Ahtee, M. 146
Müller, W.F. 413, 415
Myers, E.R. 172, 243, 312, 332, 341
Nagasawa, H. 260–262
Nagata, T. 364
Nassau, K. 397
Navrotsky, A. 7, 79, 81–85, 88, 91, 93–95, 110, 141, 148–149, 242, 332, 415, 420
Neder, R.B. 180
Nee-L, 354
Neogi, S. 66
Neumann, F.E. 71
Neuville, D.R. 420, 422, 430, 438
Newell, A.J. 379
Nicholls, J. 43–44, 46
Nicholson, W.L. 186
Nikonov, A.M. 433
O’Neill, H.St.C. 357, 373
Oates, W.A. 315
Oberschmidt, D. 31
Oberti, R. 80, 121, 185, 189, 193
Olbricht, W. 102
Onuma, N. 254, 285
Onuki, H.A.J. 420
Ordejón, P. 227
Orye, R.V. 57
Ottolini, L. 185
Ottolind, G. 63–64
Overhauser, A.W. 268
Özdemir, Ö. 349, 351–352, 371
Ozoliņš, V. 35, 307, 309, 312
Palin, E.J. 238–240, 243–244, 249
Palmer, D. 249
Papp, G. 445
Pasturel, A. 309
Patel, A. 226, 276
Pawley, A.R. 82, 84
Payne, M.C. 213, 227
Peacock, S.M. 102
Pelton, A.D. 55, 62–63
Penn, L. 415
Perchuk, L.L. 319, 332, 334
Peressi, M. 141
Persson, K. 27, 35
Phillips, B.L. 89, 332
Phillips, G.N. 181
Pippard, A.B. 269
Pitsch, W. 319
Poirier, J.P. 12, 33, 415
Poldervaart, A. 413
Polian, A. 445
Pollok, K. 319–321, 334, 363
Post, J.E. 226, 415
Powell, R. 50–52, 55, 101–104, 109, 111, 113–115
Praussnitz, J.M. 55, 57–58, 63
Prewitt, C.T. 279
Price, G.D. 294
Price, J.G. 106
Prigogine, I. 424
Primac, W. 276
Prince, E. 186
Proust, J.L. 5
Quartieri, S. 198
RagHAVAN, S. 291, 292
Ramirez, R. 332
Razee, S.S.A. 351
Redlich, O. 48, 61
Reid, A.R. 419
Reimer, L. 386
Renon, H. 57–58
Ribe, P.H. 414
Richardson, F.D. 146
Riedl, P.C. 305, 337
Rivers, M.L. 432
Robert, J.-L. 332
Robie, R.A. 77, 79
Robin, P.-Y.F. 408
Robinson, K. 197
Robinson, P. 102, 413
Robledo, A. 364
Rosén, J. 23
Ross, C.R. 82, 156, 172
Rossman, G.R. 95
Rosso, K.M. 354
Roux, J. 82, 84
Rühl, S. 182
Rushbrooke, G.S. 56
Rutstein, M.S. 167
Rutter, M.J. 210
Sack, R.A. 40
Sahama, T.G. 79
Sainz-Diaz, C.I. 226, 249
Samolyuk, G.D. 315
Sanchez, J.M. 317
Sanders, M.J. 226
Sangster, M.J. 272
Sanz, J. 240, 332–333
Sarge, S.M. 77
Scherer, G.W. 427
Schlipner, A.G. 318
Schmädicke, E. 102
Schock, R.N. 396
Schofield, P.F. 158–159, 266
Schreyer, W. 82
Schwab, R.G. 82
Schwartzman, A.F. 400
Seifert, T. 102
Seigle, L.L. 149
Selverstone, J. 101
Sen, S. 420
Senderov, E.E. 332
Sham, L.J. 214, 217
Shannon, R.D. 95, 189, 255, 263, 277
Shian Peng 16, 22, 26
Shibue, Y. 63–64, 66
Shirane, G. 352–353, 369–370
Simon, F. 421
Sinclair, R. 400
Sipp, A. 438, 445
Sluiter, M. 309, 334
Snel, D. R. 402, 410
Smit, B. 286, 294
Smith, J.V. 168
Smolander, K.J. 294
Snell, J.L. 340
Spagna, R. 185
Spear, F.S. 65, 101–102, 104, 107
Spence, J.C.H. 386
Staffansson, L.-I. 43–44
Stebbins, J.F. 288, 419–420, 422
Stephenson, A. 354
Subject index

Numbers refer to the page where a definition or an explanation of, and/or a figure or a table on a given subject is to find.

29Si NMR intensities, calculation of theoretical 342–343

Ab initio calculations 35, 213–219

activity

\sim and standard state 41

\sim coefficient 108

activity–composition

\sim relationships in metamorphic rocks 101–118
derivation of an \sim model 109
effects of different \sim models 110–115

