Index

A
Abandoned Mine Land Inventory System (AMLIS), 2
Absaroka Mountains, 170
acceleration, 33
ACIRL. See Australian Coal Industry Research Laboratories
activation energies, 53–54, 78
active sites, 56
additives, 51–52
adiabatic oxidation, 33
adiabatic oxidation methods, 61–64
adsorption and desorption of water moisture, 55, 57
Advanced Very High Resolution Radiometer (AVHRR), 242
agglomerate, 48
agenda setting, 274–277
agriculture, effects on, 32
Aldridge Creek, 41, 102, 105
Aldridge Creek, 41, 102, 105
anorthite, 133
alunogen, 92, 94
AMLIS. See Abandoned Mine Land Inventory System
Angrey coal deposit, 111
Argentina, 245
Archer till, 173
Amsden, 170
Amsterdam, 170
Amsden, 170
Amsden, 170
Amsden, 170
Amsden, 170
Australia, 102, 245. See also Callide Coalfield: Northern Coalfield; Southland Colliery
Australian Coal Industry Research Laboratories (ACIRL), 62
AVHRR. See Advanced Very High Resolution Radiometer
Azerbaijan, 179
B
bacterial activity, 40
Baijigou coal mine, 224
barometric pressure, 40
basalt, 205
basket test, 66–68
Bayinshandan, 148
Beijing Remote Sensing Corporation (BRSC), 25
Benxi Formation, 24
Big Mine Run Road, 264
Biot number, 35, 69
bitumen, 36, 98
blending, stockpiles and, 46
blowing up in finite time, 35
borehole surveys, 206–207, 209
breccias, 138–139, 150. See also chimney structures
brown coals, 58–59
BRSC. See Beijing Remote Sensing Corporation
bucchites, 118. See also paralavas
Buck Mountain coal bed, 261, 262, 263, 269
Burning Coal Draw, 163
Burning Mountain, 179, 245
buoyds, 262, 271–278
C
calcite, 146–149
calcium acetate, 52
Callide Coalfield, 63
Canada, 245. See also Aldridge Creek
carbonaceous shale, 40
Carbondale mine fire, 4–8
carbon dioxide
Carbondale mine fire and, 7
Centralia fire and, 264, 266
carbon-mine fires and, 1, 2
Large mine fire and, 9
low-temperature oxidation and, 37
remote-sensing estimation of, 240, 246–247
temperature, oxygen concentration and, 4, 5, 6
carbon monoxide
Carbondale mine fire and, 7
Centralia fire and, 262, 266, 274
as index gas, 41
low-temperature oxidation and, 37
subsurface temperature and, 12–13
temperature, oxygen concentration and, 4, 5, 6
carbonyl groups, 37
carcinogens, 59
Carter, Jimmy, 273
catalysis, 55, 56–57
catenary effect, 56–57
caving characteristics, 40
cellular growth suppressants, 43
Centralia fire
factors preventing control of, 264–266
fire fronts of, 263–264
gaseous setting of, 262–263
GLS processes in, 93
Laurel Run fire versus, 261, 268–269
overview of, 246, 261–262, 266
policy and, 271–278
CERCLA. See Comprehensive Environmental Response, Compensation, and Liability Act
Chatkalsky Range, 112
Chelyabinsk Coal Basin, 146
chemical kinetics, 36–37, 63–64, 75
chimney structures, 104, 118, 160, 162
China
carbon dioxides in, 244–245
detection of coal fires in, 199–200
incidence of coal fires in, 33
remote-sensing data for coal mining areas in, 219–227
statistics on coal-mine fires in, 39
thermal-geological analysis and, 249–258
See also Liu Huangou Coalfield, Longgu mine; Ruqigou-Gulaben coal basin; Wuda Coalfield
Clean Air Act, 276
climate, spontaneous combustion and, 25
crime
Centralia fire and, 264
combustion metamorphism and, 103–104, 106–108
gas-altered substrate (GAS) and, 93
methods for dating, 161–162
overview of, 118, 158–161
of Powder River Basin, 156–157, 162–173
See also paralavas
clinopyroxene, 133, 138, 141–142
cylindrical smoke, 43–44
carbon factors, risk rating and, 20
carbon fires, overview of, 200–202
Coal Mine Health and Safety Act, 276
calming method
control and suppression of fires in, 41–43
hazard assessment for, 39
origins of fires in, 39
overview of spontaneous combustion in, 39
before self-heating in, 40
self-heating in, 41
carbon rank, 54
carbon seams, 25
carbon templates, 276–277
Coaltemp program, 18
cocoonite, 92
coking, 98, 105
colza oil, 48
combustion. See spontaneous combustion
combustion line–combustion zone, 26–27
combustion metamorphism
characteristics of representative complexes of, 99–102
control of distribution of fossil-fuel fires and, 103–104
duration and age of fossil-fuel fires and, 105
in geological history of sedimentary basins, 108–112
in Hartrum Basin, 133–135, 148–151
heat transfer during, 104–105
natural remanent magnetization and, 177, 178–179
overview of, 97–98, 112–113
physical conditions, general features and, 105–107
process overview, 98
in Rotowaro Coalfield, 117, 120–121, 130
structure of complexes of, 104
See also clinker
combustion plane–combustion system
combustion spot–combustion center, 26, 27
compaction, 45, 48
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 276
condensation, gas–vent minerals and, 92–93
Congress, 262, 268, 271–278
Conrad, Joseph, 49
contact metamorphism, 137

