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1 Invariant Representations

Mathematics of Invariance

1.1 Introduction and Motivation

One could argue that the most important aspect of intelligence is the ability
to learn [16]. How do present supervised learning algorithms compare with
brains? One of the most obvious differences is the ability of people and animals
to learn from very few labeled examples. A child, or a monkey, can learn a
recognition task from just a few examples. The main motivation of this book is
the conjecture that the key to reducing the sample complexity of object recog-
nition is invariance to transformations. Images of the same object usually differ
from each other because of simple transformations such as translation, scale
(distance), or more complex deformations such as viewpoint (rotation in depth)
or change in pose (of a body) or expression (of a face).

The conjecture is supported by previous theoretical work showing that
almost all the complexity in recognition tasks is due to the viewpoint and illu-
mination nuisances that swamp the intrinsic characteristics of the object [17].
It implies that in many cases recognition, both identification (e.g., of a specific
car relative to other cars) and categorization (e.g., distinguishing between cars
and airplanes) would be much easier (only a small number of training exam-
ples would be needed to achieve a given level of performance) if the images of
objects were rectified with respect to all transformations, or equivalently, if the
image representation itself were invariant.

The case of identification is obvious, since the difficulty in recognizing
exactly the same object like an individual face is only due to transformations.
In the case of categorization, consider the suggestive evidence from the clas-
sification task in figure 1.1. The figure shows that if an oracle factors out all
transformations in images of many different cars and airplanes, providing rec-
tified images with respect to viewpoint, illumination, position, and scale, the
problem of categorizing cars versus airplanes becomes easy; it can be done
accurately with very few labeled examples. In this case, good performance
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2 Chapter 1

was obtained from a single training image of each class, using a simple clas-
sifier. In other words, the sample complexity of the problem seems to be very
low (see box 1.1 and figure 1.1).

A similar argument involves estimating the cardinality of the universe of
possible images generated by different viewpoints, such as variations in scale,
position, and rotation in 3-D, versus true intraclass variability, such as different
types of cars. Let us try to estimate whether the cardinality of the universe of
possible images generated by an object originates more from intraclass vari-
ability (e.g., different types of dogs) or from the range of possible viewpoints,
including scale, position, and rotation in 3-D. Assuming a granularity of a few
minutes of arc in terms of resolution and a visual field of, say, 10 degrees,
one would get 103-10° different images of the same object from x, y transla-
tions, another factor of 103-10° from rotations in depth, a factor of 10-102
from rotations in the image plane, and another factor of 10-10? from scaling.
This gives on the order of 108-10'# distinguishable images for a single object.
On the other hand, how many different distinguishable (for humans) types of
dogs exist within the dog category? It is unlikely that there are more than, say,
102-103. From this point of view, it is a much greater win to be able to factor
out the geometric transformations than the intracategory differences.

As context for this book, let us describe the conceptual framework for
primate vision that we use:

e The first 100 msec of vision in the ventral stream are mostly feedforward.
The main computation goal is to generate a number of image representa-
tions, each one quasi-invariant to some transformations experienced during
development, such as scaling, translation, and pose changes. The represen-
tations are used to answer basic default questions about what kind of image
and what may be there.

* The answers will often have low confidence, requiring an additional verifi-
cation/prediction step, which may require a sequence of shifts of gaze and
attentional changes. This step may rely on generative models and proba-
bilistic inference or on top-down visual routines following memory access.
Routines that can be synthesized on demand as a function of the visual task
are needed in any case to go beyond object classification. Note that in a
Turing test of vision [133] only the simplest, standard questions (what is
there? who is there? etc.) can be answered by pretrained classifiers.

We consider only the feedforward architecture of the ventral stream and its
computational function. To help readers understand more easily the mathe-
matics of this part of the book, we anticipate here the network of visual areas
that we propose for computing invariant representations for feedforward visual
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Figure 1.1

Sample complexity for the task of categorizing cars versus airplanes from their raw pixel repre-
sentations (no preprocessing). (A) Performance of a nearest-neighbor classifier (distance metric =
1 — correlation) as a function of the number of examples per class used for training. Each test used
74 randomly chosen images to evaluate the classifier. Error bars represent & 1 standard deviation
computed over 100 training/testing splits using different images out of the full set of 440 objects
x number of transformation conditions. Solid line: the rectified task. Classifier performance for
the case where all training and test images are rectified with respect to all transformations; exam-
ple images shown in (B). Dashed line: the unrectified task. Classifier performance for the case
where variation in position, scale, direction of illumination, and rotation around any axis (includ-
ing rotation in depth) is allowed; example images shown in (C). The images were created using
3-D models from the Digimation model bank and rendered with Blender.