Adam–Gibbs theory of relaxation processes 437–438

adp’s see atomic displacement parameters

albite–orthoclase see Na–K alkali feldspar

alkali-earth-metal halides

characteristic energy of \sim 26

temperature of \sim 26

force constant of \sim 26

alternating bonds, model of 122

amphibole(s)
estimation of the Li$^+$ content at the M3 site of \sim 188

estimation of the O–Y component at the O3 site of \sim 188

SAED patterns from \sim 389

solid/liquid partition coefficients

\sim for LREE$^{3+}$ and HREE$^{3+}$ for kaersutite and

potassic richterite \sim 192

\sim for pargasite and potassic richterite \sim 191

solid-solution exchange between Li$^+$–Na$^+$
at the A4 and Li$^+$–Fe$^{3+}$ at the M3 site in \sim 190

structure of C2/m \sim 184

amplitude-contrast electron micrographs,

interpretation of 391

amplitude-contrast (single-beam) bright-field (BF)

electron microscopy 390–391

amplitude-contrast (single-beam) dark-field (DF)

electron microscopy 391

analytical modes in the transmission electron

microscope 392–395

anadrite–gossulite see gossulite–anadrite

anharmonic effects/lattice vibrations 21–22, 34, 220

explicitly anharmonic part of \sim 22

quasi-harmonic part of \sim 22

annealing algorithm 341, 342

antiphase boundaries (APBs) 404

antiphase domains 404

athermal solution 56

atomic displacement parameters (adp)’s 200–202

atomic displacements

local \sim and structure relaxation 121–123

parameters of \sim 200–202

primary and secondary \sim

\sim in a cubic environment 132

\sim in a tetrahedral environment 133

\sim in an octahedral environment 129

secondary \sim 143–145

atomic mass variations and phase diagrams 25

atomistic computer simulation(s) see computer simulation(s)

augite, energy-dispersive X-ray emission spectrum

(EDS) from 393

autocorrelation analysis of IR spectra 159–163

\sim of perovskite solid solution series 161

B32 long-range ordering in a body-centred

cubic lattice 311

variational parameters for \sim 311

basic cluster probability distribution 317–319

BCC see body-centred cubic

berthierine, inverse magnetic susceptibility of 357

bivariate analysis of collected diffraction intensities 186

body-centred cubic (BCC) alloy

chemical and magnetic ordering in a binary \sim 359

sublattices and interactions parameters for a binary \sim 359

body-centred cubic (BCC) lattice

B32 long-range ordering in a 311

Boltzmann–Planck equation 304

Boltzmann relation 75

Boltzmann’s distribution law 306, 337–338

bond lengths, DLS calculations of 122–123, 124

Bonner–Cabo model 61, 62

Bragg–Williams entropy 76, 304
Brice equation 150, 260
Brillouin function 355, 356
broadening parameter of IR spectra 160
Burgers circuit 398
Burgers vector 398, 399
Calcite, electron energy-loss (EELS) spectrum 394
calorimetry 76–79
differential scanning ~ 77
HF (solution) ~ 79
high-temperature drop ~ 77–78
low-temperature adiabatic ~ 77
reaction ~ 78–79
reverse drop ~ 78
thermodynamic data from ~ 72
CaO
- calculated and experimental lattice parameters of ~ 276
- calculated bulk moduli of ~ 276
- calculated initial and final defect energies, relaxation and solution energies for isovalent
 impurities in ~ 277, 278
- calculated volume vs. temperature for ~ 295
- melting temperature of ~ 295
CaO–MgO system
- chemical potential vs. composition of the ~ 296
- phase diagrams for the ~ 294–296, 297
CASTEP program package 354
CaTs see Ca-Tschermak
Ca-Tschermak–diopside solid solution see
diopside–Ca-Tschermak solid solution
CBED see convergent-beam electron diffraction
CFSE see crystal-field stabilisation energy
chain-multiplicity disorder 406
characteristic energy (E_0) 25–27, 34
cohesive energy and ~ 27
chemical and exchange potentials, fitting of
229–230
chemical energy 307
chemical entropy 420
chemical solvus 408
clinopyroxene(s)
- exsolution and microstructures in ~ 413
- Onuma diagram for ~ 255–256
- cluster entropies, definitions and notations of ~ 314
- cluster expansion approach 309
- cluster models in the calculation of magnetic
 exchange parameters 354
- cluster variation method (CVM) 55–56, 304, 363
- accuracy of ~ approximations 340–341
- in the calculation of configurational entropy 312–317
- modelling of mixing properties
- ~ of the diopside–Ca-Tschermak solid
 solution 326–336
- ~ of the grossular–andradite solid solution
 319–321
- ~ of the grossular–pyrope solid solution
 321–326
clusters and cluster chains used by the CVM method
- ~ for body centred cubic lattices 317
- ~ for planar square and simple cubic lattices 316
- ~ for the diopside–Ca-Tschermak solid
 solution 327
coherent interface 409
Colinet model 61
compressibility and configurational thermal expansion
coefficient 424
computer simulation(s)
- analogies of ~ to laboratory experiments 209
- ~ in the research of Al/Si ordering 211–212
- ~ in the research of binary garnet solid
 solutions 212–213
- ~ of solid solutions 225–250
- ~ of trace element incorporation into a crystal
 lattice 267–297
- methodology of ~ 226–231
- principles of ~ 209–224
- special contributions of ~ 210
configuration(s)
- ~ accessible in an A_B^{1-x} solid solution 335–336
- T and P effects on ~ 421–422
configurational energy
- chemical component of the ~ 307
- ~ configurational degrees of freedom 307–310
- ~ and site preference energy 338–339
- elastic component of the ~ 307
- functional form of the ~ 308–309
configuration enthalpy see also configurational energy
- ~ and configurutional heat capacity 423
configurational entropy (of mixing) 75–76,
303–307, 312–317, 360
- ~ and configurutional heat capacity 423
- ~ and relaxation times 437
- ~ and viscosity 437–438
- ~ of binary silicate solid solutions 303–346
- ~ of the grossular–pyrope solid solution 88–89
- ~ of the Na–K alkali feldspar solid solution 89
- determination of ~ 303
configurational thermal expansion coefficient and
compressibility 424
configurational vs. vibrational relaxation 427, 428, 429
configurationally averaged lattice dynamics 289
convergent-beam electron diffraction (CBED) 390
corundum–hematite see hematite–corundum

coulombic interactions see long-range interatomic interactions

coupled heterovalent substitution 180
coupled substitutions 47

critical temperature 147–148

calculated and experimental ~s for binary oxide solid solutions 147

calculated reduced ~ 148

cronstedtite, inverse magnetic susceptibility of 357

Crystal98 program package 353–354

crystal-chemical models of element partitioning 187–189, 190–192, 193

crystal-field stabilisation energy (CFSE) 142–143

crystallographic shear (CS)

