5 Infinite Data and Proofs

In lazy functional programming languages like Haskell, infinite data
structures are everywhere [16]. Infinite lists and more exotic datatypes
provide convenient abstractions for communication between parts of a
program. Achieving similar convenience without infinite lazy structures
would, in many cases, require acrobatic inversions of control flow.

Laziness is easy to implement in Haskell, where all the definitions
in a program may be thought of as mutually recursive. In such an
unconstrained setting, it is easy to implement an infinite loop when
we really meant to build an infinite list, where any finite prefix of the
list should be forceable in finite time. Haskell programmers learn how
to avoid such slipups. In Coq, such a laissez-faire policy is not good
enough.

Chapter 4 discussed the Curry-Howard isomorphism, where proofs
are identified with functional programs. In such a setting, infinite loops,
intended or otherwise, are disastrous. If Coq allowed the full breadth
of definitions that Haskell does, we could code an infinite loop and use
it to prove any proposition vacuously. That is, the addition of general
recursion would make the Calculus of Inductive Constructions (CIC)
inconsistent. For an arbitrary proposition P, we could write

Fixpoint bad (u : unit) : P := bad u.

This would leave us with bad tt as a proof of P.

There are also algorithmic considerations that make universal ter-
mination very desirable. We have seen how tactics like reflexivity
compare terms up to equivalence under computational rules. Calls to
recursive, pattern-matching functions are simplified automatically, with
no need for explicit proof steps. It would be very hard to hold onto that
kind of benefit if it became possible to write nonterminating programs;
we would run into the halting problem.

One solution is to use types to contain the possibility of nontermina-
tion. For instance, we can create a nontermination monad, inside which

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

94 5 Infinite Data and Proofs

we must write all general-recursive programs; several such approaches
are surveyed in Chapter 7. This is a heavyweight solution, so we would
like to avoid it whenever possible.

Luckily, Coq has special support for a class of lazy data struc-
tures that happens to contain most examples found in Haskell. That
mechanism, co-inductive types, is the subject of this chapter.

5.1 Computing with Infinite Data

Let us begin with the most basic type of infinite data, streams, or lazy
lists.

Section stream.
Variable A : Type.

CoInductive stream : Type :—
| Cons : A — stream — stream.
End stream.

The definition is surprisingly simple. Starting from the definition of
list, we just need to change the keyword Inductive to CoInductive.
We could have left a Nil constructor in the definition, but we will leave
it out to force all streams to be infinite.

How do we write a stream constant? The simple application of con-
structors is not good enough, since we could only denote finite objects
that way. Rather, whereas recursive definitions were necessary to use
values of recursive inductive types effectively, here we find that we need
co-recursive definitions to build values of co-inductive types effectively.

We can define a stream consisting only of zeroes.

CoFixpoint zeroes : stream nat := Cons 0 zeroes.

We can also define a stream that alternates between true and false.

CoFixpoint trues_falses : stream bool := Cons true falses_trues
with falses_trues : stream bool := Cons false trues_falses.

Co-inductive values can be used as arguments to recursive func-
tions, and we can use that fact to write a function to take a finite
approximation of a stream.

Fixpoint approx A (s : stream A) (n : nat) : list A :=
match n with
| O = nil
|Sn =
match s with

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.1 Computing with Infinite Data 95

| Cons h t = h :: approx t n’
end
end.

Eval simpl in approx zeroes 10.
=0:0:20:20::0:0:0::0:0:0:nil
: list nat

Eval simpl in approx trues_falses 10.

= true
.- false
;o true
. false
.2 true :: false :: true :: false :: true :: false :: nil
: list bool

So far, it looks like co-inductive types might allow us to import all the
Haskeller’s usual tricks. However, some important restrictions are dual
to the restrictions on the use of inductive types. Fixpoints consume
values of inductive types, with restrictions on which arguments may
be passed in recursive calls. Dually, co-fixpoints produce values of co-
inductive types, with restrictions on what may be done with the results
of co-recursive calls.

The restriction for co-inductive types shows up as the guardedness
condition. First, consider this stream definition, which would be legal
in Haskell:

CoFixpoint looper : stream nat := looper.

