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the law of diminishing returns (Lipsitch et al. 1995), where
the animal must find out when it is more beneficial to stay
or leave a resource. As such, the potential strategy are also
similar to those of Hawk and Dove: one can either bet on
the others leaving, which might lead to a depleted resource,
or leave beforehand for a hopefully more plentiful spot.

The goal of this research is to investigate the behavior of
individuals playing a continuous, spatial variant on the war
of attrition or snowdrift (Sugden 2004). We are especially
interested in the emergence of behaviors that are in between
the expected strategies from the discrete version of the game,
and the way those strategies interact, when mixed in a pop-
ulation.

In this paper, we thus make use of agent-based modeling
(ABM) with a simplistic setup to investigate foraging be-
havior. We do not explicitly seek the optimal behavior, but
rather interpret the behavioral data generated by modeling
optimal adaptations to environmental niches (Seth 2007),
and focus on analyzing the interaction of agents adopting
different strategies (Stephens and Krebs 1986). Several type
of behaviors are evolved, ranging over a spectrum going
from frugal to greedy. We found examples of evolved be-
haviors from any position of the spectrum, forming their
own niche. Once those behaviors are brought together, we
observe however that a compromise turns out to be the best
solution. We also show that this solution corresponds to one
of a few populations of agents, that have fine-tuned their tim-
ing of leaving the resource patches. This “leaving” behavior
with a precise timing allows to exploits resources without
completely depleting them, producing Volterra-like popula-
tion tendencies.

Model
We simulate a population of individuals controlled by neu-
ral networks, moving about on a two-dimensional toroidal
map (Figure 1). The environment is composed of mostly
empty space with a preset number of food patches randomly
distributed.

The agents have to forage for food, giving them the en-
ergy they need to survive and produce offspring throughout
the simulation. Agents movements and decisions are calcu-
lated per iteration, which represents the quantum of simu-
lated time. Each iteration, the output of the neural network
of an agent, as well as its position and energy are updated.

Methodology
Agent are embodied in the sense that they have a position in
the environment. Overlap is allowed: it is possible for two
agents to occupy the exact same spot. Agents have an inter-
nal amount of energy that is depleted over time. This energy
can be increased by staying on food patches, up to a fixed
maximum. If the internal energy of the agent reaches zero
or below, the agent ”dies” and is removed from the simula-
tion. Agents also die once they lived until their maximum

Figure 1: Simulation map. Every agent is represented by
a small circle, with color representing its genotype (i.e. a
vector encoding the weights of its neural network) and color
intensity representing its current energy level. The large red
circles represent the resource patches, where lighter color
indicates that the state of depletion of the patch.

age (1000 iterations). This approach is aimed at favoring the
apparition of new genotypes and behaviors.

Agents take actions based on the output of their neural
controller, which is implemented with an Elman artificial
neural network (Elman 1990) with an architecture in three
layers, similar to (Witkowski and Ikegami 2014). The net-
work consists of two input units (encoding the current en-
ergy of the agent and the amount of energy received at this
iteration), fully connected to two hidden units, themselves
fully connected to two outputs units (deciding their steering
angle and speed).

Agents are thus not directly playing the snowdrift game
in the classic sense. Nonetheless, their position is a form of
play, since they can choose how long they will remain on a
food patch, or how often they will move.

All nodes in the neural network take activation values be-
tween 0.0 and 1.0. All output values are also floating values
between 0.0 and 1.0, the first motor output is then converted
to an angle between −π to π, and the second motor output
converted to a speed factor multiplying the velocity. The ac-
tivation state of internal neurons is updated according to a
sigmoid function.

The network’s weights are evolved following a similar
algorithm to previous work (Witkowski and Aubert 2014):
each agent, when it reaches a given energy level, produces
an offspring. Each weight in the offspring’s network is mu-
tated with the rate given in Table 1. The offspring will start
with a set initial energy, equal to the energy lost by the par-
ent. Reproduction is always asexual, with only one parent.

Energy gathering
Food patches provide energy to the agents that are on top of
it. However, overfeeding leads to a depletion of a patch’s in-
ternal energy. Energy is stable if there is only one agent, de-
creasing if there are multiple agents, and slowly recovering
if no agent is present. Each agent receives a reward equal to
maximum reward per patch times the current energy fraction
of the patch. Note that for a patch more that 50% depleted,
agents are actually losing energy overall. It is also possible
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Figure 2: Typical energy intake over time for an agent on a
patch. The number n of agents on the same patch fluctuates
over time. When this number is higher than one, the patch
gets depleted, in turn leading to a lower amount of food dis-
pensed in total by that patch.

for two patches to overlap, in which case agents get the sum
of all rewards. As mentioned above, agents reproduce when
their total energy reach the reproduction value, which can
thus be considered a soft maximum.

