In this index, a keyword can be included many times - both as an individual entry and as part of a sublist to one or more higher level keywords. In the latter case, the page numbers are generally restricted to those in the context of the higher level keyword; the individual entry for these keywords may, however, contain page references to other sections of the book. Multiword keywords are often listed under two, or more, keywords; for example, cross-domain leakage is listed under both cross-domain and leakage. Some multiword keywords are condensed; for example, residual static corrections is often abbreviated to residual statics.

ABC method, 189-191, 229, 230, 252
ABCD method, 190-191
accuracy
crosscorrelation picks, residual statics, 333, 387
datum statics, requirements, 68; see also data
processes, static shift/error impact
timing, refraction surveys, 152, 160, 161
timing, uphole surveys, 107-108, 112-113
adjustments/corrections; see corrections/adjustments
aerated layer; see weathered layer
air, velocity, 24
analog data, time break, 88-89
anchor (shothole), 108
angle dependent
residual statics, 328, 340
static corrections, 259, 261
anisotropy, 31-32, 233, 237, 241
array
forming, noise (signal) attenuation, 7, 17, 19, 311-312
intra-array statics, 7, 14, 17, 18-19, 65, 158-159, 258, 277, 311, 454
length correction, refraction surveys, 179
refraction recording, 152, 157, 158-159, 166
source-to-receiver azimuth dependence, 179, 180
arrival-time
corrections/adjustments; see refraction surveys,
arrival-time adjustments; uphole surveys, arrival times
picking; see refraction surveys, arrival-time picking;
uphole surveys, arrival times
attenuation, near-surface layers, 14
automated methods, refraction arrival-time picking,
161-164
azimuth
partition, 3-D surveys residual statics, 440
source-to-receiver azimuths, 179, 180, 330
velocity variation, 381, 385, 407, 408

bandwidth (frequency)-dependent residual statics, 449, 471
Banta method, 252
Barry’s method, 252
Barthelmes method, 252
Baumgarte ray-stretching method, 252
binning (subsurface), 328, 329, 346, 353, 354, 364, 382, 385, 441
binning (surface), 228, 327, 364, 413
biogenic gas, 18, 28-29
birefringence, impact on residual statics, 443-444
blind zone, 150-152
Blondeau method, 206-211, 229, 252
borehole
drilling process, alteration, 69, 103, 110, 121-122
invaded zone, 105, 110, 111, 121
lithology, 69, 106-107
mud/water invasion, velocity impact, 121, 493
uphole survey depth, 104, 106
bow wave, 143
buried receivers, 3, 14, 18, 55-57, 110, 111, 485

camera speed requirements, uphole surveys, 113
cdp corrections; see trim static corrections

Downloaded from pubs.geoscienceworld.org/books/chapter-pdf/3761498/9781560801818_backmatter.pdf by guest
channel fill, mature topography, 15, 19-20
charge size, uphole surveys, 108-109, 111
chemical processes, geologic weathering, 13-14
chromosome, genetic algorithm, 405
coherent noise attenuation; see noise attenuation
coincident-time curve, 143-144
CMP gathers, display, 387, 457, 459, 460-461
common conversion point (CCP), 65, 444-445
common emergent point analysis, refraction, 183
common-midpoint analysis, refraction, 160, 183
common-midpoint-based method, 330-331, 352-394,
 420-421
 binning (subsurface), 328, 329, 353, 354, 364, 382, 385
complex areas, 355-357, 381, 385, 386, 390, 391
converted-wave surveys, 444
crosscorrelation procedure, 385, 387-393
crosscorrelations, 353-354, 364, 378-379
cross-line dip, 353, 382, 385, 465, 471, 473
cross-line statics; see seam statics
data conditioning/preprocessing, 379-384
data selection, 384-387
decomposition, traveltime equations; see decomposition, traveltime equations
equations, traveltime, 330-331, 358-361
feathered streamer, 353, 364
global/local solution, 327, 354, 394
large residual statics, 354, 380, 383-384, 388
long-wavelength capability, 355, 365-366, 376, 378,
 420-421; see also long-wavelength residual static corrections
model trace, 331, 386, 387, 388-392, 407
pilot trace, 387, 388-392
QC; see quality control
reference trace, 387, 388-392
refraction data, 328, 450-451
residual moveout, estimation, 354, 374, 392-393
residual moveout, impact, 360, 363-364, 366, 370,
 376, 378, 389-390, 458
seam statics, 367, 368, 408, 410-414, 458, 473
shear-wave surveys, 442-444
stabilization of values, 372, 376, 451-452
stack power methods, 393-394, 421
streamer feathering, 353, 364
subsurface binning, 328, 329, 353, 354, 364, 382, 385
3-D surveys, 407-414; see also 3-D surveys, residual static corrections
traveltime equations, 330-331, 358-361
common offset-based method
cross-domain leakage, 395
decomposition, traveltime equations; see decomposition, traveltime equations
differential residual statics, 394-395
traveltime equations, 394
common-subsurface-location analysis, refraction, 183,
 195, 201
common-surface-location analysis, refraction, 183, 189,