Error:

Recursive definition of looper is ill-formed.
In environment

looper : stream nat

unguarded recursive call in "looper"

The rule we have run afoul of here is that every co-recursive call
must be guarded by a constructor; that is, every co-recursive call must
be a direct argument to a constructor of the co-inductive type we are
generating. It is a good thing that this rule is enforced. If the definition
of looper were accepted, the approx function would run forever when
passed looper, and we would have fallen into inconsistency.

Some familiar functions are easy to write in co-recursive fashion.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

96 5 Infinite Data and Proofs

Section map.
Variables A B : Type.
Variable f : A — B.

CoFixpoint map (s : stream A) : stream B :=
match s with
| Cons h t = Cons (f h) (map t)
end.
End map.

This code is a literal copy of that for the list map function, with the
nil case removed and Fixpoint changed to CoFixpoint. Many other
standard functions on lazy data structures can be implemented just
as easily. Some, like filter, cannot be implemented. Since the predicate
passed to filter may reject every element of the stream, we cannot satisfy
the guardedness condition.

The implications of the condition can be subtle. To illustrate, we
start off with another co-recursive function definition that is legal. The
function interleave takes two streams and produces a new stream that
alternates between their elements.

Section interleave.
Variable A : Type.

CoFixpoint interleave (sI s2 : stream A) : stream A :=
match s, s2 with
| Cons h1 t1, Cons h2 t2 = Cons h1 (Cons h2 (interleave t1 t2))
end.
End interleave.

Now suppose we want to write a weird stuttering version of map that
repeats elements in a particular way, based on interleaving.

Section map'.
Variables A B : Type.
Variable f : A — B.

CoFixpoint map’ (s : stream A) : stream B :=
match s with
| Cons h t =
interleave (Cons (f h) (map' t)) (Cons (f h) (map’ t))
end.

We get another error message about an unguarded recursive call.

End map'.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.1 Computing with Infinite Data 97

What went wrong here? Imagine that instead of interleave we had
called some other, less well-behaved function on streams. Here is one
simpler example demonstrating the pitfall. We start by defining a stan-
dard function for taking the tail of a stream. Since streams are infinite,
this operation is total.

Definition tl A (s : stream A) : stream A :=
match s with
| Cons _ s = s’
end.

Coq rejects the following definition that uses tl.
CoFixpoint bad : stream nat := tl (Cons 0 bad).

Imagine that Coq had accepted the definition, and consider how we
might evaluate approx bad 1. We would be trying to calculate the first
element in the stream bad. However, the definition of bad begs the
question: unfolding the definition of tl, we see that we essentially say
“define bad to equal itself.” Of course such an equation admits no single
well-defined solution, which does not fit well with the determinism of
Gallina reduction.

Coq’s complete rule for co-recursive definitions includes not just the
basic guardedness condition but also a requirement about where co-
recursive calls may occur. In particular, a co-recursive call must be
a direct argument to a constructor, nested only inside of other con-
structor calls or fun or match expressions. In the definition of bad, we
erroneously nested the co-recursive call inside a call to tl, and we nested
inside a call to interleave in the definition of map'.

Coq helps the user by performing the guardedness check after using
computation to simplify terms. For instance, any co-recursive function
definition can be expanded by inserting extra calls to an identity func-
tion, and this change preserves guardedness. However, in other cases
computational simplification can reveal why definitions are dangerous.
Consider what happens when we inline the definition of tl in bad.

CoFixpoint bad : stream nat := bad.

This is the same looping definition we rejected earlier. A similar inlin-
ing process reveals a different view on the failed definition of map'.

CoFixpoint map’ (s : stream A) : stream B :=
match s with
| Cons h t = Cons (f h) (Cons (f h) (interleave (map’ t) (map’ t)))

end.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

98 5 Infinite Data and Proofs

Clearly in this case the map’ calls are not immediate arguments to
constructors, so we violate the guardedness condition.

A more interesting question is why that condition is the right one.
We can make an intuitive argument that the original map’ definition is
perfectly reasonable and denotes a well-understood transformation on
streams, such that every output would behave properly with approx.
The guardedness condition is an example of a syntactic check for pro-
ductivity of co-recursive definitions. A productive definition can be
thought of as one whose outputs can be forced in finite time to any
finite approximation level, as with approx. If we replaced the guarded-
ness condition with more involved checks, we might be able to detect
and allow a broader range of productive definitions. However, mistakes
in these checks could cause inconsistency, and programmers would need
to understand the new, more complex checks. Coq’s design strikes a
balance between consistency and simplicity with its choice of guard
condition, though we can imagine other worthwhile balances being
struck.