Depletion rate per agent and recovery speed are shown
in Table 1. If a food patch is completely depleted, it is de-
stroyed and a new patch is generated at a random position.
This keeps the total number of patches identical throughout
the simulation.

A typical example of energy consumption over time, by
an agent on a patch, is shown in Figure 2. The energy values
are here arbitrary. The energy intake starts dropping when
more than one individual are on the same patch. The optimal
time spent on a patch, maximizing the overall ratio between
resource intake and time spent foraging and traveling, can
be visualized by connecting the average transit time on the x
axis tangentially to the cumulative resource intake (see Fig-
ure 3). The optimum is however expected to change over
time based on the interaction with other agents, which will
be dependent on evolutionary dynamics.

Experimental setups
The experiment is separated in three stages. First, in the
training phase, agents neural controllers are independently
evolved, and the surviving agents are selected for the next
phase. Second, in the analysis phase, these strategies are
analyzed. Thirdly, in the tournament phase, the resulting
agents are evaluated against each other.

At the beginning of the first phase, in each simulation,
the world is populated with 500 random individuals. This
population is evolved for 5000 iterations, which yields in
most cases a uniform population (in the sense that all agents
alive have a relatively close common ancestor). The last 5
generated individuals are then stored for the next phase. This
approach allows us to get a sampling of the evolved strategy

Figure 3: Cumulative resource intake and optimal time to
leave a patch. This diagram illustrates the optimal point to
leave a resource patch in order to maximize the amount of
energy gathered per time spent foraging and traveling, by
connecting the average transit time (arbitrarily 25 iterations
in this example) on the horizontal time axis tangentially to
the cumulative resource intake. The resulting optimal time
to leave a patch is therefore 20 iterations.

in the run. This was repeated over 6 runs to gather a total
of 30 agents. While the sampling might be insufficient to
capture completely the strategy of a given population, it was
enough to gather a variety of behaviors.

During the second phase, mutations were disabled and the
world was seeded with one agent at a time. Agents behavior
was categorized by hand and then linked to metrics from
runs. Those behaviors are detailed in the next section.

Finally, in the tournament phase, in order to evaluate all
the strategies the agents evolved, we performed 100 runs
seeded with the 30 individuals. Mutations were again pre-
vented to ensure that the strategy is kept intact throughout
the run. This is akin to dilating the time scale from the ”evo-
lutionary” scale to a sort of instantaneous interaction scale.
This was done in particular to protect highly tuned strategies
that does not resist well to mutation.

As a complement, we also performed the same tests where
agents were allowed to evolve (i.e. where mutation was ac-
tive, allowing for progressive change in the behavior of new-
born agents with respect to their parents’), which is similar
to introducing all species in a common environment. In this
case, the robustness of the strategy and its potential adapt-
ability was the paramount factor, yielding slightly different
results.

Results
In simulations, a full spectrum of behaviors have emerged.
While they all lead to agents to consuming the food resource,
the level of selfishness varies, ranging anywhere between
frugal (dove) and greedy (hawk) strategies. The most com-
mon approaches observed are listed below, in increasing or-
der of greediness. The distribution of agents among those
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Parameter Value
World height 800
World width 800
Initial pop (normal run) 500
Initial pop (tournament) 30
Max population 10000
Starting energy 100
Reproduction energy trigger 200
Reproduction cost 100
Existence cost 1
Food patches 200
Patch size 20
Maximum reward per patch 2
Patch recovery per iteration 0.25
Energy decrease per agent 0.04
Maximum patch energy 50
Maximum speed 10
Maximum age 1000
Mutation rate 10%
Mutation factor 0.1

Table 1: Simulation parameters. Note that we implement a
maximum population, but that, with the current settings, this
limit is never reached.

strategies is shown in Table 2. Note that the Table indicates
a larger variability in strategies than expected for purely uni-
form populations. This is due to the fact that agents close in
genotype space can have different behaviors due to muta-
tions.