 192, 195
common-surface-location (prestack) method, 330, 334-
 343, 345, 419
 averaging procedure, 335
crosscorrelations, 334, 335-337, 338
cumulative profile, 337-341
data conditioning/preprocessing, 335
data selection, 335
dip component, 335, 337, 338, 341, 343
high grading scheme, 336
long-wavelength capability, 341, 343, 419
QC, 342, 455, 456, 471; see also quality control
residual moveout impact/estimation, 335-336, 337-341
residual static estimates, 341-343
reversed polarity location, impact, 336-337, 338
time shift estimation, 334, 335-337, 345
traveltime equations, 330
common-surface-stack method, 343-352, 419-420
 binning (subsurface), 346
 converted-wave surveys, 444-445
crosscorrelations, 344, 345, 346, 347
cross-domain leakage, 344, 345, 346, 347, 349, 420, 444
cross-line dip, 346
cumulative profile, 344, 346, 347
data conditioning/preprocessing, 345
data processing flow, 345-346
data selection, 345
dip component, 345, 346
impulse response, static anomaly, 344-345
large residual statics, 344
leakage, cross domain, 344, 346, 347, 349, 420, 444
long-wavelength capability, 346, 347, 419-420
QC, 348, 349-350, 459-460; see also quality control
receiver stack, 344, 345, 346, 350, 444
residual moveout impact/estimation, 344, 346, 347
residual static estimates, 347-350
reversed polarity location, impact, 347
source stack, 348, 349, 350, 353, 444
stabilization of values, 346, 451-452
static anomaly, impulse response, 344-345
subsurface binning, 346
traveltime equations, 344
wavelet maps, 350
communication between technical specialists, 8, 483-484
compaction effects, velocity, 16-17, 19, 70
complex areas/overburden, 239, 263, 267-268, 355-357,
 381, 385, 386, 390, 391, 439, 441, 459
composite time-distance curves, 212
compressional and shear waves
datum statics, comparison, 64-65
near-surface velocity ratios, 25
conjugate gradient method, 366
consolidated rocks, velocity, 25
constant replacement velocity for statics scan, 70, 498
contoured surface (datum), 45
convergence, residual static analysis, 376-377, 398, 399, 401, 404
converted-wave surveys
 common conversion point (CCP), 65, 444-445
datum static corrections, 7, 65-67, 261-262
receiver stacks, 66-67, 444
refraction surveys, 244
residual statics, 443, 444-445
see also shear-wave surveys
cooling function/rate (schedule), 398-399, 401
corrections/adjustments
 gravity & magnetic surveys, 80-81
 refraction surveys, 177-182
uphole surveys, 104, 116-117
correlation
 coefficient (crosscorrelation), 333, 364-365, 387, 391
 horizon times & static profile, 486-497
 static corrections; see trim static corrections
 surface & subsurface features, 418, 468, 470, 487-490, 491-493, 494
time surface, 416
see also crosscorrelation; interpolation, near-surface layers
coupling, ground; see ground coupling
critical
 angle, 143, 144
distance (refraction arrivals), 146, 216, 227
crooked-line surveys
 binning (subsurface), 328, 346, 353, 382, 385, 441
cross-line dip, 330, 346, 353, 382, 385, 473
migration, 316
mis-ties, influence, 504
raypaths, near-surface layers, 262
refracted raypaths, non-commonality, 169, 180, 223
refraction arrival-time adjustments, 180
refraction crosscorrelations, 168, 169, 170
refraction interpretation, 223-225
structural time shifts (intrabin), 382, 385, 441
subsurface binning, 328, 346, 353, 382, 385, 441
crosscorrelation
 averaging procedure, 168, 335
 common-surface-location (prestack) method, 334, 335-337, 338
 common-surface-stack method, 344, 345, 346, 347
correlation coefficient, 333, 364-365, 387, 391
 cycle skip, 332, 338, 347, 387, 394, 454, 455, 456
near- & far-offset sections, 418-419, 422-423
pick selection, 332
picking errors, 331-332
refraction arrival-time picking, 166-170
reversed polarity location, 333
simulated annealing, 399-400
stack power methods, 393
summation, 392-393
time-bandwidth product, 331, 385
timing accuracy, 333, 387
trim static corrections, 441
weighting schemes/factors, 333, 336, 364-365, 387, 391
crosscorrelation procedure, common-midpoint-based method, 387-393
common-surface stack, 391-392
model (pilot, reference) trace, 387, 388-392
residual moveout estimation, 392-393
summation of crosscorrelations, 392-393
time shift, maximum allowable, 387
weighting factor, 387, 391
cross-domain leakage, 281, 294, 344, 346, 347, 349, 364, 370, 395, 420, 444
cross-equalization, 502, 504
crosshole surveys, 127, 130-131
cross-line control (structural component), 410, 413-414
dimension, near-surface layer raypaths, 262
poststack statics, 416
statics; see seam statics
water-bottom dip, 62, 227, 262-263
crossover distance, 144, 146, 147, 150, 151
crossover, genetic algorithm, 406
crossplots
 formation velocity, estimation, 70, 93
 near-surface velocity, estimation, 16-17, 70, 93, 233-234, 474, 475, 494, 496
 refraction arrival-time picking, 163
 sand compaction velocity, estimation, 16-17, 70