~ defects 405
~ planes 397

crystal-site approximation (CSA) 315

CS see crystallographic shear

CSA see crystal-site approximation

cummingtonite–grunerite solid solution

scalar strains for the phase transition in the ~ 174, 175

variation of the transition pressure in the ~ 174, 175

Curie–Weiss law 355

CVM see cluster variation method

Darken equation 40–41

Darken’s quadratic formulation (DQE) 50–52

data refinement in diffraction experiments 185

data treatment in diffraction experiments 185

selected ~ 185

Debye cut-off frequencies 13–14

Debye temperature and ~ 15

Debye model of the density of states 12, 20

Debye temperatures 15–21, 34

elastic-limit ~ 16, 19, 21

elastic properties and ~ 18–20

entropy ~ 16–17, 19, 21

heat capacity ~ 16, 21

overview of ~ 21

relation of ~ to physical properties 15–17

defect thermodynamics 270–275

defect(s) see also extended, point and planar defect(s)

385

cloudy
crystallographic shear (CS) ~ 405

~ energies, final relaxed 279

~ energy and strain energy 280

~ properties 270–271

Frenkel ~ 396

intergrowth ~ 405

interstitial ~ 396

planar ~ 385, 387, 401–407

polysomatic ~ 405

Schottky ~ 396

superlattice of ~ 270

two-dimensional ~ see planar ~
deformation twinning 406
degree of inversion 444
degree of order 360
degrees of freedom

configurational ~ 307

~ ~ and configurational energy 207–310

internal ~ 307

Density Functional Theory (DFT) 217–218, 227

density of states, P(~) 11

Einstein model of the ~ 12

modelling of the ~ 12–14

DFT see Density Functional Theory

Dick–Overhauser shell model 268
differential scanning calorimetry (DSC) 77

diffraction experiments

data treatment and refinement in ~ 185–186

~ in the study of solid solutions 179–205

minimum sample volume for ~ 180

dilute solutions, laws of 41–42

diopside

calculated and experimental lattice parameters of ~ 276

calculated bulk moduli of ~ 276

calculated initial and final defect energies, relaxation and solution energies for isovalent impurities in ~ 277, 278

calculated point defect energies for isovalent and heterovalent substituents in ~ 282

calculated relaxation energies in ~ 283

calculated solution energies for trivalent substituents in ~ 285

diopside–Ca-Tschermak solid solution

activity–composition relations for the ~ 331

calculated 29Si MAS-NMR peak intensities of the ~ 336, 342, 343

clusters and cluster chains used by CVM method for the ~ 327

comparison of the GULP energies and fitted model Hamiltonian of the ~ 235

coumalgamic entropy of the ~ 330

enthalpy of mixing of the ~ 330

entropy formula of the ~ 326

interaction parameters for the ~ 328

modelling of the mixing properties of the ~ by the CVM method 326–336

phase diagram of the ~ 329

temperature dependence of the entropy of the ~ 237
thermodynamic assessment of the $^{29}\text{Si MAS}$ NMR data for the ~ 329