5.2 Infinite Proofs

Let us say we want to give two different definitions of a stream of all
ones and then prove that they are equivalent.

CoFixpoint ones : stream nat := Cons 1 ones.
Definition ones' := map S zeroes.

The obvious statement of the equality is this:

Theorem ones_eq : ones = ones'.

However, with the initial subgoal, it is not at all clear how this the-
orem can be proved. In fact, it is unprovable. The eq predicate is
fundamentally limited to equalities that can be demonstrated by finite,
syntactic arguments. To prove this equivalence, we need to introduce a
new relation.

Abort.

Co-inductive datatypes make sense by analogy from Haskell. What
we need now is a co-inductive proposition. That is, we want to define
a proposition whose proofs may be infinite, subject to the guarded-
ness condition. The idea of infinite proofs does not show up in usual
mathematics, but it can be very useful for reasoning about infinite data
structures. Besides examples from Haskell, infinite data and proofs will

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.2 Infinite Proofs 99

also turn out to be useful for modeling inherently infinite mathematical
objects, like program executions.
We are ready for our first co-inductive predicate.

Section stream_eq.
Variable A : Type.

CoInductive stream_eq : stream A — stream A — Prop :=
| Stream_eq : V h t1 t2,
stream_eq t1 t2
— stream_eq (Cons h t1) (Cons h t2).
End stream_eq.

We say that two streams are equal if and only if they have the same
heads and their tails are equal. We use the normal finite-syntactic equal-
ity for the heads, and we refer to the new equality recursively for the
tails.

We can try restating the theorem with stream_eq.

Theorem ones_eq : stream_eq ones ones'.

Coq does not support tactical co-inductive proofs as well as it sup-
ports tactical inductive proofs. The usual starting point is the cofix
tactic, which asks to structure this proof as a co-fixpoint.

cofix.

ones_eq : stream_eq ones ones'’

stream_eq ones ones’

It looks like this proof might be easier than we expected.

assumption.
Proof completed.

Unfortunately, we are due for some disappointment.
Qed.

Error:
Recursive definition of ones_eq is ill-formed.

In environment
ones_eq : stream_eq ones ones’

unguarded recursive call in "ones_eq"

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

100 5 Infinite Data and Proofs

Via the Curry-Howard correspondence, the same guardedness condi-
tion applies to co-inductive proofs as to co-inductive data structures.
If it did not, the same proof structure could be used to prove any
co-inductive theorem vacuously, by direct appeal to itself.

Thinking about how Coq would generate a proof term from the pre-
vious proof script, we see that the problem is that we are violating the
guardedness condition. During proofs, Coq can help us check whether
we have yet gone wrong in this way. We can run the command Guarded
in any context to see if it is possible to finish the proof in a way that
will yield a properly guarded proof term.

Guarded.

Running Guarded here gives the same error message that we got when
we tried to run Qed. In larger proofs, Guarded can be helpful in detecting
problems before we think we are ready to run Qed.

We need to start the co-induction by applying stream_eq’s construc-
tor. To do that, we need to know that both arguments to the predicate
are Conses. Informally, this is trivial, but simpl is not able to help.

Undo.

simpl.

ones_eq : stream_eq ones ones’

stream_eq ones ones’

It turns out that we are best served by proving an auxiliary lemma.
Abort.
First, we need to define a function that seems pointless at first glance.

Definition frob A (s : stream A) : stream A :=
match s with
| Cons h t = Cons h t
end.

Next, we need to prove a theorem that seems equally pointless.

Theorem frob_eq : V A (s : stream A), s = frob s.
destruct s; reflexivity.
Qed.

But this theorem turns out to be just what we needed.