 crystallization point, 398, 401
cumulative profile, common-surface-location methods, 337-341, 344, 346, 347
curved raypaths, refraction, 149-150, 207, 220-221, 222
curves, composite time-distance, 212
curves, time-distance for layered media, 145-152
cycle skip
crosscorrelation, 332, 338, 347, 387, 394, 454, 455, 456
 impulse response, 457, 465
 residual static correction profile, 354, 454, 456-457
 seismic data, 11, 287-288, 327, 354, 387, 457, 461-470, 473
data acquisition
LVL surveys, 153-156
mis-ties, influence, 502-503
refraction data, reflection survey recording, 156-157
refraction surveys, 152-159
shallow reflection surveys, 72-74
uphole surveys, 104, 106-111
weathering surveys, 153-156
see also array; marine surveys; source; receiver
data base, near-surface information, 88, 93-94
data conditioning/preprocessing, residual statics
azimuthal velocity variation, 381, 385, 407, 408
common-midpoint-based method, 379-384
common-surface-location methods, 335, 345
cross-line dip, 382
deconvolution, 380
dip moveout (DMO), impact on estimation, 335, 356, 380-381, 397, 418
filter (bandpass), 333, 380, 382-384
Monte-Carlo techniques, 396
multichannel processes, 384
normal moveout correction, 380-381, 397, 418
prestack depth migration, 356-357, 384, 391
scaling, 384
3-D surveys, 407
trace envelope, 333, 384
data processes, static shift/error impact
array forming, 311-312
dip moveout (DMO), 312, 314, 316
f-k domain processes, 311, 312
migration, 315-316
multichannel, 311
multiple attenuation, 312, 317
noise attenuation, 311-312
poststack, 310-311
prestack, 310, 311
single channel, 310-311
stack response, 314-315
time-varying spreadlength implications, 315
data processing
common-surface-stack method, flow, 345-346
limitations and effect of static corrections, 255-259
mis-ties, influence, 504-505
residual static corrections, flow, 326-327
sensitivity to errors in static corrections, 310-316
see also data conditioning/preprocessing, residual statics
data selection, residual static analysis
common-midpoint-based method, 384-387
common-surface-location methods, 335, 345
3-D surveys, 407
time window specifications, 385-387
data storage, near-surface information, 93-94
data volume (3-D), partitioning of, 407
dataum, floating; see floating datum
dataum plane; see reference datum (plane)
dataum, reference; see reference datum (plane)
dataum shift
interval velocity impact, 302-303
stacking velocity impact, 301-303
dataum static corrections
accuracy requirements, 68; see also data processes, static shift/error impact
basic principles/concepts, 4, 10-11, 39-41
buried receivers, 55-57
compressional & shear waves, comparison, 64-65
computation, formulas, 53-59
constant replacement velocity for statics scan, 70, 498
converted-wave surveys, 7, 65-67, 261-262
cycle skips, 354, 387, 457, 461-470
data base, near-surface information, 88
data processes, static shift/error impact, 310-316
deeple hole dynamite surveys, 55-59
elevation correction, 40-41, 43-44, 53-64, 59, 74-75, 242-243, 257
elevation correction method, 70
even in, 241-244, 310, 432, 452, 457, 461-470
floating dataum, partition of values, 46-48, 301
formulas for computation, 53-59
interpretive decisions, 7, 483
intra-array static corrections, 7, 14, 17, 18-19, 65, 158-159, 258, 277, 311, 454
land streamer, 42
location of computation, 42, 68-69
marine surveys, 59-64
mean values, 46
mis-ties (line ties), 52-53, 90, 93, 453, 472-473, 503
near-surface data base information, 88
near-surface layers, time-variant changes; see near-surface layers, time-variant changes
near-surface raypaths, vertical/nonvertical, 62, 63, 66, 92, 256-263, 268-269, 278, 301, 314, 318-319, 427-428, 434, 439-441, 444
partition of values, before/after NMO, 46-48, 301
receivers, 53-57
shear-wave surveys, 42, 64-67
sign convention, 40, 324
source at surface, 53-54
source, deep-hole surveys, 55-59
subwater-bottom features, 62-64
surface-consistent values, 41, 256, 257, 260, 268, 326, 382, 414, 438, 439
velocity analyses, impact on, 47-48, 301-310
water-bottom recording, 42, 60
weathering correction, 40-41, 53-56, 58-59, 61, 74-75, 243, 257
see also static corrections
datum velocity; see replacement velocity

datuming; see wave-equation datuming
datuming, use in interpretation, 505
decomposition, refraction arrival times, 221, 226
decomposition, traveltime equations
 component estimation order, 376, 420
 conjugate gradient method, 366
 convergence criteria, 376-377
 cross-domain leakage, 364, 370, 420
 cross-line dip, 358-361, 376
 cross-line statics; see seam statics
decoupled solution, 366-368, 408, 410-414, 458, 473
domain-averaging approach, 331, 377
 Gauss-Seidel method, 362, 370-377
general linear inverse methodology, 365-366
geophysical constraints, 364
high grading scheme, 376, 379, 452
impulse response, static anomaly, 374, 379
independent solutions; see decoupled solution