variational parameters for the ~ 327

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$

dislocation loops ~ 400

dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$

dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$

dislocation density $\sim 399, 401$

measuring of $\sim 399, 401$
dislocation loops ~ 400
dislocation(s) ~ 385

climbing of ~ 338

density of $\sim 338, 401$

description of $\sim 398-399$

\sim of mixed character ~ 398

dissociated $\sim 398, 401$

direct determination of thermodynamic properties $\sim 76-81$
calculated initial and final defect energies, relaxation and solution energies for isovalent impurities in ~ 277, 279
calculated point defect energies for isovalent and heterovalent substituents in ~ 282
calculated solution energies for trivalent substituents in ~ 285
→ melt partition coefficients 288
Monte Carlo calculations of trace-element partitioning in ~ 286–289
free energy diagrams 408
free energy of mixing ~ as a function of composition and temperature 147
~ of binary oxide solid solutions with rocksalt structure 94
fusion entropy see entropy of fusion
fusion equilibria 257–258
Garnet solid solutions see also the binary solutions by species name
deviations of the volumes of mixing of the ~ from
the ideality 91
enthalpies of mixing of the ~ 173
excess enthalpy of mixing of the ~ 95
IR spectra of the ~ 162
autocorrelation analysis of the ~ ~ 163
line broadening in the ~ ~ 173
(Mg,Fe)–Ca exchange in the ~ 196–200
Monte Carlo simulations of the ~ 231–234
garnet structure 197, 231
angular variances for the O and T site in the ~ 198
equivalent aHO values at the Y site in the ~ 201
fragment of the dodecahedral net in the ~ 322
length of the O–O edges and the non-equivalent X–O bonds for the O and T site in the ~ 199
GASP geobarometer 103, 113
Generalised Gradient Approximation (GGA) 218
Generalised Gradient Corrections 218
geobarometer(s) 102
GASP ~ 103, 113
GRIPS ~ 106, 107, 111, 112–113
KFMASH ~ 113, 114–115
geometrical aspects of solid solutions 193–200
geothermometers 102
GGA see Generalised Gradient Approximation
Gibbs free energy ~ of a pure phase 73
~ of a solution 39
~ of mixing 73
Gibbs’ equation 305
Gibbs’ method 101–102, 305
Gibbs–Duhem relation 39–41
glass transition 420
schematic description of the ~ 428–431
~ range 431
enthalpy variations through the ~ ~ 431
heat capacity variations through the ~ ~ 431
~ temperature 431–433
glasses and the glass transition 419–447
glass-like transitions 441–445
~ in cyclohexanol 441, 442
~ in ice 442, 443, 444
~ in spinel 444, 445
glassy crystals 442
greenalite
antiferromagnetic structure of ~ 357
inverse magnetic susceptibility of ~ 357
GRIPS geobarometer 106, 107, 111, 112–113
grossular–andradite solid solution
configurational entropy of the ~ 321
modelling of the mixing properties of the ~ by
the CVM method 319–321
phase relations in the ~ 320
variations of LRO and SRO parameters vs.
temperature in the ~ 320
grossular–pyrope solid solution
calculation of theoretical 29Si NMR intensities
for the ~ 342, 343
comparison of the ~ with the Na–K alkali feldspar solid solution 85–90
configurational entropies of mixing of the ~ 88–89, 325
enthalpies of mixing of the ~ 74, 88, 325
entropy formula of the ~ 322
excess heat capacities of mixing of the ~ 87
interaction parameters for the ~ 323
Mg–Ca exchange in of the ~ 323
modelling of the mixing properties of the ~ by
the CVM method 321–326
phase diagram of the ~ 326
temperature dependence of the 29Si MAS-NMR peak intensities in the ~ 233
temperature dependence of the entropy of the ~ 232
thermodynamic assessment of the 29Si MAS NMR data for the ~ 324
variational parameters for the ~ 323
vibrational parameters of the ~ 323
moulding of the mixing properties of the ~ 88
volumes–composition relation of the ~ according
to the subregular model 53
volumes of mixing of the ~ 85, 86
growth twinning 406
Guggenheim model 48
GULP lattice energy code 227, 229
HAADF see high-angle annular dark-field
Hard Mode IR spectroscopy and phase transitions 164
hardness 33
harmonic heat capacity 14, 18
harmonic lattice vibrations 12
heat capacity 14–15, 422, 423
configurational ~ 422
, configurational enthalpy and entropy 423
excess ~ q.v.
harmonic ~ 14, 18
and strain 92–93
Debye temperature 16, 21
of binary silicate solid solutions 83
high-temperature ~ 15
Neumann–Kopp rule for ~ 29, 30
low-temperature ~ 15
helical screw dislocations 400
hematite
crystal structure of ~ 195, 364
high-T magnetic heat capacity anomaly in ~ 358
magnetic interaction parameters for ~ 353
magnetic ordering in ~ 370–371
