
Support Vector Machine and Spiking Neural Networks for Data Driven prediction
of crowd character movement

Israel Tabarez-Paz1, Isaac Rudomin1 and Hugo Pérez1

1Barcelona Super Computing Centre
israeltabarez, rudomin.isaac, vhpvmx @gmail.com

Abstract

Microscopic crowd simulation usually uses ad-hoc models.
While these have been proven to be useful, they are diffi-
cult to calibrate and do not always reflect real behaviour. For
this reason we propose a machine learning approach using
neural networks. The main contribution of the project is a
first exploration of prediction of agent trajectories using two
specific types of neural networks, Support Vector Machine
(SVM) and Spiking Neural Networks (SNN).

Introduction
Developing a computing model for simulating the behaviour
of large groups allows us to study the movement of people
and improve buildings, plan logistics in health, retail and
other services, or even void traffic jams. Also, these models
allow us to reduce risks during natural disasters and medical
emergencies.

There are two ways in which crowd simulation is usu-
ally carried out: macroscopic and microscopic Rivas et al.
(2014). Macroscopic simulation describes global interac-
tions with the environment and the crowd itself. In con-
trast, microscopic simulation exposes the interactions be-
tween individuals within a group; each agent is processed
individually to simulate a crowd. In particular, Agent-
Based Models (ABM) simulate the actions and interactions
of autonomous agents that generate global-scale behaviours
Bonabeau (2002). One of the behaviors of such autonomous
agents is to decide where each will move next based on their
perception of their environment. For this purpose, the usual
methods in microscopic crowd simulation are ad-hoc models
such as steering rules, social forces, geometric methods such
as ORCA or even approaches based on synthetic vision.

All these have been proven to be useful, but they are diffi-
cult to calibrate to reflect real behaviour. For this reason we
propose using real data and a machine learning approach.
We will be using trained neural networks to make decisions
as to what the next step a simulated agent should take, in
effect using a prediction of their trajectories. In the follow-
ing sections we explore some background: crowd behavior
models and artificial neural networks (in particular spiking

neural networks, SNN, and support vector machine, SVM,
which are the ones we will use).

On the other hand, in previous work we have proved the
efficiency of third generation neural networks (SNN and
SVM) over other Artificial Neural Networks (ANN) in or-
der to solve classification problems for separable and non
separable data. In fact the processing speed for training and
execution is better when these methods are parallelized, Paz
et al. (2014). This is the main reason why in that article
we selected both methods for use in classification. Now,
the most popular methods used for obstacle avoidance and
to predict trajectories have been tried by Huang et al. (2016)
and Abbeel et al. (2008); the evaluation of local costs is con-
sidered in these papers to get the less computationally ex-
pensive trajectory A∗. Natural movement of crowds cannot
always be obtained by simply evaluating costs locally, al-
though for single agents it could work. Real people can see
further than what we can cheaply evaluate at during simula-
tion. This represents the main advantage of using real data
to train ANNs instead of locally evaluating ad-hoc models.
Our main contribution is to show that we obtain trajectories
that avoid obstacles and produce what seems to be a more
natural movement by using a prediction system that applies
third generation neural networks to characters in crowds and
to individuals. That is, a method that can use the knowledge
embedded in the trajectories followed by real people, that is
not explicitly present when taking decisions by evaluating
costs locally.

In the rest of this paper we will explore trajectory pre-
diction, perform some experiments, obtain some results and
come to some conclusions.

Background
Reynolds (1987) proposed three basic rules for the behav-
ior of members of crowds, which are: separation, align-
ment, and cohesion. These remarkably simple rules main-
tain together a group of boids, give them a direction of
movement and keep them free of collisions. Another impor-
tant approach is social forces Helbing and Molnar (1995),
where agent behavior is based on a collection of forces,

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

called social forces. These can be attraction or repulsion.
In its simplest form, a pedestrian can use these forces to
get to its destination and avoid obstacles or other pedestri-
ans. In predictive/Velocity-based models Paris et al. (2007),
agents calculate the velocities necessary to avoid collisions.
Within these velocities they can choose how to move to their
goal avoiding collisions. This concept is expanded by Van
Den Berg et al. (2011); van den Berg et al. (2008), who in-
troduce the notions of Velocity Obstacles (VO) and Recip-
rocal Velocity Obstacles (RVO) and the notion of Optimal
Reciprocal Collision Avoidance (ORCA). Lastly, synthetic
vision Ondřej et al. (2010); Moussaı̈d et al. (2011) is based
on using visual information obtained from the perception of
the environment to get a safe trajectory to the agents goal
without collision.

