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Abstract

We present the use of a new computationaly efficient 3D
physics model for the simulation of cells in a virtual aquatic
world. In this model, cells can freely assemble and discon-
nect along the simulation without any separation between the
development and evaluation stages, as is the case in most evo-
devo models which only consider one cell cluster. While
allowing for the discovery of interesting behaviors through
the addition of new degrees of freedom, this 3D center-based
physics engine and its associated virtual world also come with
their drawbacks when applied to evolutionnary experiments:
larger search space and numerous local optima. In this paper,
we have designed an experiment in which cells must learn
to survive by keeping their genome alive as long as possible
in a demanding world. No morphology or strategy is explic-
itly enforced; the only objective the cells have to optimize is
the survival time of the organism they build. We show that a
novelty metric, adapted to our evo-devo matter, dramatically
improves the outcome of the evolutionary runs. This paper
also details some of the developmental strategies the evolved
multicellular organisms have found in order to survive.

Introduction
Over the past two decades, the artificial life community has
seen the development of several models for the simulation
of environments in which cells can freely evolve. Many 2-
dimensional models have been used, mainly for their sim-
plicity and their computational efficiency, (Doursat, 2009;
Joachimczak et al., 2013), but also because they are often
sufficient to let interesting cellular behaviors emerge. With
the addition of the third dimension come both large pos-
sibilities in the exploration of artificial life and the excit-
ing opportunity to more precisely compare and understand
real world observations. While there are several 3D physics
engines and simulators developed specifically for artificial
life (Joachimczak and Wróbel, 2011; Fontana and Wróbel,
2013; Doursat and Sánchez, 2014; Cheney et al., 2014),
combining low scale features of cells with efficient simula-
tion at the scale of a whole organism can prove challenging.
It requires either ignoring interesting aspects of cells such
as their polarisation system, complex adhesive properties or
variable stiffnesses, or abandoning computational efficiency.

Of course, many models of cellular simulations are not
directly linked to the aLife community (although some have
been used for artificial life experiments) and are more tightly
related to bio-simulation, strongly focusing on the realism
of the simulations they produce. Over the years, many mod-
els have been developed using various approaches, among
which 2D lattice based cellular automata (Ouchi et al.,
2003), various off-lattice 3D center-based models and even
precise hybrid multi-scale systems which combine cell-level
deformations as well as tissue-scale constraints (Lowengrub
et al., 2009), to cite just a few. In the context of artificial life,
and specifically when growing multicellular artificial organ-
isms, the complexity of the simulated world directly im-
pacts the developmental strategies and possible morpholo-
gies of the creatures. As this can make for some behaviors
and strategies that are more desirable and might also help
in the understanding of real-life behaviors by bringing more
realism, it also comes with at least two obvious trade-offs.
First, adding realism and complexity to the artificial world
will often increase the required computational power, which
is a resource of prime importance when using genetic algo-
rithms that require the simulation of thousands of instances
of these worlds. Secondly, and still in the context of artificial
evolution, adding complexity to the world can dramatically
broaden the search space, requiring even more simulations
for evolutionary algorithms to come up with a convincing or-
ganism, and further complexifying the fitness landscape. It
can thus be argued that the simulation of cells for the growth
of artificial multicellular organisms is, while sharing obvi-
ous common roots, a different problem than the simulation
of real world cells. In this context, while we take our inspira-
tion from biology when designing a cell simulation engine, it
is of prime importance to keep these trade-offs in mind and
to try and see where the truly desirable features lie, those
from which an evolved multicellular organisms might bene-
fit, and those that can be simplified.