recognition. There are two main stages. The first one comprises retinotopic
areas computing a representation that is invariant to affine transformations.
The second computes approximate invariance to object-specific, nongroup
transformations. The second stage consists of parallel pathways, each one for
a different object class (see figure 1.5, stage 1). The results of this part do
not strictly require these two stages. If both are present, as it seems is the
case for the primate ventral stream, the mathematics of the theory requires that
the object-specific stage follow the one dealing with affine transformations.
According to the i-theory, the Hubel-Wised module is the basic module for
both stages. The first- and second-stage pathways may each consist of a single
layer of HW modules. However, mitigation of interference by clutter requires a
hierarchy of layers (possibly corresponding to visual areas such as V1, V2, V4,
PIT) within the first stage. It may not be required in visual systems with lower
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4 Chapter 1

resolution, such as in the mouse. The final architecture is shown in figure 1.5.
In the first stage about four layers compute representations that are increasingly
invariant to translation and scale, while in the second stage a large number of
specific parallel pathways deal with approximate invariance to transformations
that are specific for objects and object classes. Note that for any representation
that is invariant to X and selective for Y, there may be a dual representation that
is invariant to Y but selective for X. In general, they are both needed for differ-
ent tasks, and both can be computed by an HW module with different pooling
strategies. In general, the circuits computing them share a good deal of over-
lap. For example, it is possible that different face patches in the cortex are used
to represent different combinations of invariance and selectivity.

1.2 Invariance Reduces Sample Complexity of Learning

In a machine learning context, invariance to image translations, for instance,
can be built up trivially by memorizing examples of the specific object in dif-
ferent positions. Human vision, on the other hand, is clearly invariant for novel
objects: people do not have any problem in recognizing in a distance-invariant
way a face seen only once. It is intuitive that representations of images that
are invariant to transformations such as scaling, illumination, and pose should
allow supervised learning from far fewer examples.

A proof of the conjecture for the special case of translation or scale or rota-
tion is provided in appendix section A.1. For images defined on a grid of pixels,
the result (in the case of translations) can be proved using well-known relations
between covering numbers and sample complexity.

Box 1.1
Sample Complexity
Sample complexity is the number of examples needed for the estimate of a target function

to be within a given error rate. In the example of figurel.1, the number of airplanes or cars,
we trained the linear classifier to perform the recognition task with a certain precision.

Sample Complexity for Translation Invariance

Consider a space of images of dimensions p x p, which may appear in any
position within a window of size rp x rp. The natural image representation
yields a sample complexity (for a linear classifier) of order mimage = 0(p?);
the invariant representation yields a sample complexity of order
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Invariant Representations 5

Miny = O(P°). (1.1

This simple observation says that in the case of a translation group, an invariant
representation can decrease considerably the sample complexity, that is, the
number of supervised examples necessary for a certain level of accuracy in
classification. A heuristic rule is that the sample complexity gain is on the
order of the number of virtual examples generated by the action of the group
on a single image (see [18, 19]). This is not a constructive result, but it supports
the hypothesis that the ventral stream in the visual cortex tries to approximate
such an oracle. The next section describes a biologically plausible algorithm
that the ventral stream may use to implement an invariant representation.

1.3 Unsupervised Learning and Computation of an Invariant Signature
(One-Layer Architecture)

The following algorithm is biologically plausible, as we discuss in detail in
chapter 2, where we argue that it may be implemented in the cortex by an HW
module, that is, a set of KH complex cells (see box 1.2) with the same receptive
field, each pooling the output of a set of simple cells whose sets of synaptic
weights correspond to the K templates of the algorithm and its transformations
(which are also called templates) and whose output is filtered by a sigmoid
function with Ah threshold, h=1,--- ,H, A > 0.

Box 1.2
Simple Cells, Complex Cells [20]

A threshold vector product can be interpreted as the output of a neuron, called simple cell,
which computes a possibly high-dimensional inner product with a template ¢ and applies
a nonlinear operation to it. In this interpretation, eq. (1.2) can be seen as the output of
the pooling of many simple cells by a second neuron complex cell, which aggregates the
output of other neurons by a simple averaging operation. Neurons of the former kind can
be found in the visual cortex.

The algorithm for groups (finite or compact, defined on a finite or compact
set) (see figure 1.2) is as follows.

Developmental stage

1. For each of K isolated (on an empty background) objects, or templates,
memorize a sequence A of |G| frames corresponding to the object’s trans-
formations (g;,i = 1,---,|G]). For now, we suppose the g; to belong to a
finite group G; see box 1.3. The sequence of frames is observed over a time
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6 Chapter 1

interval; thus A = {got,g1t,- - , 8|t} for template z. (For template X the
corresponding sequence of transformations is denoted Ag.)