All these models predict individual trajectories and col-
lective patterns of motion and can have a relatively good
quantitative agreement with a large variety of empirical and
experimental data. A deep study of this topic is beyond the
scope of this section, thus we recommend our previous work
Rivalcoba and Ruiz (2013). In previous work Rivas et al.
(2014) a group of real people were coupled with virtual hu-
mans to get a plausible reaction to real people. The simula-
tion of virtual humans was based on social forces. However,
in this paper we want the agents to exhibit behavior learned
from real examples, since this should lead to a more natu-
ral behavior without the tedious process of hand calibration
of rules or forces. There is some work in this direction, for
example Rodriguez et al. (2011) presents a crowd analysis
algorithm by using behavior priors that are learned from a
database of crowd videos gathered from the Internet. The
algorithm learned a set of crowd behaviour priors off-line.
Behaviour is compared in order to validate their data-driven
crowd model. One strategy to reduce the complexity is look-
ing in a local space. They adopt a linear Kalman filter to
evaluate tracking. Error of trajectory is presented, however
it is important to know the efficiency of used method, which
is not discussed.

Wang et al. (2016) proposes a new approach based on
finding path patterns in both real and simulated data in order
to analyse and compare them, by using unsupervised clus-
tering by non-parametric Bayesian inference. They offer to
take both the global and local properties of crowd motion
into account for analysis of the data. In this case, author
considered three parameters, state of the agents (position
and orientation), state of space, a probability over the path
and pattern path. They simulate 64 agents with obstacles and
one important contribution is that they got several patterns of
path crowds in some environments. However, their method
does not directly measure individual trajectories thus does
not reflect individual visual similarities. In our case, we will
measure individual trajectories and measure collisions with
speed, direction, goal and occupation. We believe that ANN
is a less complex method and can achieve good results.

Sujeong Kim and Manocha (2016) presents an algorithm
that combines realistic trajectory behaviors from videos for
simulations statistical techniques to compute movement pat-
terns and motion dynamics from noisy 2D trajectories ex-
tracted from crowd videos in order to generate realistic
crowd movements performing tasks. The main limitation
in this approach is that it may not work well if the layout
of the obstacles in the virtual environment is different from
captured in the original video. Sujeong Kim and Manocha
(2015) applies interactive techniques for analyzing crowd
videos combining online tracking algorithms from computer
vision, non-linear pedestrian motion models from computer
graphics, and machine learning techniques. Also, they use
Bayesian inferencing technique to compute the trajectory
behavior feature for each agent. In this case they do not
require learning a dataset. Lee et al. (2007) is focused on
learning an agent model that controls the motion of each
agent in a crowd, what is based on a locally weighted lin-
ear regression. Their model can be learned to imitate the
rule-based flocking or insects. Also, they uses attraction to
keeps the local formation of agents.

Artificial Neural Networks
An Artificial Neural network is a system composed of sim-
plified abstractions of neurons that are used to solve compu-
tational problems by imitating the way neurons are fired or
activated in the brain, in which many neurons work in par-
allel to produce a result. There are three ways a neural net-
work can learn: Supervised learning, Unsupervised learning
and Reinforcement learning. These methods all work by ei-
ther minimizing or maximizing a cost function, but differ on
the way this cost function is defined. In supervised learning,
example inputs and the correct output are used to train the
network. Unsupervised learning only uses inputs, and the
network figures out relationships or categories. A reinforce-
ment learning neural network learns from examples of ac-
tions and by evaluating their cost and assigning rewards and
penalties. Throughout their development, ANN’s have been
evolving towards more powerful and more biologically real-
istic models. In the last decade, the third generation Spik-
ing Neural Networks (SNN’s) have been developed which
comprise of spiking neurons. Information transfer in these
neurons models the information transfer in biological neu-
rons, i.e., via the precise timing of spikes or a sequence
of spikes. Addition of the temporal dimension for infor-
mation encoding in SNNs yields new insight into the dy-
namics of the human brain and has the potential to result in
compact representations of large neural networks. As such,
SNN’s have great potential for solving complicated time-
dependent pattern recognition problems defined by time se-
ries because of their inherent dynamic representation. The
two important methods that we considered to predict the
trajectory are Spiking Neural Networks (SNN), mentioned
above, and Support Vector Machines (SVM). In both cases