magnetic structure of ~ 364, 365
nearest-neighbour arrangements of cations and
anions in the ~ structure 366
set-up of the MC simulations for ~ 369–370
spin-wave dispersion curves for ~ 353
sublattice magnetisation vs. T in ~ 370
hematite–corundum solid solution, Fe–Al exchange
in 194–195
hematite–ilmenite see ilmenite–hematite
Henderson–Kracek approach 283
Henrian behaviour 253
Henry’s law 41, 253
heterogeneous nucleation and growth 409, 410
heterovalent substitution of trace elements 281–286
IIIF (solution) calorimetry 79
Hietala model 125–126
high-angle annular dark-field (HAADF) imaging 395
high-resolution TEM imaging 392
high-temperature drop calorimetry 77–78
high-temperature entropy 15
high-temperature heat capacity 15
Hillert’s expression 40–41
HMC see Hybrid Monte Carlo
homogeneous nucleation and growth 411
homovalent substitution 180
Hund’s first rule 350
Hybrid Monte Carlo (HMC) technique 290
Ideal entropy of mixing 303
ideal mixing 104–107
ideal solid solutions 104–107
ilmenite
crystal and magnetic structure of ~ 364, 365
magnetic interaction parameters for ~ 353
ilmenite–hematite solid solution 364
cation order parameter vs. T in the ~ 374
chemical interaction parameters for the ~ 368
determination of ~ 366–368
equilibrium phase diagram topology of the
~ 373–375
experimental study of the R3 to R3c phase
transition in the ~ 365–366
exsolution microstructures in the natural samples
of the ~ 377, 378
long-range cation order parameter vs. temperature
for the ~ 363
magnetic interaction parameters in the ~
determination of 369
magnetic ordering
~ in the disordered ~ 371
~ in the exsolved samples of the ~ 375–377
~ in the ordered ~ 371–372
miscibility gap in the ~ 368
order parameter vs. temperature in the ~ 367
phase boundary constraints in the ~ 375
set-up of the MC simulations for the
~ 369–370
sublattice magnetisation vs. T in ~ 370
~ and bulk composition in the ~ 373
~ in the disordered ~ 371
~ in the ordered ~ 371
variation of Néel temperature in the disordered
~ 371
immiscibility 408
incoherent interface 409
interactions, first-, second- and third-neighbour ~
within a 6-membered ring of tetrahedra 244
interatomic interactions
dispersive ~ 226
empirical representations of ~ 226–227
long-range ~ 226
quantum mechanic models of ~ 227
repulsive ~ 226
short-range ~ 226
interatomic potential energy 221
~ for an amorphous substance 430
interface(s)
coherent ~ 409
incoherent ~ 409
semicoherent ~ 409
intergrowth defects 405
internally-consistent thermodynamic data 102
interstitial defects 396–397
interstitial solid solutions 4
ionic solid solutions, semi-empirical phenomenological models of 123–126
ionic solution model 45–47
IR spectra
 autocorrelation analysis of ~ 159–63
 broadening parameter of ~ 160
 line broadening in ~ associated with solid solution formation 159–163
isovalent substitution of trace elements 276–281
J’s formalism 309
jadeite–augite solid solution
 IR spectra of the ~ 166
 mixing and ordering behaviour of the ~ 167
 phase diagram of the ~ 156
Kauzmann paradox 433, 434
Kerrick–Darken model 105
KFMASH geobarometer 113, 114–115
K–Na alkali feldspar see Na–K alkali feldspar
Kohler model 61
Kröger–Vink notation 279
Latom’s rule 30–31, 32
lattice dynamics, configurationally averaged 289
lattice energy of binary oxides 277
lattice instabilities 27–28
lattice strain see strain
lattice vibrations, harmonic 12
LDA see Local Density Approximation
least-squares refinement strategies 185
Lennard–Jones interaction 28
leverage analysis 186
Lindemann’s melting rule 29, 33
line broadening in IR spectra associated with solid-solution formation 159–163
local atomic displacements and structure relaxation 121–123
local charge balance model 105
Local Density Approximation (LDA) 217–218, 227
local elastic strain heterogeneities, evidence for the existence of 157–164
local equilibrium concept 102
local strain field(s) 219
 ~ in a solid solution 219–223
Loewenstein’s rule 210
long-range interatomic interactions 226
long-range order (LRO) 309–312, 331–334
long-range structural information 180
low-temperature adiabatic calorimetry 77
low-temperature heat capacity 15
LRO see long-range order
Magnesiochromite, low-T magnetic heat capacity anomaly in 358
magnesioferite–periclase intergrowth 195
magnetic enthalpy 358, 360
magnetic entropy 358, 361
magnetic exchange integral 351
magnetic exchange interactions 351–357
 energy of ~ 351
magnetic heat capacity anomaly 358
magnetic interaction energy 351
magnetic interaction parameters
 calculation of ~ 352–354
 ~ by analysing spin-wave dispersion curves 352–353