2. Repeat for each of K templates.

Runtime computation of invariant signature for a single image of any new
object

1. For each * compute the dot product of the image with each of the |G|
transformations in Ay.

2. For each k compute the cumulative histogram of the resulting values.

3. The signature is the set of K cumulative histograms, that is, the set of

1G]
k _ 1 Lk
(D) = Gl ?:1 0(<I»gzl >+hA), (1.2)

where [ is an image, o is a threshold function, A > 0 is the width of bin in
the histogram, and h = 1, - - - , H is the index of the bins of the histogram.

Box 1.3

Group Transformations
A group is a set of objects equipped with a law of composition, *, such that

® acomposition of any two elements of the set gives another element of the set (closure);
® the composition is associative, i.e., (a * b) * ¢ = a x (b * ¢) (associativity);
¢ the set includes an identity element a * e = a (identity);

* the set includes all the inverses of the elements, g~ ! (inverse).

The algorithm consists of two parts. The first part is unsupervised learning
of transformations by storing transformed templates, which are images. This
part is possibly done only once during development of the visual system. The
second part is the actual computation of invariant signatures during visual per-
ception. Our analysis is not restricted to the case of group transformations. For
now, we consider groups that are compact and, for simplicity, finite.

This algorithm we used throughout the book. The guarantees we can pro-
vide depend on the type of transformations. The main questions are whether
the signature is invariant under the same type of transformations that were
observed in the first stage, and whether the signature is selective, for instance,
can it distinguish between N different objects. In summary, as shown in
appendix section A.2, the HW algorithm is invariant and selective (when K
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A graphical summary of the HW algorithm. The set of ,u];l(l) =1/|G| Zlg‘l J((l,gitk>+hA)

values (see eq. (1.2)) corresponds to the the histogram where, e.g., k = 1 denotes the template
blackboard, & the bins of the histogram; transformations g; are from the rotation group. Crucially,
mechanisms capable of computing invariant representations under affine transformations can be
learned (and maintained) in an unsupervised, automatic way by storing sets of transformed tem-
plates that are unrelated to the object to be represented in an invariant way. In particular, the
templates could be random patterns.

is order log(N)) if the transformations form a group (but see also appendix
section A.2.4). In this case, any set of randomly chosen templates will work
for the first stage. Seen as transformations from a 2-D image to a 2-D image,
the natural choice is the affine group consisting of translations, rotations
in the image plane, scaling (possibly nonisotropic), and compositions thereof.
The HW algorithm can learn with exact invariance and desired selectivity in
the case of the affine group or its subgroups. In the case of 3-D images consist-
ing of voxels with x, y, z coordinates, rotations in 3-D are also a group and in
principle can be dealt with, achieving exact invariance from generic templates
by the HW algorithm (in practice, this is rarely possible because of correspon-
dence problems and self-occlusions). In section 1.6 we show that the same HW
algorithm provides approximate invariance (under some conditions) for non-
group transformations such as the transformations from 3-D to 2-D induced by
3-D rotations of an object.
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8 Chapter 1

In the case of compact groups, the guarantees of invariance and selectivity
are provided by the following two theorems (given informally here; detailed
formulation in appendix section A.2 and in [8, 10]).

Box 1.4
Invariance and Group Average

For any function f € L*(R) and compact group G,

Foo = / dg f(gx)

is invariant. This property can be simply proved using the fact that the group is closed
under its composition rule and the invariance of the Haar measure dg:

F@n = f dg f(3gn) = f dg f(gx) =F(x). Vi € G,

i.e., f is invariant to G.

Invariance Theorem

The distributions represented by eq. (1.2) are invariant, that is, each bin is
invariant

1y = uk (g (1.3)

for any g in G, where G is the group of transformations labeled g; in
eq. (1.2). The proof is based on the fact that the signature is a group average
(see box 1.4).

Selectivity Theorem

For groups of transformations (e.g., the affine group), the distributions repre-
sented by eq. (1.2) can achieve any desired selectivity for an image among N
images in the sense that they can e-approximate the true distance between each
pair of the images (and any transform of them) with probability 1 — & provided
that
c. N

K > 5_21113’ (1.4)
where c is a universal constant.

The signature provided by the K cumulative histograms is a feature vec-
tor corresponding to the activity of the (HK) complex cells associated with
the HW module. It is selective in the sense that it corresponds uniquely to an
image of a specific object independently from its transformation. The stability
of the signature under noisy measurements remains an open problem. Because
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Invariant Representations 9

of the restricted dynamic range of cortical cells, the number H of bins is likely
to be small, probably around 2 or 3 [21]. Note that other, related representa-
tions are possible (see [22]). A cumulative distribution function (cdf) is fully
represented by all its moments; often a few moments, such as the average or
the variance (energy model of complex cells; see [23]) or the max,

| Jol
Han ) = 1 §<I git"),
|Gl

1 2
k k
luenergy(l) = G| Z<I’ 8if ) ’

i=1
k k
Mmax = mani€G<I,gl't >7

can in practice replace the cumulative distribution function. Any linear com-
bination of the moments is also invariant, and a small number of linear
combinations is likely to be sufficiently selective.