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

they are highly parallelizable by using GPUs, Tabarez-Paz
et al. (2013).

Comparison between SNN and SVM
Respect to advantages of SVM, it finds the Global Mini-
mum Value, while ANN finds the Local Minimum Value
for separable and non-separable data Burges (1998), Cortes
and Vapnik (1995). The V C dimension of SVM is infinite,
however its computational complexity is high. According
to Yang et al. (2009) SVM has O(n3) computational com-
plexity and O(n2) memory complexity in the training phase,
where n is the training size. Furthermore, the number of
support vectors, that is equal to quantity of neurons in the
hidden layer, and it grows linearly with n and the compu-
tational complexity is O(n), where the kernels are given by
the training inputs Horvath (2003). This implies a limitation
for real-world applications, whose training size is typically
far beyond thousands. However, the complexity of the net-
work architecture is independent of the dimension of the hy-
perplane. Although back-propagation converges to the Min-
imum Local Value, the solution is related to the number of
hidden layers and number of neurons in the hidden layers.
For Suykens et al. (2002), SVM solutions are characterized
by convex optimization problems, up to the determination
of a few additional tuning parameters. In contrast, SNN for
discontinuous time, its computational complexity depends
on discrete time t(n), the time complexity is O(t(n), where
n is the discrete time.

In the case of continuous time, the computational com-
plexity is logarithmic as is highlighted by Maass (1995) in
theorem 1.

Theorem 1 The VC-dimension and pseudo-dimension of
any SNN N with piecewise linear response-and threshold-
functions, arbitrary real-valued parameters and time-
dependent weights can be bounded (even for real valued in-
puts and outputs) by

O(|E| · |W |.S(log|V |+ logS))

if N uses in each computation at most S spikes where V is
the number of neurons, S is the number of synaptic connec-
tions, and V C − dimension is for computations with up to
S spikes as large as Ω(|E| · S)

In the training process data needs to be codified in the time
dimension, Ghosh-Dastidar and Adeli (2009), so it does not
depend on whether the database has one or more types of
data (multiclass). Nevertheless, there are many applications
that have used SVMs, such as classification database, pre-
diction, pattern recognition and regression.

Performance for SVMs is better than typical ANNs in
large databases for separable and non-separable data. There
are important differences between these typical ANNs and
SVM:

General view of our approach
This work focuses on the decision making process of virtual
agents that must pick a position to go to. These agents will
consider their situation and use a trained ANN to predict this
next position. The learning process uses data obtained from
trajectories of real pedestrians, extracted from video. From
these trajectories, the 2D positions of all pedestrians of the
crowd in any given frame are obtained, and from them we
obtained what we call an occupation code, in other words,
the trajectory database provides specific information related
to the position of each person in a given frame. From this
data we know the next position of each person and all people
nearby. In this way we obtain the occupation code of each
agent in each frame.

With this data, and given an objective and a position we
train an ANN that is then used for simulation. The simulator
uses OpenGL and CUDA 7.0 and was tested in a workstation
containing both a Tesla K40c and a GeForce GTX TITAN.

The main parameters that we must take into account is
the position and velocity of the nearby pedestrians, how near
these pedestrians are, the final objective, and the density of
the crowd. Our main motivation is getting a trajectory that is
more natural in a crowd simulation by using the trained neu-
ral network to predict the next step of each character instead
of evaluating costs by using only local information.

The trajectories were obtained from third person top view
videos of the crowd such as those available in Lerner et al.
(2009). These consist of control points of Catmull Rom
splines of said trajectories.