Theorem ones_eq : stream_eq ones ones’.
cofix.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.2 Infinite Proofs 101

We can use the theorem to rewrite the two streams.

rewrite (frob_eq ones).
rewrite (frob_eq ones').

ones_eq : stream_eq ones ones’

stream_eq (frob ones) (frob ones’)

Now simpl is able to reduce the streams.

simpl.

ones_eq : stream_eq ones ones’

stream_eq (Cons 1 ones)
(Cons 1
((cofix map (s : stream nat) : stream nat :—
match s with
| Cons h t = Cons (S h) (map t)
end) zeroes))

Note the cofix notation for anonymous co-recursion, which is anal-
ogous to the fix notation we have already seen for recursion. Since
we have exposed the Cons structure of each stream, we can apply the
constructor of stream_eq.

constructor.

ones_eq : stream_eq ones ones’

stream_eq ones

((cofix map (s : stream nat) : stream nat :=
match s with

| Cons h t = Cons (S h) (map t)
end) zeroes)

Now, modulo unfolding of the definition of map, we have matched
the assumption.

assumption.
Qed.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

102 5 Infinite Data and Proofs

Why did this work-around help? The answer has to do with the
constraints placed on Coq’s evaluation rules by the need for termi-
nation. The cofix-related restriction that foiled the first attempt at
using simpl is dual to a restriction for fix. In particular, an applica-
tion of an anonymous fix only reduces when the top-level structure of
the recursive argument is known. Otherwise, we would be unfolding the
recursive definition ad infinitum.

Fixpoints only reduce when enough is known about the definitions
of their arguments. Dually, co-fixpoints only reduce when enough is
known about how their results will be used. In particular, a cofix is
only expanded when it is the discriminee of a match. Rewriting with the
new lemma wrapped new matches around the two cofixes, triggering
reduction.

If cofixes reduced haphazardly, it would be easy to run into infinite
loops in evaluation, since we are, after all, building infinite objects.

One common source of difficulty with co-inductive proofs is bad inter-
action with standard Coq automation machinery. If we try to prove
ones_eq with automation, as with previous inductive proofs, we get an
invalid proof.

Theorem ones_eq’ : stream_eq ones ones'.
cofix; crush.
Guarded.

Abort.

The standard auto machinery sees that the goal matches an assump-
tion and so applies that assumption, even though this violates guard-
edness. A correct proof strategy for a theorem like this usually starts
by destructing some parameter and running a custom tactic to figure
out the first proof rule to apply for each case. Alternatively, there are
tricks for “hiding” the co-inductive hypothesis.

Induction seems to have dual versions of the same pitfalls inherent in
it, which can be avoided by encapsulating safe Curry-Howard recursion
schemes inside named induction principles. We can usually do the same
with co-induction principles. Let us do that here, so that we can arrive
at an induction z; crush-style proof for ones_eq’.

An induction principle is parameterized over a predicate character-
izing what we mean to prove, as a function of the inductive fact that
we already know. Dually, a co-induction principle ought to be param-
eterized over a predicate characterizing what we need to assume, as
a function of the arguments to the co-inductive predicate that we are
trying to prove.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.2 Infinite Proofs 103

To state a useful principle for stream_eq, it will be useful first to
define the stream head function.

Definition hd A (s : stream A) : A :=
match s with
| Consz - =z
end.

Now we enter a section for the co-induction principle, based on Park’s
principle as introduced in a tutorial by Giménez [12].

Section stream_eq_coind.
Variable A : Type.
Variable R : stream A — stream A — Prop.

This relation generalizes the theorem we want to prove, defining a set
of pairs of streams that we must eventually prove contains the particular
pair we care about.

Hypothesis Cons_case_hd : ¥V s1 s2, R s1 s2 — hd s1 = hd s2.
Hypothesis Cons_case_tl : ¥ s1 s2, R s1 s2 — R (tl s1) (tl s2).

Two hypotheses characterize what makes a good choice of R: it
enforces equality of stream heads, and it is hereditary in the sense that
an R stream pair passes on R-ness to its tails. An established technical
term for such a relation is bisimulation.

Now it is straightforward to prove the principle, which says that any
stream pair in R is equal. Readers may wish to step through the proof
script to see what is going on.

Theorem stream_eq_coind : V s1 s2, R sI s2 — stream_eq sl s2.
cofix; destruct sI; destruct s2; intro.
generalize (Cons_case_hd H); intro Heg;

simpl in Heq; rewrite Hegq.

constructor.
apply stream_eq_coind.
apply (Cons_case_tl H).

Qed.

End stream_eq_coind.