Butterfly Those agents are not staying long in a given
place. They tend to gather energy for a few iterations, then
move to another patch in straight line. Overtime, agents
tend to accumulate enough energy to make children, mak-
ing this strategy viable. The overall amount of generated
offspring is low, and mortality rate is high. This strategy can
thus be outperformed by most other. However, in a setting
where multiple aggressive strategies are competing against
each other, butterflies are mostly unaffected, and can some-
times weather the fight. In this case, they remain the last
species standing.

Circle Those individuals are staying close to a given food
patch, but making big circles so that only a fraction of their
time is spent on the food patch. This strategy keeps the total
number of agent on the patch.

Explorer In this case, agents find new food patches, stay
long enough to reproduce. Once the energy level of the food
patch starts decreasing, they move on to the next spot. This
strategy can be considered the ”average” of the spectrum.

Spore With this approach, agents colonize a patch, repro-
duce until near exhaustion, and then massively spread at
once when the remaining energy is not enough to offset the
leaving cost. This strategy yields ”bursting” events, similar
to the release of spores or viruses. These spores then popu-
late the nearby food patches and repeat the process.

Static While this is not a viable strategy for a whole
species, or even for a group, a few agents evolved this be-
havior. Those agents typically belong to species with behav-
iors on the Hawk side of the spectrum, that is, behaviors that
favor staying on food patch as long as possible. Pushed to
the extreme, such strategies will prevent agents from mov-
ing even once the spot has been completely depleted, which
leads to the agents’ death. However, during their lives, they
may produce offspring with a viable strategy, closer to that
of the rest of the species they belong to.

Additionally, it is possible that they will prevent the in-
vasion of a species with a more frugal approach. Indeed,
other agents will tend to leave an area with mostly depleted
food patches. In that sense, the static strategy is detrimental
in a uniform population, but can arguably help ensure to an
extent the survival of their species in a mixed environment.
This strategy might also have an interest in our particular
setting, since completely depleting a food patch will create
a new, full, food patch somewhere else in the environment.

Figure 4: Various strategies implemented by agents. Note
that, due to mutations, an agent can have a different strategy
than the species it belongs to.

Characterizing behaviors
The previous behaviors can be characterized in two ways:
looking either at the overall movement of the agents or at

Nathanaël Aubert-Kato, Olaf Witkowski, Takashi Ikegami (2015) The Hunger Games: Embodied agents evolving foraging
strategies on the frugal-greedy spectrum. Proceedings of the European Conference on Artificial Life 2015, pp. 357-364

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/ecal2015/27/357/1903929/978-0-262-33027-5-ch065.pdf by guest on 19 August 2022



Butterfly Circle Explorer Spore Static
4 5 8 7 6

Table 2: Distribution of agents from 6 runs over the various
evolved strategies.
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Figure 5: Cumulative stay on a given food patch for a wide
variety of strategies. Frugal strategies are characterized by a
succession of small peaks, while strategies on the Hawk side
of the spectrum favor only one spot for extended period of
time, leading to a few very large peaks.

the time they spend on food patches.
The first point can be highlighted by tracking agents over

a few iterations (Figure 4). This allows us to see the path
taken by agents, showing strong variations among strategies,
as mentioned in their respective descriptions.

The second approach, dubbed cumulative stay analysis,
was realized on a run starting with 30 independent agents.
These agents were selected from the uniform population of
multiple runs which evolved different strategies. We took
five representatives of each of those runs and used them to
seed the population. The cumulative time spent on a food
patch by those agents is shown in Figure 5

Note that we did not take into account the number of off-
springs generated by the different strategies. Instead we fo-
cused on the 30 sampled agents and the qualitative differ-
ence in their behaviors. Since these behaviors are dependent
on being part of a population, we disabled the mutations, so
that all agents ran during a specific analysis would have the
same strategy.

Tournament
In a first attempt to compare strategies, we seed the world
with the 30 individuals sampled from the training phase. To
ensure that those strategies do not drift during the evaluation,
mutations were disabled. While artificial, this approach is
similar to changing the time scale: here, mutations can be
considered so slow that they do not happen over the course
of the evaluation. This can be seen in biology, for instance
with bacteria where the time-scale of evolution of strategies

Individual 16 Individual 17
24 76

Table 3: Winning rates of both agents over 100 runs. No
other winner was observed.

and the scale of using those strategies is widely different
(Kerr et al. 2002).