Jacobi method, 370, 373, 374, 378, 379
jitter, trace-to-trace, 366-367, 408, 413
leakage, cross domain, 364, 370, 420
least-squares solution, 361-362, 364-365
long-wavelength capability, 365-366, 376, 378, 420-421
matrix formulation, 365
non-uniqueness, 358, 360, 361
number observations/unknowns relationship, 358-361
residual moveout impact, 360, 363-364, 366, 370, 376, 378, 458
seam statics, 367, 368, 408, 410-414, 458, 473
stabilization of values, 372, 376
static anomaly, impulse response, 374, 379
structural component, 360, 361
wavelength dependent conversion rate, 372, 376
weighting schemes, 364-365
zero mean approach, 364, 377-379
zigzag pattern, 366-368
deconvolution
 inversion, velocity variations, 432
 mis-ties, influence, 504
 surface-consistent, 328, 380, 446-448
decoupled solution, traveltimes' decomposition, 366-368, 408, 410-414, 458, 473
deep anomalies, 14, 308, 309, 317-319, 326, 427-428, 432-433, 487-489, 491
deep-hole dynamite surveys, 14, 41, 55-59, 67, 103, 106, 110, 131, 133, 135, 368, 445, 454, 455
deep-water recording, 22, 89, 92, 227-228, 259-260, 262, 266-267, 271, 274, 414, 438-439
definition, static corrections, 1-2
delay time
 concept, 183, 187-189
intercept time, 187, 201-205
near-surface velocity estimation, crossplot analysis, 233-234
receiver, 187
reduced traveltime, 159, 169, 188-189, 201
refraction interpretation techniques, 179, 200-206, 230
refractor offset distance, 189, 195, 201-203, 205-206, 229-230
refractor velocity computation, 203-204, 230
source, 187
delayed start to recording, 59, 89
Delphi survey, static corrections, 3-4, 7
delta (river) features, 18
deposition, time-variant near-surface changes, 23-24
depth
 conversion; see time-to-depth conversion; refraction surveys, depth conversion
dependent static corrections, 257, 261, 262, 318, 438; see also dynamic (ray-traced) static corrections; wave-equation datuming
migration; see depth migration
- near-surface velocity ambiguity, 75, 124-125, 183, 191, 231, 238-239, 242, 428
section, comparison with time section, 10, 43, 44
see also velocity–depth model
depth migration
 poststack, 267
 prestack, 6, 267-268
 prestack, residual static analysis, 356-357, 384, 391
Descartes' law, 143
design gate, residual statics; see data selection, residual static analysis
detonator shield, 108
differential residual statics estimation
 common-offset-based method, 394-395
 common-surface location (prestack) method, 334, 335-337
dip moveout (DMO)
 residual statics estimation, impact of, 335, 356, 381, 384, 385
 static shift/error impact, 312, 314, 316
direct arrivals, arrival-time adjustments, 178, 180
direct arrivals, refractor depth conversion velocities, 232-233
dispersion curve, 79
displacement (distance), 189; see also refractor offset distance
display
 data above seismic datum, 45
 floating (intermediate) datum, 45
gain, effect on uphole breaks, 113
near-surface information, 45, 49, 90-93, 484, 490
reduced traveltime, 188-189
Index

refraction picks, 170-177
residual statics, 92-93, 407-408, 452
side label, 93, 484, 490
time-depth, uphole survey, 104, 117-122
time-distance, 172
diving waves, 220, 222
Dix formula, 236
domain-averaging approach, 331, 377
double layer weathering, 12
downhole-crosshole surveys, 127
downhole survey, 104, 110-111; see also uphole surveys
downward continuation, 257, 263-266; see also wave-equation datuming
procedure, refraction interpretation, 214, 218-219
drilling process, alteration of borehole, 69, 103, 110, 121-122
dual recording spreads, shallow & deep data, 72, 417
dual recording, vibroseis data, 72, 166
dual static correction method; see floating datum
dynamic or static corrections?, 4, 6, 257, 319; see also dynamic (ray-traced) static corrections;
vertical/nonvertical near-surface raypaths; wave-equation datuming
dynamic (ray-traced) static corrections, 268-274, 356, 437-438, 441, 444
poststack approach, 274, 489
dynamite charge, effect on near surface, 14, 53
dynamite (deep hole) surveys; see deep-hole dynamite surveys
earthquakes, time-variant near-surface changes, 24
electrical methods
electromagnetic (EM), 84-86
induced polarization, 84
interpretation, 82
magnetotelluric (MT), 86
resistivity, 83-84
electromagnetic method (EM), 84-86
elevation correction
method, 70
reflection data, 40-41, 43-44, 53-56, 59, 74-75, 242-243, 257
refraction data, 180, 181-182, 201, 211
elevation velocity; see replacement velocity emergent point
alignment, Gardner method, 201-203
analysis, refraction data, 183
emergent wavefront/ray, 143-144, 212-217, 217-218
end-to-end time, 148
energy variations, refraction arrivals, 162-163
envelope, trace, 333, 384
equations
datum static corrections, computation, 53-59
overdetermined, refraction interpretation, 220
residual static corrections; see traveltime equations; decomposition, traveltime equations
erosion, time-variant near-surface changes, 23