279
Cook Mountain, 172
copper acetate, 52
cosquimbo, 92
cover depth, 40
CPT method. See crossing point temperature method
cristobalite, 117, 126, 127
critical ambient temperature, 70
crossing point temperature (CPT) method, 64–66
 See also transient method (TM)
cubical containers, 73
cutting, as ignition source, 39

D
Dead Sea Rift Valley, 105, 110, 133, 137, 151
deep depth exploration, 206
degassing, self-heating and, 38
degree of oxidation, 85
density, detection and, 205
Department of Minerals and Energy (South Africa), 15
depth, estimation of, 213–217
detection of concealed coal fires, 199–210, 274–276
dewatering, 57
diagenesis, 137
differential scanning calorimetry (DSC), 38, 60
differential thermal analysis (DTA), 38, 60
digging, 42, 48
DIFOIL software, 180
distillation, 98
Dombroski, Todd, 262, 274
double rationing method, 213
downdip, 92
drying method, spontaneous combustion and, 57
DSC. See differential scanning calorimetry
DTA. See differential thermal analysis
dust, coal, 43–44

E
economic implications, overview of, 32–33
EHAC (Explosion Hazard Advisory Committee)
 See Wits-Ehac Index
electrical resistivity, 205–206, 243
Enery Coalfield, 93
environmental hazards, overview of, 32–33
erosion, clinker and, 156, 158, 173
error estimates, 31
ethene, as index gas, 41
Europe, 245
“exhibiting blow up,” 35
Explosion Hazard Advisory Committee (EHAC)
 See Wits-Ehac Index
explosion pipes, 133, 151–152
explosions, 33, 39, 49
extinguishing methods, 199, 202–203

F
faulting, spontaneous combustion and, 40
fayalite, 117, 124, 126–129, 144
FCC index, 64–65
feldspars, 127
Felix coal zone, 161, 163–166
Feng Chakravorty Cochrane Index. See FCC index
filling, gallery, 42
fine-grained loose coals, 39
fires, 34, 37
fire retardants, 42–43
fission-track analysis. See zircon fission-track (ZFT) analysis
fissures, 118, 160. See also gas-vent minerals
F-K parameter, 35–36
FLIR cameras. See forward looking infrared radiometer cameras
Floyd, Daniel J., 268, 272, 274, 277
flow condensates, 93
foam/water injection, 42
focusing events, 275
Fort Union Formation, 155, 156, 161
forward looking infrared radiometer (FLIR) cameras, 211, 213
fractures, 2, 39, 265
Frank-Kamenetski (F-K) analysis
combustion of coal and, 44
critical value of F-K parameter and, 36
infinite slab analysis and, 34–35
overview of, 32, 34–36
shipping of coal and, 48–49
spontaneous combustion and, 34
See also hot storage test
freecing, gas-vent minerals and, 92
fumaroles, 106
fuzzy logic techniques, 21