When seeded with the sampled agents, the world is
quickly overrun by one of two possible agents, dubbed In-
dividual 16 or Individual 171. Since mutations are disabled,
a given ”species” is thus only comprised of copies of those
very agents. Around 10000 iterations, only one set remains.
The winning rates over 100 runs are shown in Table 3. We
could not observe any other agent achieving a full population
overrun, that is, reaching a state where all live agents are a
copy of itself. Neither could we find stable mixed popula-
tions, even within evolutionary time much shorter than that
needed for genetic drift to leave only one species in control
experiments.

Figure 6 depicts the phylogeny of a typical tournament
run. At the center of the plot is the root of the tree, cor-
responding to time zero in the simulation, with 30 initial
branches. As these branches progress outward, they ramify
into each agent’s successive generations of offspring. The
time scale is preserved, totaling 20000 iterations. Every
fork corresponds to one parturition, with the newborn fork-
ing clockwise and the parent counterclockwise.

Strategy analysis To explain the overwhelming domi-
nance of one genotype over all the others, in each simula-
tion, we take a close look at the details of the behavior it
generates. By the previous analysis, they would be catego-
rized as ”circle”, although they show a behavior closer to
the ”explorer” strategy when the food becomes scarce. In
both cases, multiple copies of the agents can be supported
by a given food patch, since they are never on the patch for
long and end up taking turns. Once the food is nearly de-
pleted, they actively look for a fresher patch, giving time for
the patch to regrow. It is possible to recognize this behav-
ior in agents simply by observing the outputs of their neural
network (see Figure 7). Typical inputs and outputs of In-
dividual 17 over its life time are shown in Figure 8. Other
agents are left with two choices: either stay longer, making
the effort to completely destroy the patch, or leaving earlier,
leaving more food for those who remain. As such, it seems
that Individuals 16 and 17 have simply evolved an efficient
patch finding strategy, and tuned their decision parameters
to leave at the most appropriate time.

Predator-Prey oscillations of Individual 17 Since Indi-
vidual 17 does not consume completely food patches, and

1These numbers are based on their index in the seed.
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Figure 6: Phylogenetic tree of a typical tournament, won by
Individual 17. The root of the tree, the inner circle at the cen-
ter of the plot, corresponds to time zero in the simulation,
with 30 initial branches. As these branches progress out-
ward, they ramify into each agent’s successive generations
of offspring. Every circle corresponds to 1000 iterations, up
to a total of 20000. Every fork corresponds to one agent
replicating, one branch corresponding to the parent, and the
other branch to the offspring. The subtree corresponding
to the lineage still surviving at iteration 20000, descending
from Individual 17, is highlighted in blue.

even ignores those that are nearly depleted, we can ob-
serve Volterra-like oscillations2 in its population (Figure 9).
The difference comes from the fact that the regrowth of the
”prey” (the food patches) is linear in time, instead of the
usual autocatalytic, and thus exponential, generation. Runs
are spread in phase space, due to the time it takes to the pop-
ulation to get homogeneous. However, amplitude and fre-
quency are roughly uniform across runs. This is in part due
to the fact that Individual 17 does not destroy food patches,
so that the total energy available in the system changes
smoothly over time, which mitigates potential irregularities.

Tournaments with evolution In the case where agents are
allowed to evolve over time (i.e. with a non-zero muta-
tion rate on their genotypes) during the tournament, winning
strategies are much more diverse. Over 100 runs, agents
with a spore approach now win in a majority of cases, while
circles get second best, mostly through Individual 16 and In-
dividual 17 (Table 4). Interestingly, in one instance, a static
agent was able to seed the winning population, as its off-
spring were able to recover a spore strategy through muta-
tion. Note that a winning population expresses a range of be-
haviors, but that the original strategy remains dominant. As
with the tournaments without evolution, in all runs the pop-
ulation is eventually overrun by a species descending from a
single original agent.

2Lotka (1910), Volterra (1926)

Figure 7: Motor response of Individual 17’s neural con-
troller for steering (top plot) and speed (bottom plot), versus
energy and fitness inputs normalized between 0 and 100.

Strategy Circle Explorer Spore Static
Agent 16 17 19 1 8 13 6 9 15 10
Wins 11 12 6 1 4 5 30 29 10 1

Table 4: Winning counts in tournaments with evolution, sep-
arated by agents and strategies.

Those results contrast with those obtained without muta-
tion. This may be due to aggressive agents adapting more ef-
ficiently to a competitive environment and/or to circle strate-
gies being unstable to mutation.