1.4 Partially Observable Groups

This section outlines invariance, uniqueness, and stability properties of the sig-
nature obtained in the case in which transformations of a group are observable
only within a window on the orbit (figure 1.3). The term partially observable
groups (POGs) emphasizes the properties of the group—in particular, asso-
ciated invariants—as seen by an observer (e.g., a neuron) looking through a
window at a part of the orbit. Therefore the window should not be thought
of only as a spatial window but over ranges of transformation parameters, for
example, a window over scale and spatial transformations. With this observa-
tion in mind, let G be a finite group and Gy € G a subset (G is not usually a
subgroup). The subset of transformations Gy can be seen as the set of trans-
formations that can be observed through a window on the orbit (i.e., the trans-
formations that correspond to a part of the orbit). A local signature associated
with the partial observation of G can be defined considering

|Gol

i = o 3 m({1.8)) (15)

where 7y, is a set of nonlinear functions and X¢,(I) = (Mﬁ(l))h,k- This defini-
tion can be generalized to any locally compact group considering

u’;(l):Vio fG m((L.gt))ds. Vo= /G dg. (1.6)
0

0
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10 Chapter 1

Receptive field

Figure 1.3

A partially observable compact shift: an object is seen through a window in different positions.
The object is fully contained in the window and is isolated (blank background). A compact group
of periodic translations acts on it; only a part of the orbit is observable.

The constant Vy normalizes the Haar measure dg, restricted to Gy, so that
it defines a probability distribution. The latter is the distribution of the images
subject to the group transformations that are observable, that is, in Gg. These
definitions can be compared to the definition in eq. (1.2) in the fully observable
group case. We next discuss the properties of this signature. While uniqueness
follows essentially from the analysis so far, invariance requires a new analysis.

1.5 Optimal Templates for Scale and Position Invariance Are Gabor
Functions

The previous results apply to all groups, in particular to those that are not
compact, but only locally compact, such as translation and scaling. In this
case it can be proved that invariance holds within an observable window of
transformations (see appendix section A.2.5 but also [1, 8]). For the stan-
dard HW module, the observable window corresponds to the receptive field
of the complex cell (in space and scale). For maximum range of invariance
within the observable window, it is proved (see appendix section A.2.5) that
the templates must be maximally localized relative to generic input images.
In the case of translation and scale invariance, this requirement is equivalent
to localization in space and spatial frequency, respectively: templates must be
maximally localized for maximum range of invariance in order to minimize
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Invariant Representations 11

boundary effects due to the finite window. Assuming therefore that the tem-
plates are required to have simultaneously a minimum size in space and spatial
frequency, it follows from results of Gabor [24, 25] that they must have a Gaus-
sian envelope (for a certain definition of minimum spatial and frequency size).
If the system of templates is required to be a frame then the following property
holds.

Optimal Invariance Theorem

Gabor functions (here in 1 — D) of the form #(x) = e~ 120%) gio0x gre the tem-
plates that give simultaneous maximal invariance for translation and scale (at
each x and w).

In general, templates chosen at random in the universe of images can provide
scale and position invariance. However, for optimal invariance under scaling
and translation, templates of the Gabor form are optimal (for a specific defini-
tion of optimal). This is the only computational justification we know of for the
Gabor shape of simple cells in V1, which seems to be remarkably universal:
it holds in primates [26], cats [27], and mice [28] (see figure 1.4 for results of
simulations).

1.6 Quasi Invariance to Nongroup Transformations Requires
Class-Specific Templates

All the previous results require a group structure and ensure exact invariance
for a single new image. In 2-D all combinations of translation, scaling, and
rotation in the image plane are included; transformations induced on the image
plane by 3-D transformations, such as viewpoint changes and rotation in depth
of an object, are not. The latter form a group in 3-D, that is, if images and
templates were 3-D views. In principle, motion or stereopsis can provide the
third dimensional though available psychophysical evidence [29, 30] suggests
that human vision does not use it for recognition. Note that transformations in
the image plane are affected not only by orthographic projection of the 3-D
geometry but also by the process of image formation, which depends on the
3-D geometry of the object, its reflectance properties, and the relative location
of light source and viewer.