In this work, we propose to set up artificial life experi-
ments in a 3-dimensional world using a fast cellular physics
engine tailored to artificial life, MecaCell, that offers dy-
namic cell-cell interactions such as collision, adhesion and
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volume conservation approximation while keeping the com-
putational cost in reasonable limits. We have designed an
experiment in which the virtual multicellular organism will
have to face many local optima created by both the added
degrees of freedom and the rules of the world in which it
evolves. We show how novelty search with a morphology
metrics can, when used in conjunction with a fitness func-
tion, help overcome many of these local optima. The ex-
periment we present in this paper challenges one cell to pre-
serve its genetic material in a sea-like environment as long
as possible. In order to do so, the cell (which can choose to
eventually become an organism after division) will have to
face harsh conditions where energy is a difficult resource to
harvest. Organisms, or rather same-DNA cell colonies, will
thus have to balance their in-water morphology to collect
light energy while maintaining solid roots in the ground in
order to collect a second essential type of energy. While di-
vision of labor might play a determining role in the survival
of the colony (harvesting nutrients and light, sharing energy,
maintaining the structure of the organism), the rules of the
simulated world should make for the appearance of different
viable strategies. In the lineage of our previous work (Disset
et al., 2014), and to reduce the clues provided by a heav-
ily engineered fitness function as much as possible, the cell
controllers, based on gene regulation, are only evolved for
survival (duration of the simulation). In addition, we study
the impact of a novelty search criterion.

Simulated world

This section presents the different aspects of the simulated
world we propose to investigate1. The main goal is to try
various characteristics of the physics engine and to explore
ways to mitigate the adverse effect of added degrees of free-
dom (comparatively to a 2D simulator or a 3D cell simu-
lator which doesn’t account for precise dynamic adhesions,
for example). We want our virtual organisms to be able to
evolve efficient and varied solutions to the problem of sur-
vival in a constrained environment.

Cell physics - MecaCell

MecaCell2 aims to be an artificial life friendly and generic
platform for the 3D simulation of cells. Its goal is to provide
a continuous physics environment that is computationally
efficient and versatile enough to tackle various ALife exper-
iments and configurations (with exotic or simplified physics
rules, for example).

1All the source code as well as images and videos are available
at https://github.com/jdisset/seacells

2MecaCell is written in C++ and available (under LGPL li-
cense) at https://github.com/jdisset/MecaCell. It includes a custom
OpenGL display engine with a plugin system for the extensibility
of its interface.

Cell and volume conservation In MecaCell, each cell is
an agent represented by a center, a membrane and an orien-
tation. A cell can freely evolve in a 3D continuous environ-
ment, where it will collide and adhere with other cells. Here
we consider cells to be spherical objects filled with a mostly
incompressible fluid and wrapped in an elastic membrane.
Every cell has a rest radius Rr and a dynamic radius Rd.
The dynamic radius was introduced to enable an approxi-
mation of volume conservation: at each time step t, if a cell
is cut (overlapping either another cell or a 3D object), we re-
compute both its membrane surface area At and its current
volume Vt. The net difference in volume (relatively to its
rest value Vr) is then translated into a pressure stress pt:

pt =
I × (Vt − Vr)

At

where I is the compressibility coefficient of the cell. Cell
pressure acts as a force governing Rd’s growth. When pres-
sure increases under stress, the cell will compensate by ex-
panding its radius in order to recover its original volume.
This variation naturally implies a modification of its current
membrane surface areaAt, which will also act as a shrinking
force on the dynamic radius. The cell membrane is thus, in a
computationally efficient manner, brought into equilibrium
between volume conservation and surface area conservation,
using the following explicit integration scheme:

Rdt = Rdt−1 + ∆t2 × (∆V −∆A− dRd

dt
× C)

where ∆V is the volume variation Vt−Vr, ∆A is the surface
area variation At −Ar and C is a damping coefficient.

Collisions In this model, collisions are easily handled by
detecting two overlapping cells and by computing the nor-
mal and the area of the resulting contact plane. Each cell
will then push on the other perpendicularly to this plane and
according to their internal pressure (resulting from their de-
formation). The intensity of the force applied between a cell
Ca of internal pressure pa and a cell Cb (with internal pres-
sure pb) through a contact plane of area Ac is given by:

||~F || = Ac × (Pa + Pb)

with Pi =

{
0, if pi < 0
pi, otherwise

A tunable damping term Ccol is also added.