error impact/errors
crosscorrelation picks, 331-332
data processes, static shift impact, 310-316
datum static corrections, 241-244, 310, 432, 452, 457, 461-470
elevation correction, 43-44
long-wavelength statics, 484, 485-486, 497-500
observational, 118-119, 231, 239
reflection surveys, interval velocity, 236, 237
refraction surveys, velocity, 169, 170, 242-243
refractor depth profiles, 142, 150-151, 238-243
replacement velocity, 43-44, 92, 243, 490, 494, 499-500
residual static corrections, 484, 485-486, 497-500
faulted interface, time-distance curve, 152
feathered streamer, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
filter (bandpass), 333, 380, 382-384
firm, 30
first break/arrival
intercept-time method, 252
picking, 160, 161, 162
time surface, 176
times, conversion to, 177
fitness, genetic algorithm, 405, 406
f-k domain processes, static shift/error impact, 311, 312
flattened section, use in interpretation, 505
floating datum, 8, 45-48, 261, 301, 314
computation, 45-48
display, 45
spreadlength, time-varying implications, 47
static corrections (datum), partition of, 46-48, 301
velocity analysis, implications, 47-48
formation velocity, crossplot estimation, 70, 93
4-D surveys; see time-lapse surveys
frequency (bandwidth)-dependent residual statics, 449, 471
future trends
dynamic or static corrections?, 6
marine surveys, 6-7
multicomponent surveys, 7
near-surface (velocity–depth) model, 6
noise attenuation, 7
residual static corrections, 7
Index 515

wave-equation datuming, 6

Gardner method, 200-206, 252
depth conversion, 205-206
emergent point alignment, 201-203
intercept-time profile calibration, 204-205
refractor offset distance, 201-203, 205-206, 229-230
refractor velocity computation, 203-204
gas (air), impact on water/mud velocity, 27-28
Gauss-Seidel method, traveltimes' decomposition, 362, 370-377
genetic algorithms, 405-406, 421-422
crossover, 406
fitness (objective function), 405, 406
long-wavelength capability, 406, 421-422
mutation, 406
parameter coding, 405
selection (reproduction), 405, 406
temperature, 406
geologic analysis, 106-107, 123
geologic weathering (chemical/physical processes), 12-14
generalized linear inversion (GLI) methodology, 365-366
time-depth values, 195, 196-198, 199
refractor velocity estimate, 192, 193
wavefront analysis, 217-218
Hales' method, 252
head wave, 143
heat-bath method, 399-401
hidden layer, 149, 150-152, 200, 206
high grading scheme
averaging crosscorrelations, 336
time-depth values, 376, 379, 452
high (spatial) frequency
residual statics; see residual static corrections
static anomaly, 275-277
historical background, 2-4, 325
hole-to-hole surveys, 127, 130-131
hole-to-surface surveys, 127-130
horizon-dependent velocity analysis, 428
horizontal plane (datum), 45
time sections, 3-D residual statics, 408, 412, 414, 416
horizontal-to-vertical near-surface velocities, 31-32, 233, 237, 241
human activity, time-variant near-surface changes, 24
Huygens’ principle, 142
hydrophone, 111, 153
ice movement, time-variant near-surface changes, 23
ice, velocity, 30-31
igneous rocks, velocity, 25
impulse response
cycle skip, 457, 465
stacking velocity, 305, 308, 432, 433
static anomaly, 281, 344-345, 374, 379, 431-433
incident wavefront/ray, 142-143
independent solutions, traveltimes' decomposition; see decoupled solution, traveltimes' decomposition
induced polarization method, 84
inflection point picking technique, 161, 162, 163
integrated profile; see cumulative profile, common-surface-location methods
integration, near-surface data/information, 86-88
interactive approach, refraction arrival-time picking, 170
interactive modeling, stacking velocities' inversion, 429
intercept time, 145, 147, 148, 185, 187, 200, 201-205; see also reduced traveltimes
profile calibration, Gardner method, 204-205
method, 185-187, 229, 230, 252
intermediate datum; see floating datum
interpolation, near-surface layers, 4-5, 49-53, 68, 86, 103, 111-112, 123-125, 141
interpretation
datum statics, decisions taken, 7, 483
electrical surveys, 82
gravity & magnetic surveys, 81-82
line ties, 52-53, 419, 453, 472-473, 500-502
mis-ties, 52-53, 90, 93, 453, 472-473, 500-505
refraction surveys; see refraction surveys, interpretation
seismic; see seismic interpretation
surface wave dispersion, 79-80
uphole surveys; see uphole surveys, interpretation
interval velocity
anomaly, impact of, 303-309, 432-433
computation, 118, 234, 236, 237, 427, 428
datum shift impact, 302-303
Dix formula, 236
formation velocity, estimation, 70, 93
mud/water invasion, impact, 121, 493
water saturation effect, 25, 121-122
see also near-surface velocities; velocity
intra-array static corrections, 7, 14, 17, 18-19, 65, 158-159, 258, 277, 311, 454
invaded zone, 105, 110, 111, 121
inversion techniques
general linear inverse methodology, 365-366
generalized linear inversion (GLI), 219-220, 226, 230, 433-437