Discussion
The obtained results show the emergence of several sets of
behaviors from a simplistic foraging task. All agents evolve
a way to find more resource, and some are also found to
escape from areas when they become less beneficial. This
is similar to Aktipis (2004) where agents outperform more
complex strategies by simply walking away from an unfa-
vorable location. The observed behaviors are however richer
in complexity than a mere exit strategy, ranging from very
static/greedy to more exploring/loose types of motion. On
the greedy side, agents are exploiting the resources avail-
able to their limit, potentially exploiting the fact that new
resources are then created as result. Once a food patch is
removed, such agents move to the nearest available spot.
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Figure 8: Typical outputs of Individual 17 over its lifetime.
Those are interpreted to represent its angle and speed. The
inputs leading to those decisions, the current energy and
the current reward dE, are also represented. Note that the
outputs varies very little over the agent lifetime, indicating
that they might be extremely tuned to the present environ-
ment. Oscillations in energy show when the agent is circling
around a food patch. When the reward of the patch starts to
decrease, the agent moves to another patch.

A more conservative approach is to move away before the
patch is completely drained, giving it time to regrow. The
difference between behaviors then lies in the way energy is
taken from the patch. The most aggressive of these is to
simply gather on top of the patch, getting as much energy for
oneself as possible. A more sustainable tactic is to take turns
by circling near the patch, which can even allow the patch
to recover if necessary. Finally, agents can try to minimize
food depletion by taking only a small share of the energy
available before moving to another area. As such, those can
be seen as spatial and temporal implementation of mixed
strategies in the Hawk-Dove game, giving them a physical
interpretation.

In all but the most frugal populations, agents have a large
impact on the amount of food available in the environment.
This leads to oscillatory dynamics as the population grows
until passes above the limit that can be sustained by the envi-
ronment, then loses a number of individuals due to shortage
of food, until the resource regrowth made it sufficient again.
The amount of resource is therefore limiting the population
as a carrying capacity, as described in White (1978).

By evolving agents separately the experiment really iso-
lates populations, artificially evolving them in different eco-
logical niches. Isolation has been hypothesized to help give
rise to altruistic behavior (Cohen and Eshel 1976). Indeed,
in an isolated population, the individuals have more chance
to share common genes with one another, in turn amplify-
ing their tendency to kin selection (Smith 1964), thus re-
sulting in all individuals in a given isolated group adopting
the cooperating, Dove-like behavior. When the population
is then reintroduced in the initial population, the more ef-
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Figure 9: Total population in multiple runs where Individual
17 was the winner. Based on stochastic conditions at the
beginning of the run, the oscillations are out of phase. Some
runs may also take longer to reach the final amplitude.

ficient, cooperating behavior is susceptible to crystallize to
the whole population from an inbred founder effect (Provine
2004, Sapolsky 2004).

Once we reinject different strategies in one environment,
where they come into contact and compete with each other,
we could observe two favorable approaches, leaning either
toward frugal or greedy. While it is understandable that
extreme strategies would perform more poorly than more
adaptable ones, it is interesting to see that strategies that
seem to be the most balanced are also inefficient. Another
contribution in this paper is to show that, if we prevent agent
populations from modifying their strategies through muta-
tion, only collaborating (Dove-like) strategies remain stable
among those two. The reasons can be many, ranging from
an effective tuning of the strategy to the environment, mak-
ing further mutation deleterious, to an ease to perform well
in a variety of situations without further adjustment. On the
other hand, since spore strategies tend to produce a large
amount of offspring while food is available, those strategies
may evolve faster, taking better advantage of mutations.

In future work, it would be interesting to investigate a
much larger sampling of agents for the tournament. A pre-
liminary test with 800 initial agents seems to show more di-
versity among victorious agents, with or without mutation
of the genotype.

It might also be fruitful to investigate the impact of the
density of food patches. As a negative control, agents going
in straight line, but able to control their speed were able in
6 runs out of 10 to evolve a stable population, albeit much
lower than that of normal agents. Decreasing the density to
a level were lucky solutions are not available might change
the distribution of evolved strategies, potentially favoring
the more frugal ones. Additionally, generating an equiva-
lent payoff matrix from those settings may give insights on
the proportions of the various strategies, as well as the over-
whelming winning rates of agents 16 and 17 in the tourna-
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ment analysis.
Finally, agents are not sensing each other directly, and

more complex behaviors are theoretically possible if a cer-
tain mode of signaling was introduced in the model. In terms
of cooperation between agents, this would for example allow
for mechanisms more complex, as agents may learn to rec-
ognize each other. Adding signal to our agents might yield
richer cooperation dynamics among separate species with
common tactics.
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