It turns out that the same HW algorithm can still be applied to nongroup
transformations such as transformations of the expression of a face or pose of
a body, to provide under certain conditions approximate invariance around the
center of such a transformation. In this case bounds on the invariance depend
on specific details of the object and the transformation: we do not have general
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Figure 1.4

(A) Simulation results for V1 simple cells learning via principal component analysis. Each cell
sees a set of images through a Gaussian window (its dendritic tree), shown in the top row. Each cell
then learns the same weight vector, extracting the principal components of its input. (B) ny = oy /A
vs ny = oy /A for the modulated (x) and unmodulated (y) direction of the Gabor wavelet. The slope
oy /oy is arobust finding in the theory and apparently also in the physiology data. Neurophysiology
data from monkeys, cats, and mice are reported together with our simulations. Source: [11].

results. The key technical requirement is that a condition of incoherence (see
box 1.5) with respect to a transformation hold for the class of images /¢ with
respect to the dictionary * under the transformation 7, (we consider here a
one-parameter transformation, r, for simplicity),

Box 1.5
Sparsity/Incoherence

A signal is sparse if its information content can be expressed with few coefficients when
expanded in the right basis. For example, a sinusoid in the Fourier space is expressed by
one coefficient, and therefore its representation is very sparse in the Fourier basis.

Two bases are called incoherent when signals are sparse when expressed in one basis and
dense in the other. For a sinusoidal signal, the Fourier and time domain are incoherent.
Incoherence extends the space-frequency duality to other bases.

<IC,Trtk> ~0, |r|>a a>0. (1.7)

Downloaded from http://direct.mit.edu/books/oa-monograph/chapter-pdf/2161178/9780262336710_caa.pdf by guest on 19 June 2025



Invariant Representations 13

Strictly speaking, the condition is valid when the object has localized
support in the pooling region (is an isolated object). However, it holds approxi-
mately whenever the dot product has a fast decay with the transformation (e.g.,
wavelet coefficients). The property, which is an extension of the compressive
sensing notion of mutual coherence, requires that the templates (an image can
be considered a template) have a representation with sharply peaked corre-
lation and autocorrelation (the constant a above in eq. (1.7) is related to the
support of the peak of the correlation). Eq. (1.7) can be satisfied by templates
that are similar to images in the set and are sufficiently rich to be incoherent
for small transformations. Empirically, it appears, our incoherence condition is
usually satisfied by the neural representation of images and templates at some
high level of the hierarchy of HW modules. Like standard mutual incoherence
(see [25]) our condition of incoherence with respect to a group is generic. Most
neural patterns (templates and images from the same class) chosen at random
will satisfy it. The full (theorem A.8 in appendix section A.2.5) takes the fol-
lowing form.

Class-Specific Property

uﬁ (I) is approximatively invariant around a view if

* the dictionary of the templates relative to the transformations is incoherent,
* [ is one of the templates and transforms in the same way as the templates;

¢ the transformation is smooth.

The main implication is that approximate invariance can be obtained for
nongroup transformation by using templates specific to the class of objects.
This means that class-specific modules are needed, one for each class; each
module requires highly specific templates, that is, tuning of the cells. An exam-
ple is face-tuned cells in the face patches. Unlike exact invariance for affine
transformations, where tuning of the simple cells is nonspecific in the sense
that does not depend on the type of image, nongroup transformations require
highly tuned neurons and yield at best only approximate invariance.

Summary of the Results

The core of i-theory applies without qualification to compact groups such as
rotations of the image in the image plane. Translation and scaling are, however,
only locally compact. Each HW module usually observes only a part of the
transformation’s full range. Each module has a finite pooling range, corre-
sponding to a finite window on the orbit associated with an image.
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14 Chapter 1

Exact invariance for each module is equivalent to a condition of localiza-
tion/sparsity of the dot product between image and template. In the simple case
of a group parameterized by one parameter r the condition is

Lg*)=0 |r|>a. (1.8)
(1.ert)

Since this condition is a form of sparsity of the generic image I with respect to
a dictionary of templates #* (under a group), this result may provide a justifica-
tion for sparse encoding in sensory cortex (see, e.g., [31]). Localization yields
the following surprising result: optimal invariance for translation and scale
implies Gabor functions as templates. Since a frame of Gabor wavelets follows
from natural requirements of completeness, this may also provide a general
motivation for the scattering transform approach of Mallat based on wavelets
[32]. Eq. (1.8), if relaxed to hold approximately, that is (Ic,grtk> ~0 |rl>a,
becomes a sparsity condition for the class of I with respect to the dictionary *
under the generic transformation T (approximated locally by the group trans-
formation g,) when restricted to a subclass /¢ of similar images. This property,
which is similar to compressive sensing incoherence (but in a group context),
requires that / and X have a representation with rather sharply peaked auto-
correlation (and correlation). When the condition is satisfied, the basic module
equipped with such templates can provide approximate invariance to nongroup
transformations, such as rotations in depth of a face or its changes of expres-
sion (see appendix section A.2 and A.8). In summary, condition Eq. 1.8 can be
satisfied in two different regimes. The first one, exact and valid for generic /,
yields optimal Gabor templates. The second regime, approximate and valid for
specific subclasses of I, yields highly tuned templates, specific for the subclass.
This argument suggests generic, Gabor-like templates in the first layers of the
hierarchy and highly specific templates at higher levels (incoherence improves
with increasing dimensionality; see appendix section A.2.5).