refraction data, 219-220, 226, 230
residual static corrections, 423-424, 427-438
stacking velocities, for residual statics, 427-433
surface wave dispersion, 79-80
tomography, 129-131, 221-222, 226, 437
see also refraction surveys, interpretation
isotime (isochron), 287, 289, 505-506
iso-velocity surface, 43, 49
Jacobi method, traveltimes’ decomposition, 370, 373, 374, 378, 379
jitter, trace-to-trace, 366-367, 408, 413
karst limestone, 17, 18-19

land
marines surveys, consistent treatment with, 64
see also array; converted-wave surveys; crooked-line surveys; data acquisition; ground coupling; receiver; shear-wave surveys; source
layer replacement, 263-267; see also wave-equation datuming

layer stripping, 43, 505
leakage, cross-domain, 281, 294, 344, 346, 347, 349, 364, 370, 395, 420, 444
least-squares solution
refraction interpretation, 220, 222
residual statics, traveltimes’ decomposition, 361-362, 364-365
leg jump; see cycle skip
limitations, refraction interpretation techniques, 228-231
line (section) ties, 52-53, 419, 453, 472-473, 500-502
lithology, uphole surveys, 69, 106-107
load effect on near-surface features, 43
local/global solution, residual statics, 327, 354, 394, 395, 451, 459, 471
location, datum statics computation, 42, 68-69
loess deposits/topography, 17, 18
long-wavelength residual static corrections
common-midpoint-based methods, 365-366, 376, 378, 420-421
common-surface location (prestack) method, 341, 343, 419
common-surface-stack method, 346, 347, 419-420
cross-domain leakage, 347, 420
deconvolution, inversion of velocity variations, 432
depth domain approach (very long wavelengths), 68, 277, 484
dual recording spreads, shallow & deep data, 72, 417
dual recording spreads, shallow & deep data, 72, 417
errors in, 484, 485-486, 497-500
generalized linear inversion, 433-437
genetic algorithm, 406, 421-422
interactive modeling, 429
interval velocity anomaly, impact of, 432-433
inversion techniques, 423-424, 427-438
leakage, cross domain, 347, 420
near- & far-offset sections, crosscorrelation, 418-419, 422-423
near trace & full fold stack, comparison, 424-427
normal moveout corrections, 418
partial-offset stacks, comparison, 418-419, 422-427
permafrost anomaly examples, 421, 427, 429, 438
prestack reflection times, inversion, 433-438
QC, 417-418, 429, 451, 455-456, 471-472; see also quality control
recognition/diagnostics, 418, 486
sensitivity analysis, 343, 346, 419, 427, 429, 472, 497-500
separate-surface stacks, comparison, 418-419, 422-427
simulated annealing method, 418-419, 422-427
stack power method, 397, 405, 421-422
stacking velocities, inversion, 427-433
structural time, impact on, 277, 328, 417-418, 455, 471-472, 485
3-D surveys, 410, 416
time-varying spreadlength effect, 418, 425, 427
tomography, 437
velocity analysis, continuous, 301, 428, 471-472
velocity-depth ambiguity, 428
X2-T2 analysis, 429, 432
long-wavelength static anomaly, 275-277
Love wave, 78
low (spatial) frequency
residual statics; see long-wavelength residual static corrections
static anomaly, 275-277
low-velocity layer (LVL); see weathered layer
LVL surveys, 153-156
interpretation methods, 155, 229
magnetic surveys, 80-82
magnetotelluric method (MT), 86
manual picking, refraction arrivals, 160-161
marine surveys
binning (subsurface), 328, 353, 354, 364, 382, 385
binning (surface), 228, 327, 364, 413
cross-line dip, 353, 382, 385
datum static corrections, 59-64
deep water, 22, 89, 92, 227-228, 259-260, 262, 266-267, 271, 274, 414, 438-439
delayed start to recording, 59, 89
elevation correction, 59
feathered streamer, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
land surveys, consistent treatment with, 64
near-surface, displays, 92-93
near-surface layers, time-variant changes, 22-24, 60
ocean swell, 23, 60
recording system delays, 59, 89
refraction interpretation, 227-228
residual static corrections; see residual static corrections; 3-D surveys, residual static corrections
sand waves, 24
shear-wave surveys, residual statics, 445
slant cable method, 60
source initiation time delay, 59, 89
sources, shallow reflection surveys, 74
static corrections, future trends, 6-7
streamer feathering, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
structural time shifts (intrabin), 382, 385, 407
submarine canyons, 9, 266-267, 271, 274
subsurface binning, 328, 353, 354, 364, 382, 385
subwater-bottom features, 62-64, 153, 227
surface binning, 228, 327, 364, 413
swell, 23, 60
tidal changes & corrections, 23, 60
uphole surveys, 106, 111
water-bottom recording, 42, 60
water-bottom topography, 9, 61-62
water depths, 62, 227, 262-263, 266, 270, 474
water layer, 9, 15, 22
weathering correction, 59, 61
see also dynamic (ray-traced) static corrections;
vertical/nonvertical near-surface raypaths; wave-equation datuming
marker horizon, use in interpretation, 43, 484, 505-507