 ~ by first-principles methods 353–354
 ~ using cluster models 354
 ~ for harrarite and ilmenite 353
magnetic ordering
 ~ in solid solutions 349–383
 mean-field approach to ~ 354
 thermodynamics of ~ 357–363
 atomistic models of the ~ 352–363
 macroscopic models of the ~ 359–362
 phenomenological models of the ~ 358–359
magnetic susceptibility 355
magnetocristalline anisotropy 350
Margules formalism of the total enthalpy of mixing 308
Markov chain 339–340
mass-defect model 24
maximum entropy method 186
Maxwell’s model of viscoelastic media 432
MC see Monte Carlo
MCX see Monte Carlo Exchange
mean-field approach to magnetic ordering 354
Meijering’s model 361, 362
microhedral twinning 406, 407
“Mg corderite”
 enthalpy of solution of ~ 165
 IR spectra of ~ 164
 line broadening parameter of the ~ 165
MgO, melting temperature of 295
MgO–CaO system see CaO–MgO system
MgO–MnO system see MnO–MgO system
microcline–low albite solid solution see also Na–K alkali feldspar solid solution
volume-composition relation of the ~
~ according to DQF 52
~ according to the subregular model 52
mixing
ideal ~ 104–107
~ entropy see entropy of mixing
~ functions 42
non ideal ~ 107–110
mixing energy (energies) 125
cluster expansion approach for the description of
~ 130
comparison of experimental and calculated
~ 138
crystal-chemical form for the expression of
~ 136–138
descriptions of ~ 308–310
\(J\)'s formalism for the description of ~ 309
modifications to ~ 140–143
phenomenological approach of ~ 310
temperature and pressure effects on ~ 138–140
mixing enthalpy see enthalpy of mixing
mixing model(s)
fitting of data from different ~ 110
phenomenological ~ 121–153
types of ~ 121
\(\text{MnO-MgO system} \)
enthalpy of mixing for the ~ 291, 292
entropy of mixing for the ~ 292, 293
molar Gibbs energy 42
molar volume 80
molecular mixing model 105
moment frequencies 13, 15
~ expressed as equivalent Debye cut-off
frequencies 13–14
Monte Carlo calculations/simulations 363
~ of configurational entropy 312
~ of garnet solid solutions 231–234
~ of muscovite solid solution 237–241
~ of ordering processes 230
~ of pyroxene solid solutions 234–237
~ of spinel solid solutions 241–242
~ of trace-element partitioning 286–290
Monte Carlo Exchange (MCX) approach 290
Mott–Littleton theory 267, 275–276
Muggianu–Jacob model 61, 62
multicomponent solutions 59–65
estimation of higher order interaction terms in
~ 62–63
modelling of ~ without multicomponent terms
63–64
multipole refinement 186
multi-site mixing in solid solutions 64–65
muscovite solid solution
\(\text{Al}/\text{Si ordering in the} \sim 238–239
exchange interactions in the \sim 238
\(J4\) exchange interactions in the \sim 238
Monte Carlo simulation of the \sim 237–241
temperature dependence of the \(^{29}\text{Si} \text{MAS-NMR}
peak intensities in the \sim 240
muscovite structure 239
\(\text{NaCl-structure type} \)
energetics of ~ solid solutions 126–128
structural and elastic properties of oxides of
~ 137
Nagasawa equation 260
\(\text{Na–K alkali feldspar solid solution} \)
comparison of the ~ with the grossular–pyrope
solid solution 85–90
configurational entropies of mixing of the ~ 89
enthalpies of mixing of the ~ 88
excess heat capacities of mixing of the ~ 87, 88
exsolution and microstructures in ~ 414
plateau effect in the ~ 158
vibrational entropies of mixing of the ~ 88
volumes of mixing of the ~ 85, 86
nearest-neighbour \(\text{Al}/\text{Si exchange interactions for}
aluminosilicate crystals} 243
nearest-neighbour interactions 228
\(\text{Neel temperature} \)
355
\(\text{neighbour counting, constraints on} \) 245–246
\(\text{Nernst partition coefficient} \)
251
\(\text{Nernst’s law and internal disequilibrium} \) 424–425
\(\text{Neuman–Kopp rule} \)
29, 30
\(\text{Newton–Haselton model} \)
112
\(\text{non-ideal mixing} \)
107–110
\(\text{non-ideal solid solutions} \)
107–110
\(\text{nonmerohedral twinning} \)
406
\(\text{non-random two liquid (NRTL) model} \) 57–58
\(\text{NRTL model see non-random two liquid model}
\text{nucleation and growth} \) 409–411
heterogeneous ~ 409, 410
homogeneous ~ 411
\(\text{Olivine, Onuma diagram for} \) 256
omissional solid solutions 4
\(\text{one-site binary mixing models} \)
47–59
\(\text{comparison of} \)
58–59
\(\text{Onuma diagram} \)
254
\(\text{optimum radius} \)
262
\(\text{variation of} \)
264
\(\text{ordering interactions, empirical representation} \)
228–229
ordering processes, Monte Carlo simulations of 230
oxide solutions
- critical temperatures, calculated and experimental,
 for binary ~ 147
 free energy of mixing of ~ with rocksalt structure ~ 94