G
gallery filling, 42
gamma ray logging, 206–207, 209
GAS. See gas-altered substrate
gas-altered substrate (GAS), 93–94
gases. See hydrocarbon gases; index gases; seam gases
gas-liquid–altered substrate (GLAS), 94
gas-liquid–precipitation (GLP), 94–95
gas-liquid–solidification (GLS), 93
gas reaction ± liquid–solidification (GLRS), 95
gas-vent minerals
combustion metamorphism and, 104, 118
gas-altered substrate and, 93–94
gas-liquid–altered substrate and, 94–95
gas-liquid–precipitation and, 94–95
gas-liquid–solidification and, 93
gas reaction ± liquid–solidification and, 95
overview of, 91–92, 95
sublimation and, 92–93
genesis-type model of spontaneous combustion, 23, 25, 29
geodetic surveys, 203–204
geoelectrical investigations, 205–206
geological exploration, 204–205
geologic setting, 25
Geo-Slope Temp/W finite-element modeling software, 214, 215
geothermal gradient, spontaneous combustion and, 40
germanium sulfide, 94–95
Gevanin Formation, 183–186
Ghareb Formation, 135, 137, 150, 178, 179
GIS (geographic information systems), 15, 20–21
GLAS. See gas-liquid–altered substrate
Glasser Tests, 15, 19–20
glasses, 127, 133, 146
Glauber’s salt, 201
GLP. See gas-liquid–precipitation
GLS. See gas-liquid–solidification
government. See Congress; policy
Graham’s ratio, 179
GRLS. See gas reaction ± liquid–solidification
Grooteuges Mine, 20
grossite, 106
groundwater, 32, 39, 158, 173
grouting, 47–48
Gulaben coal basin. See Rupigis–Gulaben coal basin
Gurim anticline, 151
Gurim Dome, 192

H
hanging-wall conditions, 40
Harrison, Frank, 272
Hat Creek fire, 112
Hatrirum Basin
 aeromagnetic anomalies in, 180
geochemical description of, 135–137
hydrogen–zeolite calcite rocks and hornfelses of, 146–149
origin of paralavas of, 148–151
overview of, 133–135, 151–152
paralava mineral composition of, 142–146
paralavas of olive unit of, 137–138, 141
petrography of paralavas, host rocks of, 140, 141–142
temperature and oxygen fugacity of, 148

Hatrirum Formation. See Mottled Zone complex
Hatrirum anticline, 106
hazard modeling, 39–40
Hazeva Formation, 135
health. See human health
heat, 2
heat capacity, 54
heat of reaction, 54
heat release rate, 34, 68–70
heat release rate method (HRRM), 68–70
heat sink mechanism, 55
heat transfer, 55, 104–105, 213
Hebron anomaly, 183–186
Heinz, H. John, III, 272, 277
Helen Mountains, 24
Helan Shan mountain range, 220
hematite, 122–126, 205
hornfelses, 135, 138–141, 146–148
hot gas jets, 106
Index