masked layer, 150
matrix formulation, travelt ime equations, 365
mature topography, 15, 19-20; see also near-surface layers, time-variant changes
maximum allowable time shift, 387
mean datum static corrections, 46
Meissner technique, 127-129
metamorphic rocks, velocity, 25
method of differences, 189-191
Metropolis algorithm, 397, 398
migration
crooked-line recording, 316
depth, 6, 267-268
mis-ties, influence, 504
refraction profiles, 199, 237-238
static shift/error impact, 315-316
zero-velocity layer, 314, 316
Mintrop wave, 143
minus times, 192-193, 217, 218
miscellaneous time-invariant time shifts, 88-90
mis-ties, 52-53, 90, 93, 453, 472-473, 500-505
data acquisition factors, 502-503
data processing factors, 504-505
static correction factors, 503-504
time variant, 473, 500
see also near-surface layers, time-variant changes
model-based dynamic time shifts; see dynamic (ray-traced) static corrections
model trace, common-midpoint-based method, 331, 386, 387, 388-392, 407
common-surface stack, usage, 391-392
large residual statics, 327, 388, 390
prestack depth migration, 384, 391
residual moveout impact, 389-390
structural time shifts/trim statics, intrabin, 382, 384, 389, 390, 392, 407, 441
monitoring surveys; see time-lapse surveys
Monte-Carlo techniques, 395-406, 421-422
data conditioning/preprocessing, 396
genetic algorithms, 405-406, 421-422
global/local solution, residual statics, 395
large residual statics, 395-396
simulated annealing method, 396-405, 421-422
mountain front topography, 21-22, 88, 230; see also near-surface layers, time-variant changes
moving averages technique, 228
mud lumps, 18
mud/water invasion, velocity impact, 121, 493
muds, velocity, 18, 26-29
multichannel processes, data conditioning/preprocessing, 384
multichannel processes, static shift/error impact, 311
multicomponent surveys, 7; see also converted-wave surveys; shear-wave surveys
multiples
attenuation of, 312, 317
near-surface information, potential, 76
static shifts/error impact, 312, 317
multiplexer (skew) corrections/delays, 88, 89-90, 309-310
muskeg, 18
mutation, genetic algorithm, 406

near-surface corrections, refraction surveys
Blondeau method, 206, 208, 210
delay time (Gardner) method, 201
elevation/weathering correction, 180-182, 201, 211
generalized reciprocal method (GRM), 196
wavefront method, 211
near-surface geology; see near-surface layers
near-surface information, data storage, 93-94
tape format standards, 89, 94
near-surface information, display, 45, 49, 90-93, 484, 490
side label, 93, 484, 490
near-surface layers
attenuation in, 14
data base, 88, 93-94
data integration, 86-88; see also near-surface model, sources of information
deep anomalies, 14, 317-319, 326, 487-489, 491
display of information, 45, 49, 90-93, 484, 490
dynamite charge, effect of, 14, 53
interpolation approach/requirements, 4-5, 49-53, 68, 86, 103, 111-112, 123-125, 141
intra-array statics, 7, 14, 17, 18-19, 65, 158-159, 258, 277, 311, 454
irregularities, 14-22
load effect on near-surface features, 43
model generation, 86-88; see also near-surface model, sources of information
Q in, 14
raypaths in, reflection versus refraction, 172, 180, 328, 395, 450, 451
residual statics, update of, 88, 397, 455-456, 473-477, 490, 493-497
seismic characteristics, 14
subweathered layers (subweathering), 12, 14, 15, 19, 20, 88
time-variant changes; see near-surface layers, time-variant changes
topography; see near-surface topography
undersampling, 5, 9, 49, 67, 231, 452
velocities; see near-surface velocities
velocity-depth model, 6, 267-268, 269, 356, 434, 441
vertical/nonvertical raypaths, 62, 63, 66, 92, 256-263, 268-269, 278, 301, 314, 318-319, 427-428, 434, 439-441, 444
weathered layer (weathering), 4-5, 11-15, 17-19, 39-40, 53-59, 62, 262, 263, 278-279
see also refraction surveys; uphole surveys
near-surface layers, time-variant changes
deposition, 23-24
earthquakes, 24
erosion, 23
human activity, 24
ice movement, 23
precipitation/rainfall, 22-23, 121-122
swell, 23, 60
temperature, 22, 23
tides, 23, 60
volcanic activity, 24
wind, 16, 23
near-surface model, sources of information
data base, 88
electrical methods, 82-86
geologic information, 87
ghost reflections, information content, 76
gravity surveys, 80-82
ground-penetrating radar (GPR), 76-78
magnetic surveys, 80-82
multiples, information content, 76
refraction surveys, 68, 69-70; see also refraction surveys
shallow reflection surveys, 70-75
surface wave dispersion, 78-80
uphole surveys, 68, 69; see also uphole surveys
velocities; see near-surface velocities
see also near-surface layers; near-surface information, display
near-surface topography
complex, 21-22
irregular bed-rock, 17, 18
mature, 15, 19-20
mountain front, 21-22
permafrost, 20-21
reflection times, impact on, 10-11
sand dunes, 16-17
water bottom, 9, 61-62
weathered layer, 11-14, 17-19
youthful, 15, 19