Adhesions When wanting to simulate artificial multicellu-
lar organism in a 3D environment, the capability to maintain
oriented connections is of prime importance. In MecaCell,
cell-cell adhesions use the same kind of contact planes than
for the collisions. A cell can choose its adhesive properties
distribution across its membrane through the definition of an
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adhesion function fadh which associates an adhesive recep-
tor density dadh to a unit vector expressed in the local coor-
dinate system of the cell (and represents the adhesive poten-
tial at a given membrane location). We simulate an adhesion
between two cells by the creation of a dynamic mass-spring-
damper system of length 0, attached to the centers of the
contact surfaces on both cells membranes. This spring acts
on both membranes but all of the generated forces and mo-
mentum is applied at the respective cells centers. When the
two adhesive cells get closer from each other, the centers of
the adhesion planes are updated, as well as all the mechan-
ical properties of the adhesion mass-spring-damper system.
The stiffness K and damping coefficient C are proportional
to the contact plane surface area as well as the average recep-
tor density on said surface (and to the intrinsic characteris-
tics of these receptors, which can be different for every cells,
or favor certain cell-cell affinities between cellular types).
When two adhesive cells are pulled (or rotated) apart, the
adhesive dynamic mass-spring-damper system can elongate
up to a certain length defined by the maximum length reach-
able by an adhesion receptor. Thus, if the cells are pulled
apart too strongly (relatively to the strength of their connec-
tion), they can actually come out of contact again. Similarly,
if they experience a torque of too much intensity or a shear
stress above a certain threshold, they will be able to slide on
each other’s membrane (the centers of their adhesion plane
will have moved too far apart due to rotation).

Environment - Ground and sea
In addition to the cellular physics model presented previ-
ously, the world of this particular experiment is divided in
two parts: the ground and the sea.

Ground The ground is a dense medium in which cells can-
not easily move. In order to achieve this effect, we used a
special integrator which does not take into account any iner-
tia term, using only the force exerted on each cell to compute
its next position. This ground acts as a solid when the forces
exerted by the cells are below a certain threshold, only al-
lowing cells to move if they push hard enough. This is, al-
though in a simplified manner, a depiction of the mechanical
characteristics of dense mud.

The ground contains nutrients, which are not available in
the water. They are present in the mud at various depth, in
small areas and finite amounts. At the beginning of the sim-
ulation, we initializeN = 200 nutrients sources. For a given
nutrient source i placed at a random position (xi, yi, zi) in
the mud, the initial amount of nutrient ni is given by:

ni = Qn × (1 + Cn × |yi|Pn)

where Qn is a constant and Pn and Cn are two parameters
that determine how the amount of nutrient varies for each
nutrient source according to its depth yi. This is meant to

mimic how the nutrient distribution can be different accord-
ing to the type of soil. It also allows for the tuning of some
aspects of the fitness landscape: with Cn < 0, the selec-
tive pressure would force the cells to expand laterally while
a positive value of Cn should favor a vertical growth to find
more reliable sources of nutrients. In this particular experi-
ment, we use Qn = 0.03, Pn = 1.5 and Cn = 0.035. These
values have been chosen empirically in order to create an en-
vironment in which organisms can easily survive for a short
amount of time but must develop complex strategies to sur-
vive longer.

Sea The second layer of the world is placed on top of the
ground. We call it water, because its mechanical character-
istics, namely density and viscosity, are supposed to mimic
those of a still body of water. Here, a classic semi-implicit
Euler integration scheme is used to update the cell positions
and orientations. For computational efficiency purposes, no
flows are simulated in this water. However, the cells are all
slightly buoyant which means that they need to keep adhe-
sions to cells that are still inside the mud in order to avoid
being taken away.

Light is abundantly available in the water but stopped by
the ground. It only comes in straight rays, perpendicular to
the ground, and if one light ray shines upon a given cell, it
won’t be able to reach any other cell below that first one.
In other words, cells block light and their shadows prevent
other cells to be lit. We implemented this feature using a
classical depth-buffer and depth-culling algorithm.