A block diagram of the system can be seen in figure 1. In
other words, Catmull Rom splines representing trajectories
are obtained from the data collection and their control points
ordered according to frame number. Since not all characters
have control points that appear in the same frame, in order
to get the occupation code for all agents, we have to inter-
polate the position of all the agents for all the frames. After
that, we obtain a large table that contains position, direction,
speed, frame, sense and goal. Finally, in another algorithm
we apply the data calculated in the interpolation to compute
the occupation code for each agent. However, repetitive oc-
cupation codes are obtained and the table must be simplified.
Finally this data will be used to train the ANN.

Simulating crowd behaviour using Artificial
Neural Networks
We have chosen to use SNN’s due to their characteristics for
training multiclass data with various attributes per instance
as well as for its acceptable efficiency, although we also con-
sidered SVM for prediction in order to compare SVM re-
sults. We highlighted the term Multiclass for a database if
data can be classified in more than one type according to a
common characteristic. For example in Weka3, there is a
free database that can be downloaded in order to test some
classification algorithms for prediction or clustering, an Iris

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

Figure 1: Block Diagram of System.

data set is classified in three categories of flowers because of
some common physical characteristics Bifet et al. (2015).

In our case, we have seven classes that are the seven di-
rections of the agents and our dataset is the occupation code,
with a size proportional to the variety of the cases collected
from the trajectories in the videos. This data depends on
some variables such as the speed of the agent, the distribu-
tion of other agents in the viewing area, and the density of
the crowd. As mentioned above, we use trajectories obtained
from videos of pedestrians in a crowd, and we interpolate
the data to get positions per frame of all agents, and from
these calculate the direction of movement of the agents in
the previous and following frames, as well as their speed.
The process consists of codifying the occupation patterns
around each element in the crowd. The videos and trajecto-
ries are those used by Lerner et al. (2009) and can be seen in
figure 2.

First experiment: Results using SNN
In our first experiment we used a set consisting of the occu-
pation code and the goal of every agent as a row in the input
matrix (M) of the SNN. After that, the output of the ANN
is the decision that was taken for the next step of the pedes-
trian. The occupation code was computed using a radius of
agent and an angle of view divided in seven sectors, as can
be seen in figure 3, each of which represents one bit of the
occupation code. We define the radius of view as the max-
imal distance that will be explored in order to decide that a
sector of circle of the respective bit is occupied.

The set of seven bits form an occupation pattern. If there
is a pedestrian is in this sector, then the sector is occupied
and the bit is one but if the sector is empty the bit is zero,
such as in figure figure 4.

Results of this experiment using SNN with the codifi-
cation explained above is presented in figure 5, so we can
check two simulation tests: in the first one (Test 1), agents
start all at random positions the same line at the bottom, and
have as their goal a single point in the top: we see their trace
from start to finish. In (Test 2) the other tests all agents lie
on a circle, and each has as its goal the point exactly on the
opposing side of the circle, usually called circle test. Both
simulations used 100 agents, and by the time the agents had

reached their goal Test 1 had 396 and Test 2 had 72 col-
lisions, respectively; most of thee collisions were concen-
trated in a very few agents.

We performed other testing; 100 agents whose position
is divided into the four sides of a square that (Test 3). Ini-
tially they are randomly distributed on the four sides of a
square, and have a randomly assigned goal on the line op-
posite to their initial position. In (Test 4) agents are initially
distributed on a grid. In each case the goal has the same x
coordinate but the y coordinate is on the opposite side. Test
3 had 17 collisions and Test 4 had 0 collisions.

In order to take the distance of collision into account and
to reduce this average improving precision, we tried using a
different coding using three radii, as is described in the next
section.

Second experiment: Results using SNN and SVM
After obtaining the first results we observed that the sim-
ulated characters detected collisions and avoided them but
that their reaction was not very natural: in particular when
crowd density increases. We therefore proceeded to use an
expanded coding which consists of dividing the sectors by
three different arcs, with three different radius , as we can
see in figure 6, still dividing each arc in seven sectors.