To see why this proof is guarded, we can print it and verify that the
one co-recursive call is an immediate argument to a constructor.

Print stream_eq_coind.

We omit the output and proceed to proving ones_eq’ again. The only
bit of ingenuity lies in choosing R, and in this case the most restrictive
predicate works.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

104 5 Infinite Data and Proofs

Theorem ones_eq' : stream_eq ones ones'.
apply (stream_eq_coind (fun s1 s2 = sI = ones A s2 = ones')); crush.
Qed.

Note that this proof achieves the proper reduction behavior via hd
and tl rather than frob, as in the last proof. All three functions pattern-
match on their arguments, catalyzing computation steps.

Compared to inductive proofs, it still seems unsatisfactory that we
had to write a choice of R in the last proof. An alternative is to capture
a common pattern of co-recursion in a more specialized co-induction
principle. For the current example, that pattern is, prove stream_eq s1
s2, where s1 and s2 are defined as their own tails.

Section stream_eq_loop.
Variable A : Type.
Variables sI s2 : stream A.

Hypothesis Cons_case_hd : hd s1 = hd s2.
Hypothesis loop! : tl s1 = s1.
Hypothesis loop?2 : tl s2 = s2.

The proof of the principle includes a choice of R so that we no longer
need to make such choices.

Theorem stream_eq_loop : stream_eq s1 s2.
apply (stream_eq_coind (fun s1’ s2” = s1’ = s1 A s2’ = s2));
crush.
Qed.
End stream_eq_loop.

Theorem ones_eq’’ : stream_eq ones ones'.
apply stream_eq-_loop; crush.
Qed.

Let us put stream_eq_coind through its paces a bit more, considering
two different ways to compute infinite streams of all factorial values.
First, we import the fact factorial function from the standard library.

Require Import Arith.
Print fact.

fact =
fix fact (n : nat) : nat :=
match n with
|0=1
| S n0 = S n0 x fact no
end
: nat — nat

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.2 Infinite Proofs 105

The simplest way to compute the factorial stream involves calling fact
afresh at each position.

CoFixpoint fact_slow’ (n : nat) := Cons (fact n) (fact_slow’ (S n)).
Definition fact_slow := fact_slow’ 1.

An optimized method maintains an accumulator of the previous
factorial so that each new entry can be computed with a single
multiplication.

CoFixpoint fact_iter’ (cur acc : nat) :=

Cons acc (fact_iter' (S cur) (acc x cur)).
Definition fact_iter := fact_iter’ 2 1.

We can verify that the streams are equal up to particular finite
bounds.

Eval simpl in approx fact_iter 5.
=1:2:6:24: 120 :: nil
: list nat

Eval simpl in approx fact_slow 5.

=1:2:6:24:120 : nil
: list nat
Now, to prove that the two versions are equivalent, it is helpful to

prove (and add as a proof hint) a lemma about the computational
behavior of fact.

Lemma fact_def : V z n,
fact_iter’ z (fact n x S n) = fact_iter’ z (fact (S n)).
simpl; intros; f_equal; ring.

Qed.

Hint Resolve fact_def.

With the hint added, it is easy to prove an auxiliary lemma relat-
ing fact_iter' and fact_slow’. The key is introduction of an existential
quantifier for the shared parameter n.

Lemma fact_eq' : V n,
stream_eq (fact_iter' (S n) (fact n)) (fact_slow’ n).
intro; apply (stream_eq_coind (fun s/ s2 = 3 n,
s1 = fact_iter' (S n) (fact n)
A s2 = fact_slow’ n)); crush; eauto.
Qed.

The final theorem is a direct corollary of fact_eq'.

Theorem fact_eq : stream_eq fact_iter fact_slow.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

106 5 Infinite Data and Proofs

apply fact_eq'.
Qed.

As in the case of ones_eq’, we may be unsatisfied that we need
to write a choice of R that seems to duplicate information already
present in a lemma statement. We can facilitate a simpler proof by
defining a co-induction principle specialized to goals that begin with
single universal quantifiers, and the strategy can be extended in a
straightforward way to principles for other counts of quantifiers. (The
stream_eq-_loop principle is effectively the instantiation of this technique
to zero quantifiers.)

Section stream_eqg_onequant.

Variables A B : Type.

We have the type A, the domain of the one quantifier; and type B,
the type of data found in the streams.