Cells
Cell life cycle In order to survive in this world, a cell has to
fulfill one requirement: all its energy levels must stay above
zero. In this particular experiment, a cell needs to handle
two forms of energy: light and nutrient. At the initialisation
stage, we place one unique “seed” cell in the mud, just be-
low the water (precisely one cell diameter deep). When the
simulation starts, the seed cell has maximum levels of light
and nutrient, mimicking the seed endosperm (which provide
the initial energy to the seed). At each time step, every cell
consumes a fixed amount of light and nutrient energy. When
any of the two levels of energy reach 0, the cell dies.

We implemented a simplified cell cycle in which every
cell can choose between three actions: growth, quiescence,
apoptosis. This lifecycle is controlled by an aGRN that will
be detailed at the end of this section. When in quiescent
mode, the cell consumes normal amount of nutrients and
light. When choosing apoptosis, the cell will disappear and
all the nutrients and light it contained will be lost. When a
cell enters its growth phase, it will grow (while consuming
20% more energy) until its volume has doubled; at which
point division will happen along a particular axis, deter-
mined by the cell’s aGRN. When division occurs, the mother
cell is replaced by two identical daughter cells whose energy
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levels are exactly half those of the mother cell at the time
of division. Only one variable, the age of the cell, differs
between the two daughters cells: one is kept, the other is
restarted at zero. This variable is incremented at each time
step and is an input to the cells’ aGRN.

Energy Nutrients and light are not available at the same
place, which means the cells of our organism need to be able
to absorb nutrients and light and share that energy with each
other. More generally, a cell with large quantities of energy
should be able to transfer part of it to any cell in need. In this
experiment, we approximate this process through a passive
diffusion based on Darcy’s law, which describes the flow
of an incompressible fluid throughout a porous isotropous
medium in the laminar case (which is arguably the case here
given the low Reynolds numbers involved). The energy (nu-
trient or light) flow Fn between two connected cells a and b
is thus described by the following equation:

Fn =
−k ×A×∆p

µL

where ∆p is the energy’s pressure drop (here approximated
by the difference in levels nb − na or lb − la where nx and
lx are respectively the nutrient and the light level of cell x)
between cell b and cell a. This flow is also determined by
the intrinsic permeability of the medium k, the viscosity of
the nutritive fluid µ as well as the connection area A and the
distance L between the two cells centers. The value of this
flow is computed at each time step for each active connec-
tion (i.e. real adhesions) between two cells using an explicit
integration scheme. Using the free surface area of a cell’s
membrane, we also use this diffusion system to simulate the
absorption of both light and nutrients from the environment.
Any lit cell will perceive a light intensity proportional to its
elevation (above the ground) until a certain altitude where
this intensity is capped to one. Inside the ground and from
any cell positioned at ~Pc, the available nutrients concentra-
tion As coming from a nutrient source s at position ~Ps, with
current absolute content in nutrient Ct, initial diffusion ra-
dius of Rt0 and an initial content of Ct0 is given by

As = Ct × (1− (| ~Ps − ~Pc|/Rt0 ∗ (Ct/Ct0)) ∗ Ct/Ct0)

Morphogens Bio-inspired communication through the
diffusion of molecules in the environment has successfully
been used in numerous artificial life experiment and has
proven to be an efficient way to enable information trans-
mission between agents. While some authors use detailed
and realistic diffusion of signalling molecules, here we use a
simple instantaneous diffusion system. Every cell can emit
one or several of Nm morphogens through the mi output
protein concentration of its aGRN, and can sense the con-
centration of each morphogens through its ci input proteins.
The perceived intensity of a morphogen follows an inverse

squared law. Thus, for any receiver positioned at ~Pr, the per-
ceived intensity Im of a morphogenm emitted byN sources
placed at positions ~Psi with intensity Emi is given by:

Im( ~Pr) =
N∑
i

Emi

Am × || ~Psi − ~Pr||2 + 1

where Am is the attenuation coefficient of morphogen m.
For each cell, we compute the gradient of a morphogen m
as the averaged variation of its intensity along the x, y, and
z axis, from one extremity of the cell to the other.