To code we took into account the distance from the cen-
ter of the semicircle to the agent in the three radii, i.e. the
number of bits, where it had 1, this number is replaced by its
distance from the centre with three options, so, the number
1 will replaced by 2 if its distance is between 3

4Radius and
Radius; or will be replaced by 1 if its distance is between
2
4 and 3

4Radius; or will be replaced by 0 if its distance is
between 0 and 1

4Radius, such as in figure 6. This code rep-
resents the empty spaces, or steps, that agents could move
toward its goal according to the predicted step.

Additionally we controlled the rotation per agent. In other
words, after getting the predicted step, the agent rotates to-
ward the goal. Also, agent speed is coded using the seven
digits, for example if the speed of nearest intruder is big-
ger than that of the main agent, that speed bit will be 3 and
the agent can consider that space as empty for the next step;
also if the speed of nearest intruder is the same that of the
main agent, that speed bit will be 2 and also this space could
be considered empty; but if the speed of nearest intruder is
smaller than that of the main agent, then that speed bit will
be 1 and the agent could not consider that empty for the next
step.

Once the SNN has been trained the simulation is carried
out as explained before: given an occupation pattern of the
agents and the objective vector the next position is deter-
mined by the output of the trained neural net.

In case of some sector being occupied but with velocity
component greater or equal in the direction of that of the
agent being analysed, the sector is considered empty, fig-
ure 7 .

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

Figure 2: Images from sample videos. Trajectories derived from these videos were used as input data.

Figure 3: Proposal 1: Codifying the occupation pattern.

Figure 4: Test 1: A, B

Figure 5: Test 1, 2

Figure 6: Codifying with three radii

Figure 7: Proposal 2: Cases of codifying.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

Figure 8: Test 5, 6

Figure 9: Test 9, 10 SVM: Finishing in the opposite goal
with 100 agents

Second experiment: Results using SNN In the follow-
ing paragraphs we present some results of experiments made
with SNN using the second approach. In figure 8, test 5,
agents start in the opposite place of the goal, with 27 col-
lisions and deviation standard of 0.93; in test 6 the circle
test was tried with 49 collisions with deviation standard of
1.6. That means that the most of agents not contributed with
collision. We used 100 agents with SNN.

We conducted other tests: (Test 7) is like Test 3, and Test
8 is like Test 4. In this case we had only 4 and 0 collisions
respectively. With respect to precision, this was not better
than first approach, but most of agents got less than 1 unit of
distance to the goal and there were fewer collisions.

We got better results with this approach than the first. So,
it is important to compare with SVM with this approach, as
shown in the next section.

Second experiment: Results using SVM The same ex-
periments were tested, using this second coding approach,
but using SVM to test the advantages or disadvantages of
SVM respect to SNN, such as the ability to find the global
minimal value and faster execution of prediction. In Figure 9
respect to collisions we got 227, with 227 agents, and the test
circle 10 we got 779, with 100 agents. And the standard de-
viation was 8.79 and 15.16, respectively, significantly higher
than with SNN. Probably we could get better results with
other methodologies derived from SVM such us SVM light
or SMO Joachims (1999). This means that collisions per
agent are more with SVMs than with SNNs.

We also conducted (Test 11) analogous to Test3 and Test
12) analogous to Test 4 Collisions measured were 29 with a
standard deviation of 0.52 and 157 collisions with a standard
deviation of 1.02, respectively.

In figure 10 we see an example of our simulation using
our visualization system for diverse animated crowds where
by combining geometry from different characters and us-
ing shaders, we generate varied characters using few assets.
Also, different discrete levels of detail are used to allow the
system to render crowds composed up to a quarter million
characters. We suggest as a reference, Hierarchical level of
detail for varied animated crowds Hernández and Rudomin
(2011). Likewise, techniques for generating many varied
and animatable characters for crowdswith reduced memory
requirements, and where the use of a texture space tech-
niques allows painless animation transfer between different
characters and for different levels of detail Ruiz et al. (2013).

Simulation speed of SVM is better than for SNN. Dis-
tance to the goal from the final position reached in simu-
lation is also less with SVM than with SNN. But the tra-
jectories obtained with SNN were better in avoiding obsta-
cles and seemed to give a more natural-looking behaviour
of the agents. Also, as we can see in previous work Paz
et al. (2013), with respect to training time, SVM is faster
than SNN. However, training is still much slower than sim-
ulation, so the design of an algorithm that learns faster, or
even in real time, requires parallelization of training.