Variables f ¢g : A — stream B.

The two streams we compare must be of the forms f z and ¢ z, for
some shared z. Note that this falls out naturally when z is a shared
universally quantified variable in a lemma statement.

Hypothesis Cons_case_hd : ¥ z, hd (f z) = hd (g z).

Hypothesis Cons_case_tl : ¥V x, Jy, tl (fz)=fyAtl(gz)=guy.

These conditions are inspired by the bisimulation requirements, with
a more general version of the R choice we made for fact_eq’ inlined into
the hypotheses of stream_eq_coind.

Theorem stream_eq_onequant : V z, stream_eq (f z) (g z).
intro; apply (stream_eq_coind (fun sf s2 = 3 z,
sl =fx A s2=gu)); crush; eauto.
Qed.
End stream_eq-onequant.

Lemma fact_eq'' :V n,
stream_eq (fact_iter’ (S n) (fact n)) (fact_slow’ n).
apply stream_eq_onequant; crush; eauto.

Qed.

We have arrived at a customary automated proof, thanks to the new
principle.

5.3 Simple Modeling of Nonterminating Programs

This chapter closes with a brief example of more complex uses of
co-inductive types. We define a co-inductive semantics for a simple

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.3 Simple Modeling of Nonterminating Programs 107

imperative programming language and use that semantics to prove the
correctness of a trivial optimization that removes spurious additions by
0. We follow the technique of co-inductive big-step operational semantics
[20].

We define a suggestive synonym for nat, as we will consider programs
over infinitely many variables, represented as nats.

Definition var := nat.

We define a type vars of maps from variables to values. To define a
function set for setting a variable’s value in a map, we use the standard
library function beq_nat for comparing natural numbers.

Definition vars := var — nat.
Definition set (vs : vars) (v : var) (n : nat) : vars : =
fun v’ = if beq_nat v v’ then n else vs v’

We define a simple arithmetic expression language with variables and
give it a semantics via an interpreter.

Inductive exp : Set :=

| Const : nat — exp

| Var : var — exp

| Plus : exp — exp — exp.

Fixpoint evalExp (vs : vars) (e : exp) : nat :=
match e with
| Const n = n
| Var v = wvs v
| Plus el e2 = evalExp vs el + evalExp vs e2
end.

Finally, we define a language of commands. It includes variable assign-
ment, sequencing, and a while form that repeats as long as its test
expression evaluates to a nonzero value.

Inductive cmd : Set :=

| Assign : var — exp — cmd

| Seq : ecmd — cmd — cmd

| While : exp — cmd — cmd.

We could define an inductive relation to characterize the results of
command evaluation. However, such a relation would not capture non-
terminating executions. With a co-inductive relation, we can capture
both cases. The parameters of the relation are an initial state, a com-
mand, and a final state. A program that does not terminate in a
particular initial state is related to any final state. For more realis-
tic languages than this one, it is often possible for programs to crash,

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

108 5 Infinite Data and Proofs

in which case a semantics would generally relate their executions to no
final states. Thus, relating safely nonterminating programs to all final
states provides a crucial distinction.

CoInductive evalCmd : vars — cmd — vars — Prop :=
| EvalAssign : YV vs v e,
evalCmd vs (Assign v e) (set vs v (evalExp vs e))
| EvalSeq : V vs1 vs2 vs3 ¢l c¢2, evalCmd vs1 cl vs2
— evalCmd vs2 c2 vs3
— evalCmd vs! (Seq c1 ¢2) vs3
| EvalWhileFalse : V vs e ¢, evalExp vs e = 0
— evalCmd vs (While e ¢) vs
| EvalWhileTrue : V vs! vs2 vs3 e c, evalExp vsl e # 0
— evalCmd vs! ¢ vs2
— evalCmd vs2 (While e ¢) vs3
— evalCmd vs! (While e ¢) vs3.

Before proceeding, we build a co-induction principle for evalCmd.

Section evalCmd_coind.
Variable R : vars — cmd — vars — Prop.

Hypothesis AssignCase : V vsl vs2 v e, R vsl (Assign v e) vs2
— vs2 = set vsl v (evalExp vs! e).