Cell adhesion In the early stages of this experiment, ev-
ery cell would automatically establish a strong connection
with every other cell upon contact. This led to the invari-
able collapsing of the morphology diversity, especially in
the water part of the world, where inertia is not negligible.
Indeed, as cells divide, they experience various forces that
propagate along the entirety of the organism. As a result,
opposite ends of an organism often come in contact, bounc-
ing against each other; but the automatic creation of a strong
connection would prevent cells to go back apart and will
eventually make for the construction of an unordered blob of
connected cells. In various multicellular artificial life mod-
els, this problem is avoided because the actual simulation
stage, in which the organism is evaluated, is separated from
the development phase, where the cells are positioned and
linked without perturbations. While this simplifies things
and allows for the creation of complex morphologies with-
out the risk of discovering a spherical amalgamation of cells
at the end of the evaluation, it also means that we lose some
of the properties of real world organisms which can be of
prime interest, especially for this experiment which aims to
get closer to real world organism development: mainly self-
repair and real time morphology adaptation to a changing
environment. To tackle this problem, we once again take in-
spiration from biology by introducing a mechanism which
lets the cell decide if it wants to create new connections or
only keep the ones already existing and bounce off of a po-
tential companion. This capacity, named “solidify”, is man-
aged by the cells’ gene regulatory network. In MecaCell, the
normal algorithm for adhesion creations between two cells is
to “ask” them what are their reciprocal affinities at each time
step. In order to let the cells decide when they are open to
new adhesions, we add an “active connections” list to each
cell that keeps track of all their “real” adhesions. At each
time step, and for every cell, we compare this active con-
nections list with a candidate list of cells that are currently
colliding. A new bond is then created only if both candi-
dates decide not to solidify. In combination with the other
proteins provided as inputs to the aGRN (such as the cell age
t and its mechanical pressure p), this, in theory, allows for
the emergence of complex adhesions strategies.
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Cell controller - aGRN Within our multicellular organ-
ism, each cell has its own gene regulatory network that con-
trols the cell lifecycle. Even though the aGRNs are physi-
cally different in the cells of the same organism, as in na-
ture, they share the same genetic code and thus, the same
topology. When a cell division occurs, an exact clone of the
mother cell’s aGRN is copied into the daughter cell. In this
work, the gene regulatory network used to control the cells is
inspired by Banzhaf’s model. This model has been designed
for computational efficiency and is not meant to simulate a
real biological gene regulatory network in all its complexity.

This model is composed of a set of abstract proteins. A
protein a is composed of three tags: (1) the protein tag ida
that identifies the protein, (2) the enhancer tag enha that de-
fines the enhancing matching factor between two proteins,
and (3) the inhibitor tag inha that defines the inhibiting
matching factor between two proteins. These tags are coded
with an integer in [0, p] where the upper bound p can be
tuned to control the precision of the network. In addition
to these tags, a protein is also defined by its concentration
that will vary over time with particular dynamics described
later. A protein can be of three different types: input, a pro-
tein whose concentration is provided by the environment,
which regulates other proteins but is not regulated; output, a
protein with a concentration used as output of the network,
which is regulated but does not regulate other proteins; and
regulatory, an internal protein that regulates and is regulated
by others proteins.

With this structure, the dynamics of the aGRN are com-
puted by using the protein tags. They determine the produc-
tivity rate of pairwise interaction between two proteins. For
this, the affinity of a protein a for another protein b is given
by the enhancing factor u+ab (resp. the inhibiting factor u−ab)
calculated with the euclidean distance between protein b id
tag and protein a enhancer (resp. inhibitor) tag. The proteins
are then compared pairwise according to their enhancing and
inhibiting factors. For a protein a, the total enhancement ga
and inhibition ha are given by the sum of the exponential
influences between the proteins. Two parameter β and δ are
used to control the dynamics of the system: β affects the
importance of the matching factors and δ is used to modify
the production level of the proteins in the differential equa-
tion. In summary, the lower both values are, the smoother
the regulation is; the higher the values are, the more sud-
den the regulation is. The concentrations are updated with
a simple differential equation taking into account the newly
produced proteins and the destroyed one. More details on
the aGRN dynamics can be found in (Cussat-Blanc et al.,
2015).