hot spots, 199, 202, 203–205
hot storage test, 66–68
Housing and Urban Development (HUD), 271, 274
HRRM. See heat-release-rate method
Huangbai mine, 24
HUD. See Housing and Urban Development
human health, 32–33, 91, 96
humidity, 55–58
Hunter Valley, 245
hydraulic sand stowing, 42
hydrocarbon gases, 133, 151, 178–179, 192, 195
hydrocarbons, 59, 201
hydrous sulfates, 92
hydrous oxide groups, 37
hyperkeratosis, 96
hydroxyl groups, 37
hydroperoxides, 36–37
hydroperoxides, 36–37
INCO test, 49–50
India, 244. See also Jharia Coalfield; Raniganj coal belt
inorganic additives, 51-52
inhibition, 38, 51-52
inflexion-point temperature (IPT), 65
inert gas injection, 42
induction logging, 207–210
inert gas injection, 42
inflexion-point temperature (IPT), 65
infrared exploration, 203–204. See also forward looking infrared radiometer cameras; thermal anomalies
inhibition, 38, 51–52
initial rate of heating (IRH), 40, 61–62
inorganic additives, 51–52
institute for cokemaking and fuel technology, 60
internal surface area, 56
International Organization for Standardization (ISO), 49–50
infrared exploration, 203–204. See also forward looking infrared radiometer cameras; thermal anomalies
inhibition, 38, 51–52
initial rate of heating (IRH), 40, 61–62
inorganic additives, 51–52
institute for cokemaking and fuel technology, 60
internal surface area, 56
International Organization for Standardization (ISO), 49–50
infrared exploration, 203–204. See also forward looking infrared radiometer cameras; thermal anomalies
inhibition, 38, 51–52
initial rate of heating (IRH), 40, 61–62
inorganic additives, 51–52
institute for cokemaking and fuel technology, 60
internal surface area, 56
International Organization for Standardization (ISO), 49–50
International standards, 48–49
IPT. See inflexion-point temperature
Iran, 99
IRH. See initial rate of heating
irn, 48, 118–136, 136
ISO. See International Organization for Standardization
isochronal processes, 91, 92–93
Israel, 99, 105
Issyk Kul region, 245
J
Jharia Coalfield, 37–33, 41, 212–213, 244
Jhingurdah seam, 51
Jordan, 99
Junggar Basin, 110
K
Kalimantan, 245
Kamenetskii. See Frank Kamenetskii (F-K) analysis
Kanjorski, Paul, 272
Kazakhstan, 100
Kenderlyk Depression, 105
Kiddo Formation, 151
kinetic constants, 53–54
kinetics, 36–37, 63–64, 75
Knobloch coal zone, 155, 161, 170–172
Kunlin Mountains, 24
Kupukula coal seams, 119
Kuraminsky Range, 112
Kuznetsk Coal Basin, 103, 108, 110
Lake De Smet coal zone, 161, 163, 165, 166
land-cover analysis, 219–227
Landsat 5, 43, 219–227, 229
Landsat 7, 219–227, 229, 237, 242
Large mine fire, 6–8, 9–10
LAST function. See linear anomaly surface transect function
Laurent fire. Centrailia fire versus, 261, 268–269
factors aiding control of, 267–268
fire front of, 267
goeric setting of, 266–267
overview of, 261–262, 266
policy and, 271–278
leveling, 48
liability indexes, 40, 65
lightning, 38–39, 76, 179, 195, 240
lignite, 58–59, 98
linear anomaly surface transect function. See linear anomaly surface transect function
Little Thunder Creek, 163
Little West Mountain, 164, 166–170
Liu Huangou Coalfield, 41
Liewellyn Formation, 93, 263, 264
Locust Mountain anticline, 263–264, 268
Longgu mine, 42
loose coals, 39
Love Canal, 277
low-rank coals, 58–59
low-spatial-resolution satellites (LSRS), 230
low-temperature oxidation. See oxidation
LSRS. See low-spatial-resolution satellites
lung cancer, 96
Luzerne County Redevelopment Authority, 266
LWO, 272
M
machinery, 39
malachite, 170
magmatism, 195
magnetic anomalies
detection of concealed coal fires and, 199, 205
interpretation of data for Mottled Zone and, 180–182
methodology for studying, 179–180
processes causing, 180–182
See also natural remanent magnetization (NRM)
magnetic logging, 210
magnetite, 117, 127–129, 205
magnetite-hematite-spinel assemblages, 122–126
Mahadevan and Ramli index. See MR index
Mammoth coal bed, 263
Marcelina Formation, 179
Marcos Shale, 93
Markha River, 101
mass-transfer processes, 91, 93–95
Matuyama–Brunhes palaeomagnetic reversal, 173
maximum safe temperature rise, 35
MEA-1A retardant, 42
melted-vitrified scoriaceous rocks, 118. See also paralavas
melting, combustion metamorphism and, 106, 134
Menuha Formation, 178
metamorphism. See combustion metamorphism
methane
Carbondale mine fire and, 6, 8
coil mine fires and, 1
Large mine fire and, 10
remote-sensing for estimation of, 240, 246–247
subsurface temperature and, 12–13
method of point-source inversion (MPSI), 250, 253–258
microfractures, 39
micromagnetic profiles, 186–187, 191, 193–194
microseismicity, 208
microteamors, 199
Middelburg Colliery, 33, 39, 41
millosevichite, 94
mine environmental indexes, 40
minerals. See gas-vent minerals
Mishash Formation, 135, 138, 177, 178
modeling, 211, 212–217, 250–253
Moderate Resolution Imaging Spectroradiometer (MODIS), 229–237
MODIS. See Moderate Resolution Imaging Spectroradiometer
moisture, spontaneous combustion and, 51, 55–58, 75
Mongolia, 100. See also Wuda Coalfield
Montana, 166–172
Monterey Formation, 134
Mottled Zone complex (Haturim Formation), 99, 105–110, 134, 137, 177–179
Mount Carmel, 263
MPSI. See method of point-source inversion
MR index, 65
mud volcano provinces, 133, 151–152
Musco, Ray, 272
N
nagelschmidt, 135
natural coal fires, defined, 38
natural remanent magnetization (NRM), 178–179
Nelligan, James, 272, 277
new standards, 50
New Vaal Colliery, 86
New Zealand
New Vaal Colliery, 86
Nizhnyaya Tunguska, 112
nitrogen, 98
nitrogen oxides, 240, 246–247
NMR. See natural remanent magnetization

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3744046/9780813758183_backmatter.pdf by guest
Index

parameter values for, 78
in Powder River Basin, 158
reactive surface layers for prevention of, 85–89
in stockpiles, 44–47
transient method and, 70–75
transportation and, 48–50
in waste heaps, 47–49
See also self-heating; Wits-Ehac Index