1.7 Two Stages in the Computation of an Invariant Signature:
Extension of the HW Module to Hierarchical Architectures

It is known that Hubel and Wiesel’s original proposal [20] for visual area V1—
of a module consisting of complex cells (C-units) combining the outputs of sets
of simple cells (S-units) with identical orientation preferences but differing
retinal positions—can be used to construct group-invariant detectors. This is
the insight underlying many networks for visual recognition, including HMAX
[33] and convolutional neural nets [2, 34]. We showed that a representation
of images and image patches, in terms of a feature vector that is invariant to
a broad range of transformations, such as translation, scale, expression of a
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face, pose of a body, and viewpoint, makes it possible to recognize objects
from only a few labeled examples. In the following we argue that hierarchical
architectures of HW modules (indicated by /\ in figure 1.5) can provide such
invariant representations while maintaining discriminative information about
the original image. Each /\-module provides a feature vector (the signature)
for the the part of the visual field that is inside its receptive field; the signature
is invariant to (R2) affine transformations within the receptive field. The hier-
archical architecture, since it computes a set of signatures for different parts
of the image, is invariant to the more general family of locally affine transfor-
mations (which include globally affine transformations of the whole image).
This reasoning also applies to invariance to global transformations that are not
affine but are locally affine, that is, affine within the pooling range of some
of the modules in the hierarchy (any differentiable transformation, no matter
how complex, can be seen locally as an affine transformation). This remarkable
invariance of the hierarchies follows from the key property of covariance (see
box 1.6) of such architectures for certain image transformations and from the
uniqueness and invariance of the individual module signatures. The basic HW
module (see section 1.3) is at the core of the properties of the architecture.

Box 1.6
Covariance

In our theory, the key property of hierarchical architectures of layers of repeated HW
modules—allowing the recursive use of single module properties at all layers—is the prop-
erty of covariance: the response image at layer ¢ transforms like the response image at
layer £ — 1.

The main reasons for an extension to a hierarchical architecture like the are
shown in figure 1.5 are the following:

* Compositionality. A hierarchical architecture provides signatures of larger
and larger patches of the image in terms of lower-level signatures. Because
of this, it can access memory in a way that matches naturally with the
linguistic ability to describe a scene as a whole and as a hierarchy of parts.

* Approximate factorization. In architectures such as the network sketched
in figure 1.5, approximate invariance to transformations specific for an
object class can be learned and computed in different stages. This property
may provide an advantage in terms of the sample complexity of multistage
learning [16]. For instance, approximate class-specific invariance to pose
(e.g., for faces) can be computed on top of a translation-and-scale-invariant
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Figure 1.5

A hierarchical architecture of HW modules, indicated by /\. Signature provided by each of the
nodes at each layer may be used by a supervised classifier. Stage I: a hierarchy of HW modules
(inset) with growing receptive fields provides a final signature (top of the hierarchy ) that is glob-
ally invariant to affine transformations by pooling over a cascade of locally invariant signatures at
each layer. Stage 2: transformation-specific modules provide invariance for nongroup transforma-
tions (e.g., rotation in depth).

representation [35]. Thus the implementation of invariance can, in some
cases, be factorized into different steps corresponding to different transfor-
mations (see [36, 37] for related ideas).

* Optimization of local connections and optimal reuse of computational
elements. Despite the high number of synapses on each neuron it would
be impossible for a complex cell to pool information across all the simple
cells needed to cover an entire image.

* Minimization of number of transformations per template needed to achieve
invariance (see appendix section A.10).

o Clutter tolerance (see chapter 3).

Probably all these properties together are the reason that evolution developed
hierarchies.

One-layer architectures are unable to capture the hierarchical organization
of the visual world, where scenes are composed of objects that are themselves
composed of parts. Objects (parts) can change position or scale in a scene rela-
tive to each other without changing their identity and often changing the scene
only in a minor way. Thus global and local signatures from all levels of the
hierarchy must be able to access memory in order to enable the categorization
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Figure 1.6

Empirical demonstration of the properties of invariance, stability, and uniqueness of the hierarchi-
cal architecture in a specific two-layer implementation (HMAX). (A) reference image on the left
and a deformation of it (the eyes are closer to each other) on the right. (B) HW module at layer 2
(c2) whose receptive fields contain the whole face provides a signature vector that is (Lipschitz)
stable with respect to the deformation. In all cases, the figure shows just the Euclidean norm of
the signature vector. The ¢; and ¢y vectors are not only invariant but also selective. Error bars
represent 1 standard deviation. (C) two different images are presented at various locations in the
visual field. (D) Euclidean distance between the signatures of a set of HW modules at layer 2 with
the same receptive field (the whole image) and a reference vector. The signature vector is invariant
to global translation and discriminative (between the two faces). In this example the HW module
represents the top of a hierarchical, convolutional architecture. The images used were 200x200
pixels.