Conclusions
According to experiments, SNN has better performance for
behavior of crowds than SVM at predicting trajectories, in
the statistics, SNN got its best results in the second approach
achieving significantly fewer collisions. On the other hand,
all agents arrived to their goal with SVM, while the distance
to the goal with SNN was less than 1 in most cases, so it is
still possible to achieve better speed and precision with SNN
in future work.

Since our model takes into account those limitations by al-
lowing only decisions included in the trajectories contained
in our database Lerner et al. (2009), which consists basically
of moving characters avoiding each other, this implies that
our model works rather well in that characters avoid colli-
sions while getting to the goals. However we did not con-
sider large static obstacles, and in preliminary testing, as ex-
pected, the system as presented has limitations in this case.

Another limitation is that precision depends on efficiency
of the ANN used; in Sujeong Kim and Manocha (2015) ex-
periments do not work with very dense crowds, and in our
case we have only tried up to 255 agents.

Finally, some advantages of simulating with ANN are that
carrying out mathematical computations, using any physical
or mechanical data , or guessing what were the appropriate
parameter settings was not necessary. However the method
has results that depend very strongly on the trajectory data

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

Figure 10: Simulation a), b) Circle Test SNN, c), d)Test SVM finishing in the opposite goal objetive with 100 agents.

used fort training, and it should be possible to get more nat-
ural movement if the database is larger and contains more
non repetitive cases.

With respect to behaviour shown in the test, we can see
that the trajectories have more natural shapes and form geo-
metric patterns that look like those of real crowds. As future
work, it is important to compare this methodology with the
common ad-hoc methods and to train for tests that include
large obstacles.

References
Abbeel, P., Dolgov, D., Ng, A. Y., and Thrun, S. (2008). Ap-

prenticeship learning for motion planning with applica-
tion to parking lot navigation. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 1083–1090. IEEE.

Bifet, A., de Francisci Morales, G., Read, J., Holmes, G.,
and Pfahringer, B. (2015). Efficient online evalua-
tion of big data stream classifiers. In Proc 21st ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 59–68. ACM.

Bonabeau, E. (2002). Agent-based modeling: Methods and
techniques for simulating human systems. Proceed-
ings of the National Academy of Sciences, 99(suppl
3):7280–7287.

Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data mining and knowledge
discovery, 2(2):121–167.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Ghosh-Dastidar, S. and Adeli, H. (2009). A new supervised
learning algorithm for multiple spiking neural networks
with application in epilepsy and seizure detection. Neu-
ral Networks, 22(10):1419–1431.

Helbing, D. and Molnar, P. (1995). Social force model for
pedestrian dynamics. Physical review E, 51(5):4282.

Hernández, B. and Rudomin, I. (2011). A rendering pipeline
for real-time crowds. GPU Pro, 2:369–383.

Horvath, G. (2003). Cmac neural network as an svm
with b-spline kernel functions. In Instrumentation and
Measurement Technology Conference, 2003. IMTC’03.
Proceedings of the 20th IEEE, volume 2, pages 1108–
1113. IEEE.

Huang, S., Li, X., Zhang, Z., He, Z., Wu, F., Liu, W., Tang,
J., and Zhuang, Y. (2016). Deep learning driven visual
path prediction from a single image. arXiv preprint
arXiv:1601.07265.

Joachims, T. (1999). Svmlight: Support vector machine.
SVM-Light Support Vector Machine http://svmlight.
joachims. org/, University of Dortmund, 19(4).

Lee, K. H., Choi, M. G., Hong, Q., and Lee, J. (2007). Group
behavior from video: a data-driven approach to crowd
simulation. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer ani-
mation, pages 109–118. Eurographics Association.

Lerner, A., Fitusi, E., Chrysanthou, Y., and Cohen-Or,
D. (2009). Fitting behaviors to pedestrian simu-
lations. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Ani-
mation, pages 199–208. ACM.

Maass, W. (1995). On the computational complexity of net-
works of spiking neurons. Advances in neural informa-
tion processing systems, pages 183–190.