Pairwise interactions 155
partial dislocation 399, 401
partitioning see trace-element partitioning
partition coefficient(s) 251, 261-266
cation radius and ~ 262
determination of the ~ 251-252
Nernst ~ 251
variation of ~ 264
PD see probability distribution 316
periclase–magnesioferrite intergrowth 195
periclase–wustite, Fe–Mg exchange in 193–194
permanent compaction of glasses 439-441
perovskite solid solution series
IR spectra of the ~ 160
autocorrelation analysis of the ~ 160, 161
variation of the transition temperature in the ~ 159
petrogenetic grids 102
phase diagrams
~ and atomic mass variations 25
~ and finite concentrations of trace elements 289-297
phase equilibrium experiments, thermodynamic data
from 71-72
phenomenological models of solid solutions,
comparison of 149-150
phenomenological theory of solid solutions 121-153
extension of the ~ from the NaCl-type to other
structure types 128-136
n-transfer 351
plagioclase solid solutions
2T mixing model for the ~ 105-106, 107
4T mixing model for the ~ 105-106, 107
enthalpies of solution of the ~ 169, 171
IR spectra of the ~ 169
autocorrelation analysis of the ~ 168–169, 170
MM mixing model for the ~ 105-106, 107
phase diagram of the ~ 157
variation of transition temperature of the ~ 170-171, 172
planar defects 385, 387, 401-407
plateau effect 158-159
~ in the albite–orthoclase solid solution 158
point defect(s) 385, 396, 397, 398
concentration of ~ 396
Mott–Littleton theory of ~ 267, 275-276
observation of ~ 397-398
point-defect energy (energies)
~ calculation 270–275
supercell approach for the ~ 267, 269–275
two-region strategy for the ~ 267, 268
polysomatic defects 405
polyomes 405
potential energy, interatomic 221
power series multicomponent models 59-61
precipitation see exsolution
pressure–temperature determinations in metamorphic
rocks 101-118
pressure–temperature estimations 101-102
restrictions of ~ 102–103
Prigogine–Defay ratio 424
primary atomic displacements see atomic
displacements
probability distribution (PD) 316
basic cluster ~ 317-319
~ of the square cluster 318
projected multicomponent models 61, 62
pseudo wave function 215
pseudomerohedral twinning 407
pyrope–grossular see grossular–pyrope
pyroxene solid solutions, Monte Carlo simulations
of 234–237
pyroxene structure 234
QC model see quasi-chemical model
QLD see quasiharmonic lattice dynamics
QMC see Quantum Monte Carlo method
quantum mechanic models of interatomic
interactions 227
Quantum Monte Carlo method 218
quasi-chemical (QC) method/model 53-55,
314–315
quasiharmonic approximation 269
quasiharmonic lattice dynamics (QLD) 269, 290
Raoult’s law 42
reaction calorimetry 78–79
reciprocal solutions 43, 44-47
Redlich–Kister model 48, 61
Regular Solution model 48-49, 359-361
relaxation
~ energy 308
defect energy and ~ 280
lattice strain energy and ~ 280
~ parameter 122
~ times 425, 426, 427
~ and configurational entropy 437
vibrational vs. configurational ~ 427, 428, 429
reverse drop calorimetry 78
Richard’s rule 32, 33
SAED see selected-area electron diffraction (SAED) 389, 390
scanning transmission electron microscopy (STEM) 386, 395
Schrödinger equation 214
KS form of the ~ 214
screw dislocation 398, 400
secondary atomic displacements see atomic displacements
selected-area electron diffraction (SAED) 389, 390
semicoherent interface 409
SHELL free energy minimisation code 269
short-range interatomic interactions 226
short-range order (SRO) 304, 309–312, 331–334
short-range structural information 180
a-transfer 351
silicate solid solutions
binary mixing properties of ~ 81–84
configurational entropy of binary ~ 303–346
excess enthalpies of mixing of binary ~ 84
heat capacities of binary ~ 83
influence of elastic strain heterogeneities in ~ 155–178
lattice strain parameters for ~ 263
nearest-neighbour Al/Si exchange interactions for aluminosilicate solid solutions ~ 243
site bulk moduli for ~ 265
volumes of mixing of binary ~ 82
Simple Mixture model 48, 54
single-site solutions 5–46
site bulk modulus (moduli) 264–266
~ for silicate minerals 265
site compliance 123
site populations, determination of 187, 188
site preference energy 310
~ and configurational energy 338–339
site symmetry and multiplicities ~ for a cubic site 131
~ of cuboctahedral configurations 135
slip plane 399
solid solution(s), see also solution(s)
background information on ~ 3–5
classification of ~ 4
degree of ~ and structural properties 194
excess enthalpy of mixing of a ~ 74
exsolutions in mineral ~ 408–414
general survey of ~ 3–7
geometrical aspects of ~ 193–200
ideal ~ 104–107
interstitial ~ 4
key references and texts on ~ 7
local strain fields in a ~ 219–223
magnetic ordering in ~ 349–363
NaCl-structure type ~ 126–128
non-ideal ~ 107–110
omissions ~ 4
one-site binary mixing models for ~ 47–59
phenomenological theory of ~ 121–153
research history of ~ 5–6
scientific perspective of ~ research 7
semi-empirical phenomenological models of ionic ~ 123–126
~ stability 147–148
substitutional ~ 4
thermodynamic modelling of ~ 37–69, 303
thermodynamics of ~ (basic concepts) 104–110
total entropy of mixing of a ~ 74–75
solution(s)
athermal ~ 56
brief outline of the thermodynamics of ~ 39–45
dilute ~ 41–42
disordered ~ 46–47
excess functions of ~ 42
Gibbs free energy of ~ 39
ionic ~ model 45–47
mixing energy of ~ 42
molar Gibbs energy of ~ 42
multicomponent ~ 59–65
estimation of higher order interaction terms in ~ 62–63
modelling of ~ without multicomponent terms 63–64
reciprocal ~ 43, 44–47
regular ~ 48
silicate ~ q.v.
single-site ~ 45–46
~ energy(energies) 279
~ with multi-site mixing 64–65
~ energy (energies) 279–280
and strain energy 281
surface vs. bulk ~ 286
symmetric ~ 487
solvsus diagrams 408
spin wave 352
~ dispersion curves 352–353
~ for Fe3O4 353
spinel solid solution
Monte Carlo simulations of the ~ 241–242
temperature dependence of the order parameter for Mg/Al ordering in the ~ 241
thermodynamic functions for Mg/Al ordering in the ~ 242
spinodal decomposition 411
SRO see short-range order
stability of solid solutions 147–148
stacking faults 402–403
formation of ~ 403
images of ~ 402–403
standard state and activity 41
static lattice simulations 269
static limit 269
STEM see scanning transmission electron microscopy
strain
Brice equation for ~ energy 150, 260
energy of macroscopic ~ 156
lattice ~ energy and relaxation energy 280
lattice ~ models 260–266
limitations of the ~ 266
lattice ~ parameters for silicate minerals 263
local ~ fields in a solid solution 219–223