and identification of whole scenes as well as patches of the image correspond-
ing to objects and their parts. Figure 1.6 shows examples of invariance and
stability for wholes and parts. In the architecture of figure 1.5, each /\-module
provides uniqueness, invariance, and stability at different levels, over increas-
ing ranges from bottom to top. Thus, in addition to the desired properties of
invariance, stability, and discriminability, these architectures match the hierar-
chical structure of the visual world and the need to retrieve items from memory
at various levels of size and complexity.

The property of compositionality is related to the efficacy of hierarchical
architectures versus one-layer architectures in dealing with the problem of
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partial occlusion and the more difficult problem of clutter in object recog-
nition. Hierarchical architectures are better at recognition in clutter than
one-layer networks (see chapter 3 and [38]) because they provide signatures
for image patches of several sizes and locations. However, hierarchical feed-
forward architectures cannot fully solve the problem of clutter. More complex
(e.g., recurrent) architectures are likely needed for human-level recognition in
clutter (see, e.g., [39—41]) and for other aspects of human vision.

A hierarchical architecture has layers with receptive fields of increasing size
(figure 1.7). The intuition is that transformations represented at each level of
the hierarchy begin with small affine transformations that is, over a small range
of translation, scale, and rotation. The size of the transformations represented
in the set of transformed templates will increase with the level of the hierarchy
and the size of the apertures. In addition it seems intuitive that only transla-
tions will be seen by small apertures with scale and orientation changes being
relevant later in the hierarchy.

To be more specific, suppose that the first layer consists of an array of small
apertures (in fact corresponding to the receptive fields of V1 cells) and focus
on one of the apertures. Box 1.7 explains why the only transformations that can

Class-specific modules

Scale, translation, rotation

‘ Translations

Figure 1.7

The conjecture is that receptive field sizes (of complex cells) affect not only the size but also
the type of transformations that are learned and represented by the templates. In particular, small
apertures (such as in complex cells in V1) only see small translations.
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be seen by a small aperture are small translations, even if the transformation of
the image is more complex.

Box 1.7

Any transformation looked at through a small window is approximately an affine
transformation.

Our approach differs in the assumption that small (close to identity) diffeomorphic trans-
formations can be well approximated at the first layer as locally affine transformations or,
in the limit, as local translations, which therefore falls into the partially observable groups
case (see section 1.4). This assumption is substantiated by the following reasoning (here
in 1-D for simplicity), in which any smooth transformation is seen as parameterized by the
parameter r and expanded around zero as

Tr(I) = To(D) +Ar(I) + O(r) = (e +A)() 4+ O(r),

where e + A, is a linear operator in GL(R), the general linear group.

In our theory, the key property of hierarchical architectures of repeated
HW modules—allowing the recursive use of single module properties at all
layers—is the property of covariance.

It is illuminating to consider two extreme cartoon architectures for the first
of the two stages described in figure 1.5:

¢ One layer comprising one HW module and its KH complex cells, each with
a receptive field covering the whole visual field

¢ A hierarchy comprising several layers of HW modules with receptive fields
of increasing size, followed by parallel modules, each devoted to invariances
for a specific object class

In the first architecture, invariance to affine transformations is obtained by
pooling over KH templates, each transformed in all possible ways: each of the
associated simple cells corresponds to a transformation of a template. Invari-
ance over affine transformation is obtained by pooling over the whole visual
field. In this case, it is not obvious how to incorporate invariance to nongroup
transformations directly into this one hidden layer architecture.

However, an HW module dealing with nongroup transformations can be
added on top of the affine module. The theorems allow for this factoriza-
tion (see appendix section A.9). Interestingly, they do not allow in general for
factorization of translation and scaling (e.g., one layer computing translation
invariance and the next computing scale invariance). Instead, the mathemat-
ics allows for factorization of the range of invariance for the same group of
transformations. This justifies the first layers of the second architecture, corre-
sponding to figure 1.5, stage 1, where the size of the receptive field of each HW
module and the range of its invariance increases, from lower to higher layers.
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One of the main problems with the one-layer architecture is that it provides
an invariant signature to an isolated object but not to its parts. This problem
of recognizing wholes and parts is closely related to the problem of recog-
nizing objects in clutter, recognizing an object independently of the presence
of another one nearby. The key theorem about invariance assumes that image
and templates portray isolated objects. Otherwise the signature may change
because of different clutter at different times. Recognizing an eye in a face has
the problem that the rest of the face is clutter. This is the old conundrum of
recognizing a tree in a forest while still recognizing the forest.