Table 1 describes the configuration of our aGRN input and
output proteins when applied to this artificial embryogene-
sis experiment. A few clarifications on the role of some of
these inputs and outputs is necessary. First, the sensed nutri-
ents (cn) input represents the actual concentration in nutri-

Name Type Description or use
ci,∀i∈[0,2] input concentration of morphogen i
cn input sensed nutrients
n input current nutrients level.
cl input sensed light intensity
l input current light level.
t input age of the cell
p input mechanical pressure
oi,∀i∈[0,2] output morphogen i production
oN output normalisation of oi
di,∀i∈[0,2] output divide along morphogen i gradient
dn output divide along nutrient gradient
a output apoptosis
q output quiesence
s output solidify: no new adhesion
sT output threshold for s activation
pd output perpendicular division

Table 1: List of our artificial grn inputs and outputs proteins.

ents sensed by the cell in its surrounding environment. The
current nutrients level (n) input is the actual current level
of nutrients in the cell. The same goes for the light intensity
sensed by the cell (cl) and the current amount of light energy
accumulated in it (l).

The cells express their choices between division, quies-
cence or apoptosis through the concentrations of the out-
put proteins di, a and q respectively. The protein with the
biggest concentration represents the cell’s choice. In ad-
dition to starting a division, the di outputs proteins of the
aGRN also controls the cells’ division plane: each di out-
put protein corresponds to a morphogen, and the di or dn
protein with maximum concentration is used to determine
the gradient (morphogen or nutrient) along which the cell
must divide. If no gradient of said morphogen or nutrient
is present, the axis of division is randomly chosen. The pd
protein allows the cell to choose between a division along
the morphogen gradient or perpendicular to it when the con-
centration of protein pd is greater than the concentration of
the selected division protein.

The solidify output protein s controls the solidify capacity
of a cell: if the concentration of protein s rises above the
threshold protein sT , the cell solidifies and will not accept
any more adhesion from not yet connected cells until the
concentration of protein s decreases again.

To obtain a usable GRN, both the protein tags and the
dynamics coefficients need to be optimized. The next part
presents the specificities of the genetic algorithm used in this
work.

Evolution
One of the goals of this experiment is to explore how arti-
ficial multicellular organisms could survive in a harsh envi-

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/360/2325977/978-0-262-33936-0-ch060.pdf by guest on 06 O
ctober 2024



ronment without explicitly being led toward a given strategy
or morphology. We want to explore the organisms that the
rules of this world could create without constraining the cre-
ativity of evolution through some restrictive objective func-
tion. Therefore, the only objective for the cells is to sur-
vive as long as they can, or more precisely, to keep at least
one copy of their DNA in our virtual world for as long as
possible. This gives full freedom to the cells on the de-
velopmental strategies they can use and opens a wide range
of possibilities of morphologies the organisms can develop.
The drawback is that it also dramatically increase the search
space and fills it with many local optima that pave the way
to increased longevity. The evolutionary algorithm we use
in this work to evolve the aGRN is based on the Gene Reg-
ulatory Network Evolution through Augmenting Topology
algorithm (GRNEAT) (Cussat-Blanc et al., 2015).

GRNEAT
In this algorithm inspired by the NEAT algorithm (Stanley
and Miikkulainen, 2002) and adapted to evolve gene regu-
latory network, the first population of aGRNs is initialized
with small topologies, containing only input and output pro-
teins. The population is evaluated standardly with a fitness
promoting survival time. After a 3-player tournament se-
lection, offsprings are crossed over using a protein align-
ment operator. This operator uses a genetic distance metric
to compute topological distances between two aGRN pro-
teins. Each type of proteins is processed separately. Both
the input and the output proteins are treated with the same
method. One of each input (or output) protein linked to a
sensor (or an actuator) is randomly selected from one of the
parents. The regulatory proteins are then aligned before be-
ing crossed: for each regulatory protein p1i from the first
parent, the closest regulatory protein p2j not yet aligned is
selected from the second parent. The distance between two
proteins is computed as follows:

D(A,B) =
1

p

(
a|idA − idB |+ b|enhA − enhB |+

c|inhA − inhB |
)

where idx is the tag, enhx is the enhancer tag and inhx is
the inhibiter tag of protein x and p is the precision of the
aGRN. a = 0.75, b = 0.125 and c = 0.125 are constants
that weight each part of the protein properties. If the dis-
tance D(p1i , p

2
j ) is lower than a given alignment threshold

σa, both proteins are aligned. Once alignment of all proteins
has been attempted, one protein of each aligned pair is ran-
domly selected and added to the offspring. The regulatory
proteins that failed to align in both parents are also added to
the offspring. This ensures that no crucial genetic material
is deleted during the crossover. Finally, the dynamics coeffi-
cients are also crossed. One of the β and the δ coefficients is
randomly selected from the parent genomes and used in the
offspring genome.

Crossed-over aGRNs represent 30% of the offsprings.
The rest of the offsprings are built using tournament selected
genomes from the previous generation. All offsprings ex-
cept the elite (the best genome) are then subject to mutation
with a 75% rate. When mutated, a genome can be modi-
fied in three different ways: (1) delete a protein, with a 15%
probability, randomly select a regulatory protein, if any, that
is removed from the aGRN; (2) add a protein, with a 15%
probability, adds a randomly generated regulatory protein;
(3) modify a protein, with 70% probability, randomly mod-
ify exactly one parameter of the aGRN, either one protein
tag or one of the dynamics coefficients.

Novelty metrics
In order to try to mitigate the adverse effects of increased
degrees of freedom and numerous local optima in the mor-
phological parameter space, we added a novelty metric as
defined in (Lehman and Stanley, 2008). We combined this
novelty score with our main survival objective by modifying
the selection phase of our genetic algorithm: each poten-
tial parent is selected through a tournament based on either
novelty or survival time, with a 50% chance. While not as
complex as some other integrations of novelty in a multi-
objective genetic algorithm (Mouret, 2011), this proved suf-
ficient to harness some of the exploratory power of novelty.
In this experiment, we tried three different novelty metrics,
which are based on the capture (and comparison) of various
aspects of a developing phenotype:

• Nm0 is composed of three numbers: the maximum num-
ber of cells during the simulation, the maximum depth
reached by a cell and the total survival time (which is also
the main objective).

• Nm1 is composed of 5 snapshots of the simulation (at
times t = 10, t = 20, t = 50, t = 75 and t = 100). Each
snapshot contains 2 numbers: the number of cells and the
maximum depth of a cell at the time of the capture.

• Nm2 is a set of 5 captures (taken at the same time steps
as for Nm1) represented as a 20× 20 integer matrix. It is
actually a set of pictures in which each pixel’s value rep-
resents the number of cells stacked. The plane of the shot
is determined through a Principal Component Analysis on
the cells position (it is the most discriminant plane). This
metric is meant to capture the morphologies of the organ-
isms in all their subtleties

Results
Influence of novelty
In Figure 1, we can see the median (with first and third quar-
tile) survival times of the best genomes evolved during 300
generations in 10 independent runs. On a 2014 high-end
laptop, the average evaluation time for an individual was of
0.2s during the first 5 generations and ended at an average of
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Figure 1: Error bar plots of the best individuals obtained on
10 independent runs. Error bars represents the median, the
first and third quartiles. All novelty objectives are obviously
helping to escape local optimum. However, the novelty mea-
sureNm0 is giving better results. The initial value of 41 ob-
tained at generation 0 represents the survival time for a seed
cell that stays quiescent during the whole simulation.

1.3s. The best organisms obtained with these runs are pre-
sented in Figure 2(a, c-h). This graph reveals both the de-
ceptiveness of the fitness landscape when the survival time
is used as only fitness objective as well the beneficial im-
pact of novelty. This is undeniable (Student t-test p-values
are provided in table 2): where a classical objective based
evaluation struggles to find solutions that pass the first local
optima (for example: not dividing and surviving on the ini-
tial resources of the seed cell, or just doing a few divisions
in order for some cells to reach the surface and bring in a
little bit of light), the novelty based approaches successfully
find solutions to overcome these optima and efficiently pave
the way to more robust organisms.