Hypothesis SeqCase : ¥V vsl vs8 cl c2, R vsl (Seq cl c2) vs3
— Jws2, R wsl cl vs2 N R vs2 c2 vss.

Hypothesis WhileCase : ¥V vsl vs3 e ¢, R vsl (While e ¢) vs3
— (evalExp vsl e =0 A vs8 = vsl)
V J ws2, evalExp vsl e # 0 A R vsl ¢ vs2
A R vs2 (While e ¢) vs3.

The proof is routine. We make use of a form of destruct that takes
an intro pattern in an as clause. These patterns control how deeply we
break apart the components of an inductive value (see the Coq manual
for more details).

Theorem evalCmd_coind : V vsl ¢ vs2, R vsl ¢ vs2
— evalCmd vs! ¢ vs2.
cofix; intros; destruct c.
rewrite (AssignCase H); constructor.
destruct (SeqCase H) as [? [? 7]|; econstructor; eauto.
destruct (WhileCase H) as [[7 7] | [? |7 [? ?]]I];

subst; econstructor; eauto.
Qed.
End evalCmd_coind.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

5.3 Simple Modeling of Nonterminating Programs 109

Now that we have a co-induction principle, we should use it to prove
something. The example is a trivial program optimizer that finds places
to replace 0 + e with e.

Fixpoint optExp (e : exp) : exp :=
match e with
| Plus (Const 0) e = optExp e
| Plus el e2 = Plus (optExp e1) (optExp e2)
|_=e
end.

Fixpoint optCmd (¢ : ecmd) : emd :=
match ¢ with
| Assign v e = Assign v (optExp e)
| Seq cI ¢2 = Seq (optCmd c¢1) (optCmd c¢2)
| While e ¢ = While (optExp ¢e) (optCmd ¢)
end.

Before proving correctness of optCmd, we prove a lemma about
optExp. This is where we have to do the most work, choosing
pattern-matching opportunities automatically.

Lemma optExp_correct : V vs e, evalExp vs (optExp e) = evalExp vs e.
induction e; crush;
repeat (match goal with
| [- context|match ?7F with Const _ = _
| - = _ end| | = destruct £
| [- context|match 7F with O = _
| S - = _ end] | = destruct F
end; crush).
Qed.

Hint Rewrite optExp-_correct.

The final theorem is easy to establish using the co-induction principle
and a bit of Ltac proof automation (see Chapter 14). At a high level,
we show inclusions between behaviors, going in both directions between
original and optimized programs.

Ltac finisher := match goal with
|| H :evalCmd _ _ _ _ | = ((inversion H; [])
|| (inversion H; ||])); subst
end; crush; eauto 10.

Lemma optCmd_correctl : V vs! ¢ vs2, evalCmd vs! ¢ vs2
— evalCmd vs! (optCmd c¢) vs2.
intros; apply (evalCmd_coind (fun vs! ¢’ vs2 =

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

110 5 Infinite Data and Proofs

3¢, evalCmd vs! ¢ vs2 A ¢’ = optCmd ¢));

eauto; crush;

match goal with

|[H:_=optCmd7E+ _ | =

destruct E; simpl in *; discriminate
|| injection H; intros; subst

end; finisher.

Qed.

Lemma optCmd_correct2 : V vs! ¢ vs2, evalCmd vs! (optCmd c) vs2
— evalCmd vs1 ¢ vs2.
intros; apply (evalCmd_coind (fun vs! ¢ vs2 =
evalCmd vs! (optCmd ¢) vs2)); crush; finisher.
Qed.

Theorem optCmd_correct : V vs! ¢ vs2, evalCmd vs! (optCmd ¢) vs2
+» evalCmd vs! ¢ vs2.
intuition; apply optCmd_correctl || apply optCmd_correct2;
assumption.
Qed.

In this form, the theorem tells us that the optimizer preserves observ-
able behavior of both terminating and nonterminating programs, but
we did not have to do more work than for the case of terminating
programs alone. We merely took the natural inductive definition for
terminating executions, made it co-inductive, and applied the appro-
priate co-induction principle. Readers might want to experiment with
adding command constructs like if; the same proof script should con-
tinue working after the co-induction principle is extended to the new
evaluation rules.

Downloaded from http://direct.mit.edu/books/chapter-pdf/268872/9780262317870_cae.pdf by guest on 25 September 2022