Moussaı̈d, M., Helbing, D., and Theraulaz, G. (2011). How
simple rules determine pedestrian behavior and crowd
disasters. Proceedings of the National Academy of Sci-
ences, 108(17):6884–6888.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

Ondřej, J., Pettré, J., Olivier, A.-H., and Donikian, S. (2010).
A synthetic-vision based steering approach for crowd
simulation. In ACM Transactions on Graphics (TOG),
volume 29, page 123. ACM.

Paris, S., Pettré, J., and Donikian, S. (2007). Pedestrian
reactive navigation for crowd simulation: a predictive
approach. In Computer Graphics Forum, volume 26,
pages 665–674. Wiley Online Library.

Paz, I. T., Gress, N. H., and Mendoza, M. G. (2013). Pat-
tern recognition with spiking neural networks. In Ad-
vances in Soft Computing and Its Applications, pages
279–288. Springer.

Paz, I. T., Gress, N. H., and Mendoza, M. G. (2014). Clas-
sification of database by using parallelization of algo-
rithms third generation in a gpu. In Engineering Appli-
cations of Neural Networks, pages 25–38. Springer.

Reynolds, C. W. (1987). Flocks, herds and schools: A dis-
tributed behavioral model. In ACM SIGGRAPH com-
puter graphics, volume 21, pages 25–34. ACM.

Rivalcoba, I. and Ruiz, S. (2013). Gpu generation of large
varied animated crowds. Computación y Sistemas,
17(3):365–380.

Rivas, J. I. R., De Gyves, O., Rudomin, I., and Pelechano, N.
(2014). Coupling camera-tracked humans with a simu-
lated virtual crowd. In Computer Graphics Theory and
Applications (GRAPP), 2014 International Conference
on, pages 1–10. IEEE.

Rodriguez, M., Sivic, J., Laptev, I., and Audibert, J.-Y.
(2011). Data-driven crowd analysis in videos. In Com-
puter Vision (ICCV), 2011 IEEE International Confer-
ence on, pages 1235–1242. IEEE.

Ruiz, S., Hernández, B., Alvarado, A., and Rudomı́n, I.
(2013). Reducing memory requirements for diverse an-
imated crowds. In Proceedings of Motion on Games,
pages 77–86. ACM.

Sujeong Kim, A. B. and Manocha, D. (2015). Interactive
crowd content generation and analysis using trajectory-
level behavior learning. In Proceedings of IEEE Inter-
national Symposium on Multimedia. IEEE.

Sujeong Kim, Aniket Bera, A. B. R. C. and Manocha, D.
(2016). Interactive and adaptive data-driven crowd sim-
ulation. In Proceedings of VR. IEEE.

Suykens, J. A., Van Gestel, T., De Brabanter, J., De Moor,
B., Vandewalle, J., Suykens, J., and Van Gestel, T.
(2002). Least squares support vector machines, vol-
ume 4. World Scientific.

Tabarez-Paz, I., Hernández-Gress, N., and Mendoza, M. G.
(2013). A survey of spiking neural networks and sup-
port vector machine performance byusinggpu’s. Inter-
national Journal on Soft Computing, 4(3):1.

Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D.
(2011). Reciprocal n-body collision avoidance. In
Robotics research, pages 3–19. Springer.

van den Berg, J., Patil, S., Sewall, J., Manocha, D., and
Lin, M. (2008). Interactive navigation of multiple
agents in crowded environments. In Proceedings of
the 2008 symposium on Interactive 3D graphics and
games, pages 139–147. ACM.

Wang, H., Ondřej, J., and O’Sullivan, C. (2016). Path pat-
terns: Analyzing and comparing real and simulated
crowds. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
I3D ’16, pages 49–57, New York, NY, USA. ACM.

Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spa-
tial pyramid matching using sparse coding for image
classification. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages
1794–1801. IEEE.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alif2016/28/638/2325893/978-0-262-33936-0-ch102.pdf by guest on 27 M
arch 2025

	Introduction
	Background
	Artificial Neural Networks
	Comparison between SNN and SVM

	General view of our approach
	Simulating crowd behaviour using Artificial Neural Networks
	First experiment: Results using SNN
	Second experiment: Results using SNN and SVM

	Conclusions

