
[a4, a5, a6] 
[a7, a8, a9]  

when it would react on the right side of the reaction. The 
result is then transformed according to the map:  
f(x) = {0$0; 1$1; 2$1; 3$0}  
and the resulting boolean matrix was unfolded so that from 
the matrix:                       
                                       [a1,1, a1,2, a1,3] 

[a2,1, a2,2, a2,3] 
[a3,1, a3,2, a3,3] 

the vector [a1,1, a1,2, a1,3, a2,1, a2,2, a2,3, a3,1, a3,2, a3,3] was 
produced. As with the NTop, the algebraic zero,                        
0 = [0,0,0,0,0,0,0,0,0] was excluded. And in this case also the 
molecule 1 = [1,1,1,1,1,1,1,1,1] was excluded. The result is an 
AC with 510 possible molecules, 2510 possible sets of 
molecules; more than 10153 sets to test. Obviously too many to 
directly test them all. 

Results 
The algorithm described in this paper was applied. For now it 
was not possible to find all organisations. 
As with the NTop the algorithm started with the lattice which 
just included the empty and the complete organisations. Then 
it expanded the set of organisations going through 29          
sub-lattices of respectively of 3, 5, 9, 17, 33, 84, 107, 133, 
173, 238, 365, 672, 1604, 1612, 1703, 1978, 2066, 3284, 
3522, 3557, 4711, 4713, 9377, 9641, 10090, 10196, and 
10288 organisations (figure 4). After which no new 
organisation was found expanding the empty organisation. So 
10288 organisations were found just by adding 29 times a 
single molecule to the empty organisation. This created also 
two symmetric tables with all the intersection and unions. As 
the algorithm went on those tables were completed more and 
more using only the theorems. Again as the number of known 
organisations grew the percentage of organisations that 
needed to be calculated by hand decreased following a power 
law (figure 5). As such the more the lattice is known, the more 
powerful those theorems are to find the remaining 
organisations.  
Of the 510 molecules 29 permit us to find all the organisations 
that could be generated by the empty set. Then those 
organisations started to be expanded themselves. 
After the 10288 organisations sub lattice was found the 
algorithm tested one by one each of those organisations, and 
for the first 83 organisations, adding a single molecule would 
keep generating well known organisations. Then on the 84th 
organisation a molecule was added that expanded the sub 
lattice, from 10288 to over 69000. And then at 69779 the 
system could not handle the data using more than 150 
gigabyte of RAM and crashed. It should be noted that in a 
space of 2510 molecules it was realistically impossible to map 
the whole space of all the organisations. 

Testing the Algorithm against the Brute Force 
As a final test the Brute Force Algorithm was applied to this 
Artificial Chemistry. On a home laptop it only found 263 
Organisations before crashing. And the average time to find 
each organisation was 42 seconds. While the home laptop 
could find 3000 organisations keeping an average of 0.2 
seconds per organisation. In figure 6 the two averages are 
compared for the first 263 organisations. It should 
nevertheless be noted that both averages were growing 
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Figure 5: Percentage of Union or Intersection calculated by hand 
as opposed to extrapolated with the theorems.
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Figure 4: Number of organisations in each subsequent sub lattice.
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although the difference kept increasing. Also it is important to 
remember that the Brute Force only returns a set of 
organisations. No informations about the relative relations 
between the organisations, is returned. What organisations are 
above or below which others; what is the union or 
intersections of two organisations, is an information which is 
equally missing. All information that the Lattice Algorithm 
can easily return as it needs them to compute the lattice. So 
not only is the Brute Force much slower and generally un-
efficient algorithm. But it also is insufficient to really let us 
know an artificial chemistry.  

Consequences and Conclusions 
Reaction networks appear everywhere. And in their 
exploration the study of organisations, and their lattice is a 
necessary step to really understand their global behaviour as 
constructive dynamical system. The fact that organisations 
form a Lattice permit us to compute them faster. Although 
several results claim to be able to find all the organisations of 
a reaction network (Centler at al 2008, Centler at al 2010) 
they never used the algebraic properties of the Artificial 
Chemistry (namely that it is a lattice).  
Another important aspects that was uncovered in this work is 
the concept of sub-lattice, as a subset of organisations such 
that each union and intersection is an organisation inside the 
sub-lattice. From mathematics we know that if we consider 
the space of all sub-lattices of a lattice, they form a lattice, 
too: the lattice of sub-lattices of the lattice of organisations. 
Such lattice is not explored here, instead we merely extract a 
chain inside such lattice of sub-lattices and use this to build 
the lattice of organisations. Interestingly on the NTop system 
we could identify a sub lattice of organisations that was closed 
respect to the operation of adding a single molecule to any 
organisation. This shows that if we must find all the 
organisations, we cannot simply consider adding 1 molecule.  
But it also means that in some situations we are not interested 
in the complete lattice of organisations, but only in a sub-
lattice since the the artificial chemistry will only explore that. 
For example in a Flow System both organisations and semi 
organisations form a lattice. But while each organisation is a 
semi-organisation the opposite is generally not true. Thus the 
lattice of organisations is a sub-lattice of the lattice of semi-
organisation. And this fact could be used to map it. 
Similarly, Artificial Chemistries are not the only case of lattice 
present in the fields of Bioinformatics, Artificial Life and 

Systems Biology. Researchers looking at autocatalytic cycles 
and closed sets also are looking at sets of molecules that form 
lattices. Thus the same procedures that were exposed here, 
and the same theorems, can be applied over there, with 
comparable results. 
Every research clarifies some elements, while opening new 
questions.  
- In particular it is still unclear what is the most effective way 
to apply the lattice theorems to study the lattice of 
organisations. Yes, theorems can shortcut the calculations, and 
we could see that the algorithm was at least three orders of 
magnitude faster than the Brute Force algorithm (and the 
difference was increasing), but finding which theorems can be 
applied can be time consuming as well. So a smart strategy 
might need to be applied to chose when to try to apply the 
theorems, as a further improvement of the algorithm.  
- Also it is unclear why the number of times the theorems are 
not applicable follows so closely a power law. This might be 
related to the nature of the Lattice of Organisations as a graph. 
But the details are still missing. 
- The roles of sub-lattices, what is the sub-lattice of sub-
lattices, and how the sub-lattices of the lattice or organisations 
can be used to study an ecology of different experiments on 
one artificial chemistry is also an open question. 
- And finally the artificial chemistry presented here is very 

vast and exploring it all is at the moment impossible. It 
could as such be used as a benchmark for future work. 
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Figure 6: Average time needed to find an organisation, for the 
first 263 organisations as the number of organisations grows.
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