The three novelty measures tested in this experiment show
that too much information loses the evolution in the vast
search space: the novelty measure Nm0 globally does bet-
ter than both other measures. This measure is the one that
includes the fewer parameters. In our opinion, when too
much parameters are used to describe a phenotype, the ex-
ploration space becomes too large and individual with mi-
nor differences are considered too novel. Therefore, it is of
high importance to wisely choose parameters that describe
the phenotypes. As depicted in table 2, the relatively high
p-values between novelty based runs reveal the necessity to
make a broader study on the influence of the novelty param-
eters in order to find the best possible measures for evo-devo
models and validate our preliminary results.

Developmental strategies and world setup influence
Along all the evolutionary runs, we observed an important
diversity of developmental strategies and morphologies, es-
pecially when any form of novelty was involved. Figure
2(a,b) shows examples of cells arrangements obtained with
different worlds parameters. The distribution of nutrients in
the world was also found to be of huge influence over the
preferred strategies: as expected, large values of Cn and Pn

Wins\Loses Survival Nm0 Nm1 Nm2

Survival - 0.002 0.011 0.089
Nm0 0.002 - 0.360 0.050
Nm1 0.011 0.360 - 0.250
Nm2 0.089 0.050 0.250 -

Table 2: p-values of the paired Student t-test run comparison
between runs with survival fitness and the different novelty
measures calculated on 10 runs at generation 300.

favored a very vertical growth of the cell colony, with the
formation of a relatively thick trunk in the ground enabling
fast nutrient and light transfer between the deep roots cells
and the emerged ones. One of the most interesting results
might be the emergence of a form of reproduction through
parthenogenesis when the nutrients concentration was uni-
form. Cells indeed understandably found the benefits of a
vertical growth to be incomparable with the efficiency of a
vertical growth. They also adopted, as shown in Figure 2(b),
a spread method where they would laterally develop just be-
low the surface. When a root cell encountered a nutrient
source, it would also divide upward (to the surface) and the
cells between the two formed cluster would undergo apop-
tosis, thus creating a simple form of parthenogenesis remi-
niscent of the biological reproduction of some plants.

Conclusion
We have presented a new developmental model based on
MecaCell, a physics engine tailored for artificial life experi-
ments. This model shows how novelty search can help when
stepping artificial embryogenesis up to the third dimension.
Indeed, this allows for more degrees of freedom for the mul-
ticellular organisms but also adds complexity for the cell
controller to handle. As a result, this makes the search space
much harder to explore with standard fitness function. In
addition to the use of a 3D developmental model, we also
wanted to remove all engineering from the main fitness ob-
jective: it only targets to the survival duration of the organ-
isms. By only using this objective, we showed that the evo-
lution is stuck in one or few local optima, but by adding dif-
ferent novelty metrics based on the organisms morphologies
and capabilities to explore its environment, we showed that
evolution can escape from these local optima and develop
more complex morphologies and behaviors able to survive
longer in the exact same environment.

This new developmental model opens many research per-
spectives. Firstly, we need to study more precisely the in-
fluence of the environment parameters on the multicellular
organisms. During the development of the presented exper-
iment, one of the major difficulty was to produce a viable
environment, easy enough to allow the organisms to grow
but difficult enough to require complex behaviors. Balanc-
ing this is difficult task and needs to be studied in detail.
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Figure 2: Examples of organisms obtained with the different fitnesses. (a, c-h) survival only and novelty metrics Nm0, Nm1

and Nm2 in the novelty impact study. (a, b) same fitness with different environmental conditions.

Once done, we want to produce an artificial world in
which different organisms would coexist, cooperating or
competing for survival and reproduction. This will require
specialization capacities of the cells in order to balance the
capacities of the organisms, with for example a light extract-
ing cell type and a reproductive one. We hope to produce
more complex organisms, further mimicking some aspects
of the early stages of the appearance of life on earth.
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