Nagasawa equation for ~ energy 260
role of ~ in the thermodynamic mixing properties of
binary oxide and silicate solid solutions 71–100
~ and enthalpy of mixing 93–95, 220
~ and heat capacities 92–93
~ and stress 219, 221–222
~ and vibrational entropies of mixing 92–93
~ and volumes of mixing 90–92
~ energy and defect energy 280
~ energy and solution energy 281
strain-free solvus see chemical solvus
stress and strain 219, 221–222
structural information
long-range ~ 180
short-range ~ 180
structural properties and the degree of solid
solution 194
structure refinement as an analytical tool 182, 183,
184–185
structure relaxation and local atomic
displacements 121–123
subregular model 49–50
substitution
coupled heterovalent ~ 180
homovalent ~ 180
substitutional defect
Ba ~ in MgO 272–273, 274–275
defect parameters for a ~ 272
defect volumes, energies and entropies of
formation for a ~ 273
variation of defect parameters for a ~ with
temperature 274–275
substitutional solid solutions 4
supercell approach 213, 214, 267, 269–275
superalattice cell see supercell
symmetric solutions 48
Tammann–Vogel–Fulcher equation 438
TEM see transmission electron microscope and
transmission electron microscopy
thermochemical cycle 79
thermochemical measurements 78–79
thermodynamic data
internally consistent ~ 102
~ from calorimetry 72
~ from element partitioning experiments 72
~ from phase equilibrium experiments 71–72
thermodynamic functions 14–15
thermodynamic integration and thermodynamic
properties 246–248
thermodynamic mixing properties see also
thermodynamic properties
direct measurements of ~ 72
thermodynamic modeling of solid solutions 37–69,
303
thermodynamic properties see also thermodynamic
mixing properties
Debye and Einstein models and ~ 17–18
dependence of ~ on atomic masses and
bonding 11–36
direct determination of ~ 76–81
experimental methods for the ~ 76–81
separation of interatomic forces and atomic
masses in ~ 23
thermodynamic integration and ~ 246–248
thermodynamics
defect ~ 270–275
~ of magnetic ordering 357–363
~ of pure phases 73
~ of solid solutions 39–45, 104–110
~ of substitutional solid solutions 73–75
thermophysical measurements 76–78
Toop model 61, 62
topological entropy 420
total entropy of mixing of a solid solution 74–75
trace element incorporation
computer simulation of ~ into a crystal lattice
267–297
experimental studies of ~ 251–266
~ in minerals and melts 251–302
trace element partition(ing)
analytical techniques for the determination of
~ 252–253
controls on ~ 254
direct simulation of ~ 286–289
exchange equilibria and ~ 258–259
fusion equilibria and ~ 257–258
Monte Carlo calculations of ~ 286–289
thermodynamic considerations related to ~ 255–
coefficients see partition coefficients
~ experiments 251, 252, 253–255
trace element(s)
defect, relaxation and solution energies of ~ in minerals and melts 276–286
finite concentrations of ~ and phase diagrams 289–297
heterovalent substitution of ~ 281–286
isovalent substitution of ~ 276–281
transformation twinning 406
transition temperature, plateau in ~ 153–154
transmission electron microscope (TEM) 386, 387, 388
additional lenses of the ~ 388
amplitude-contrast (single-beam) bright-field (BF) imaging in the ~ 390–391
amplitude-contrast (single-beam) dark-field (DF) imaging in the ~ 391
analytical modes in the ~ 392–395
convergent-beam electron diffraction (CBED) in the ~ 390
diffraction modes in the ~ 388–390
electron energy-loss spectroscopy (EELS) analysis in the ~ 394, 395
electron energy-loss spectroscopy (EELS) detectors of the ~ 388
electron gun of the ~ 386
energy-dispersive spectroscopy (EDS) analysis in the ~ 392, 393
energy-dispersive spectroscopy (EDS) detectors of the ~ 388
energy-filtered analysis (EFTEM) in the ~ 395
illumination system of the ~ 386
imaging modes in the ~ 390–392
objective lens of the ~ 386, 388
operational modes in the ~ 388–395
recording systems of the ~ 388
scanning TEM in the ~ 395
selected-area electron diffraction (SAED) in the ~ 389, 390
specimen stage of the ~ 388
weak-beam dark field imaging in the ~ 391
transmission electron microscopy (TEM) of rock forming minerals 385–418
twin Tian-Calvet design high-temperature calorimeter 80
twinning 405–407
deformation ~ 406
description of ~ 405–406
formation of ~ 406
growth ~ 406
imaging of ~ 406
merohedral ~ 406, 407
nonmerohedral ~ 406
pseudomerohedral ~ 407
transformation ~ 406
twin(s) 405–406
~ boundary 405
~ plane 405
two-dimensional defects see planar defects
two-region strategy for calculation of point-defect energies 267, 268
two-site ideal model 46–47
Unit-cell parameter(s)
accuracy and precision of ~ measurements 181–182
accurate determination of ~ 181–182
standard uncertainties (s.u.) of ~ 181–182
unit-cell volume see unit-cell parameters
unit dislocation 398
uphill diffusion 411
Vacancy (vacancies)
anion ~ 396
cation ~ 396
VCA see virtual crystal approximation
Vegard’s rule 121–122
deviations from ~ 143–145
vibrational entropy 14, 145–146
relation of ~ and mixing enthalpy 145–146
strain and ~ 92–93
~ and the characteristic energy E_s 25–27
vibrational vs. configurational relaxation 427, 428, 429
vibrations see also lattice vibrations
modelling ~ in solid solutions 23–24
virtual crystal approximation (VCA) 122, 123
viscosity and configurational entropy 437–438
volume determinations 80
volume of mixing ~ and strain 90–92
~ of binary silicate solid solutions 83
Wasastjerna–Hovi model 125
wave function 214, 215
pseudo ~ 215
weak-beam dark field TEM imaging 391, 401
weighting schemes of reflections 185
Wilson model 56–57
Wohl model 59–60
Wiistite–periclase see periclase–wiistite
Zero-loss image in TEM 395
Corrigenda

page 40, Equation 6a should read as

\[\mu_i = G_m + (1 - X_i) \frac{\partial G_m}{\partial X_i} - \sum_{k \neq i} X_k \frac{\partial G_m}{\partial X_k} \]

(6a)

ibid., Equation 6b should read as

\[\mu_i = G_m + \frac{\partial G_m}{\partial X_i} - \sum_k X_k \frac{\partial G_m}{\partial X_k} \]

(6b)

page 44, Equation 19 should read as

\[\mu_{A_n,C_r} = G_m + \frac{\partial G_m}{\partial X_A} + \frac{\partial G_m}{\partial X_C} - \sum_k X_k \frac{\partial G_m}{\partial X_k} \]

(19)

throughout Chapter 4 (pages 71–100)

for KJ read kJ

page 94, Figure 6, vertical axis label

for W read WG

page 192, caption to Figure 6, line 1

for kaersutie read kaersutie (a)

ibid., line 2

for potassic richterite read potassic richterite (b)

page 335, line 1 below Equation A.1.1

for \(\ln N! = N \ln N - N \) read \(\ln N! = N \ln N - N \)