“spontaneous combustion ladder,” 41
spraying, waste heap fires and, 48
stages model, 23, 27–29
stalactites, 117, 123
Stanton-Empire mine, 267
steady-state approach, 66–68
sub-bituminous coals, 58–59
subcritical systems, 35, 36, 49–50
sublimation, 92–93
subsidence
Centralia fire and, 262, 264, 265, 266
clinker hillsides and, 160
effects on, 32
Laurel Run fire and, 266
oxygen supply, spontaneous combustion and, 38–39
as problem, 240
Sudan, 179
Suggate ranking, 63
Suhaitu mine, 24, 29, 256
sulfur content, 25–26, 38, 46–47, 98
sulfuric efflorescence, 201
supercooling, 92
supercritical systems, 35, 36, 49–50
Superfund Amendments and Reauthorization Act (SARA), 276
Surface Mining Control and Reclamation Act (SMCRA), 276
surface sealing, 42, 48
Svea Nord mine, 246
T
Taimur River, 104–105
Taiyuan Formation, 24
Tajikistan, 100, 111
Taiyoi coal Formation, 135, 137, 150, 179
Taupiri coal seams, 119
Tauranga Group, 119
Te Koiti Group, 119
temperature, 1, 12–13, 40
temperature-programmed reaction technique (TGA), 58–59
templates, policy and, 276–277
Tengiz deposit, 134
terrain, spontaneous combustion and, 25
TG. See thermal gravimetry
TGA. See temperature-programmed reaction technique
thallium poisoning, 96
thermal anomalies (LAST) function
depth estimation and, 211, 213
detection of concealed coal fires and, 201, 203, 219–243
MODIS analysis of, 229–233
surface temperatures and, 250
See also linear anomaly surface transect function
thermal-geological models, 249–258
thermal gravimetry (TG), 60
thermal runaway, defined, 33
thermocouples, 61, 71–74
thickness, 25, 38
Thornbrough, Richard, 272
Three Mile Island, 274, 277
threshold temperature, 241
Tien Shan, 111
time to ignition, 50
Times Beach, Missouri, 277
Ti–spinel, 126
titaniferous magnetite, 127–129
TM. See transient method
tomography, 206, 207
Tengse River Valley, 155–156, 159, 161, 164–172
topsoil, effects on, 32
total temperature rise (TTR), 40, 61–62
transient method (TM), 70–75. See also crossing-point temperature (CPT) method
transportation of coal, 48–50
trench cutting, 42
trdymite, 117, 126, 127
TTR. See total temperature rise
Tungus Coal Basin, 112
U
UBC process. See upgraded brown coal process
Ukraine, 246
Ulanhuhe Desert, 24
Ulum coal zone, 161
United Nations, 50
United States, 245
University of Queensland, 61, 62, 76
upgraded brown coal (UBC) process, 58–59
upgrading, 57–58
Utah, 53
U-Th/He dating of zircons, 155, 162–163, 166–168, 170, 243
Uzbekistan, 100, 111–117
V
vegetation, 32, 267
Venezuela, 179, 245
ventilation, 42, 45
vents. See gas-vent minerals
voidage, 45
volatile content, 51, 56
voltaite, 92
W
Waikato coal region, 119
Wasatch Formation, 156, 161
waste heaps, 47–48
water vapor production, 57
Waterburg coalfield, 21
welding as ignition source, 39
Western Middle Field, 261, 267–263
Wilkes-Barre synclinorium, 266
wind pipes, 48
wire-mesh basket test, 66–68
Withbank Coalfield, 21, 33, 39
Wits-Ehac Index, 15–21, 65
Wuda Coalfield
economic losses in, 32
gas-vent minerals and, 92, 94
modeling spontaneous combustion in, 23–29
MODIS data and, 229–237
overview of, 245
remote-sensing data for, 219–227
thermal-geological analysis and, 255–258
Wuda Mining Limited Liability Company, 24
Wuhai City, 24
Wuhushan mine, 24, 256
Wyodak Anderson coal zone, 155–156, 159, 161, 163–164
Wyoming, 163–169
X
Xiashihezi Formation, 24
Xinjiang autonomous region, 24
Y
Yagnob River, 111
Yellow River, 24, 223, 226
Yellowstone caldera, 173
Youngstown mine, 8. See also Percy mine fire
Youth (Conrad), 49
Z
Zaisan Basin, 110
Zarnista, 194
zeolite, 146–149
ZFT. See zircon fission-track analysis
zircon fission-track (ZFT) analysis, 155, 161–165, 170
Zobar Formation, 180–181, 192
zones conducive to spontaneous combustion, 23, 28–29
Zoroastrim Fire Temple, 179