A partial solution to this problem is a hierarchical architecture for stage 1
in which lower layers provide signatures with a small range of invariance for
small parts of the image, and higher layers provide signatures with greater
invariance for larger parts of the image (see appendix section A.3). All these
signatures could then be used by class-specific modules, possibly in a reverse
hierarchy strategy (see [42]), that is, using first the top-level signatures and
then the low-level ones in a task-dependent, top-down mode. We describe this
architecture, starting with the retina and V1, in chapter 3. Three points are of
interest here:

¢ Factorization of the range of invariances is possible if a certain property
of the hierarchical architecture, called covariance, holds. Assume a group
transformation of the image that is, for instance, a translation or scaling of it.
The first layer in a hierarchical architecture is called covariant if the pattern
of neural activity at the output of the complex cells transforms according
to the same group of transformations. It turns out that the architectures we
describe have this property (see box 1.7): isotropic architectures, like the
ones considered in this book, with pointwise nonlinearities, are covariant.

» Since each module in the architecture gives an invariant output if the trans-
formed object is contained in the pooling range, and since the pooling range
increases from one layer to the next, there is an invariance over larger and
larger transformations. In order to make recognition possible for both parts
and wholes of an image, the supervised classifier should receive signatures
not only from the top layer (as in most neural architectures) but from the
other levels as well (directly or indirectly).

¢ In the case of a discrete group one can prove that the number of different
templates K required for selectivity is K = C(e)(log(n|G]) (see eq. (1.4));
that means it may significantly depend on the size of the group G that is
pooled (see appendix section A.2.4).
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1.8 Deep Networks and i-Theory

The class of learning algorithms called deep learning (particularly convolu-
tional networks) is based on two computational operations in multiple layers.

The first operation is the inner product of an input with another point called
a template (or filter or kernel), followed by a nonlinearity. The output of the
dot product corresponds to the neural response of a simple cell [20]:

I'—[(l,81) + b4,

where |y|4+ = max, (0,y).

The second operation is pooling. It aggregates in a single output the values
of the different inner products computed, for example, via a sum

> gty +bly, teT.beR (1.9)
8

or a max operation maxg | (/, gt) + b|. This corresponds to the neural response
of a complex cell [20]. In i-theory the nonlinearity acting on the dot product
is considered part of the computation of a histogram, but the networks are
completely equivalent.

It turns out (see references in [12]) that units of a deep convolutional network
(DCN) using linear rectifiers (called by Breiman “ramps”) correspond to a
kernel with

i<(1,1’)=/ dgdg’/ didb | (gt,I) + b|4|{g't.I') + bl +. (1.10)

This result shows that linear rectifiers (and other nonlinear operations) in a
deep network are equivalent to replacing the plain dot product with dot prod-
ucts in the feature space defined by the kernel. All the results described in
the book hold for networks with a broad range of nonlinearities after the dot
product.

Further extension are possible. Ongoing work [46] shows that i-theory can
be formulated to include present-day deep convolutional learning networks
(DCLNSs) with supervision and nonpooling layers. In particular [46] shows
how defining an extension of classical additive splines for multivariate func-
tion approximation (called hierarchical splines) is possible to have a theoretical
framework for DCLNs with linear rectifers and pooling (sum or max).

The comparison of hierarchical versus shallow architecture in the context of
i-theory and its extensions is explored in [47]. Hierarchical as well as shallow
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networks can approximate functions of several variables, in particular those
that are compositions of low-dimensional functions. [47] provides a charac-
terization of the power of deep network architectures with respect to shallow
networks: in particular it proves how shallow networks can approximate com-
positional functions with the same error of a deep network at the cost of a VC-
dimension (Vapnik-Chervonkis dimension, a measure of the network capacity)
that is exponential rather than quadratic in the dimensionality of the function.
Compositional functions are also shown to be critical for image recognition,
thus demonstrating a theoretical reason why deep architectures outperform
shallow ones in image recognition.

Historical Background and Bibliography

There exists an extensive literature about invariant approaches to image
representation. One of the first and most inspiring papers that used explicitly
the group structure of the transformations and the group average technique to
build invariant features is Mirbach’s [43]. A different approach using group-
invariant kernels was analyzed in Burkhardt [44]. Together with the work on
kernel average embedding [45], it inspired our recent work on the equivalence
between deep convolutional networks and hierarchical kernel machines [12].
More recently Mallat [32] developed an invariant representation called group
scattering, which uses a cascade of modulus nonlinearities applied to wavelets
coefficients in order to get group-invariant representations that are robust to
small diffeomorphic transformations.

Chapter 1 has described work in our group. Its main sources are the follow-
ing technical reports and journal papers: [1, 8, 9, 11, 12].
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