see also near-surface layers; near-surface layers, time-variant changes; near-surface velocities
near-surface velocities
anisotropy, 31-32, 233, 237, 241
compaction effects, 16-17, 19, 70
compressional- to shear-wave ratios, 25
consolidated rocks, 25
crossplots, derivation of, 16-17, 70, 93, 233-234, 474, 475, 494, 496
errors, refractor depth impact, 242-244
firm, 30
gas (air), impact on water/mud velocity, 27-28
horizontal-to-vertical, 31-32, 233, 237, 241
ice, 30-31
igneous rocks, 25
metamorphic rocks, 25
muds, 18, 26-29
permafrost, 31
- (refractor) depth ambiguity, 75, 124-125, 183, 191, 231, 238-239, 242
refractor depth conversion, use in, 231-236
sand compaction curve, 16-17, 70
dedimentary rocks, 25
shear waves, 25-26, 30-31, 32, 64, 65
snow, 30
unconsolidated sediments, 25-26
undersampling, 231, 242
water, 29-30
water saturation effect, 25, 121-122
negative reflection times, 45
neural networks, refraction arrival-time picking, 163
noise attenuation
array forming, 7, 17, 19, 311-312
field arrays, 157, 311
static shift/error impact, 311-312
noise-free window, shallow reflection surveys, 72
non-commonality, refracted waves/raypaths, 169, 180, 223, 225
nonsurface-consistent residual statics, 438-441
non-uniqueness
reflection traveltine decomposition, 358, 360, 361
refraction interpretation, 69, 142, 183, 220, 222, 228-229, 241
see also near-surface velocity and refractor depth ambiguity
normal moveout corrections
azimuthal velocity variation, 381, 385, 407, 408
hyperbolic relationship, 44-45, 263, 271, 299-300, 301
partition datum statics, before/after NMO, 46-48, 301
residual static analysis, 380-381, 397, 418
see also stacking velocity; stacking velocity, static shift/error impact; velocity analyses
objective function, 397, 405, 406
objectives
residual statics (fine tuning), 68, 111-112, 255, 323, 451, 465
survey, 5, 67-68, 87, 111-112, 242, 474, 483
Occam’s razor, 87, 231
offset
dependent raypaths (traveltimes), near-surface layers, 256-260, 262
dependent static corrections, 259-260, 318
dual recording spreads, shallow & deep data, 72, 417
near- & far-offset stacks, crosscorrelation, 418-419, 422-423
near offset (trace) & full stack, comparison, 281, 282, 284, 342, 350, 363, 424-427, 465, 470; see also partial-offset stacks
optimum window/offset recording, shallow reflection surveys, 72
ordered display, 172, 282
panel, 171, 282
partial-offset stacks, 292-296, 418-419, 422-427, 458, 486
range, refraction surveys, 152, 153, 155, 157, 227
recording, uphole surveys, 119-121, 122, 125, 127-130
refractor offset distance, 189, 195, 201-203, 205-206, 229-230
restricted- (selective-) offset stacks, 293
variant residual statics, 328, 407, 439-440, 471
VSP, 125
offset source locations
binning (subsurface), 328, 329, 346, 353
correction, refraction surveys, 179-180
cross-line dip, 346, 353, 376
raypaths in near-surface layers, 262
refracted raypaths, non-commonality, 169, 180
refraction analysis, 169, 223
one-step method, 399-401
optimum offset (window) recording, shallow reflection surveys, 72
overdetermined equations, refraction interpretation, 220
overspecified equations, traveltimes, 361
parallelism, law of, 153, 155, 212, 223
parameter coding, genetic algorithm, 405
partial-offset stacks, 292-296, 418-419, 422-427, 458, 486
partitioning, 3-D data volume, 407
pattern recognition, refraction arrival-time picking, 161, 163
permafrost
electrical surveys, definition by, 82, 84, 86
pull-up (reflection time), 20, 489, 499
residual static examples, 421, 427, 429, 438
SH-wave reflection surveys, 71
time-to-depth conversion, 21, 489
topography, 20-21; see also near-surface layers, time-variant changes
transition zone at base, 21, 437
uphole surveys, 122
velocity, 31
phase corrections
 bandwidth (frequency)-dependent residual statics, 449, 471
deconvolution, 328, 380, 446-448
surface-consistent, 328, 331, 445-449
phase rotation, 446, 448
physical processes, geologic weathering, 13
picking arrival times; see refraction surveys, arrival-time picking; uphole surveys, arrival times
pilot trace, 387, 388-392; see also model trace, common-midpoint-based method
plus/minus times, 192-193
refractor velocity estimate, 192, 193
plus times, 192, 217, 218
positioning, errors in, 503
poststack
depth migration, 267
dynamic (ray-traced) static corrections, 274, 489
layer replacement, 267
processes, static shift/error impact, 310-311
static corrections, 3-D surveys, 414, 416, 441
precipitation, time-variant effect on near surface, 22-23, 121-122
prediction approach, refraction arrival-time picking, 163
preprocessing, residual statics; see data conditioning/preprocessing, residual statics
prestack
depth migration, 6, 267-268
depth migration, residual static analysis, 356-357, 384, 391
processes, static shift/error impact, 310, 311
reflection times, inversion of, 433-438
see also data conditioning/preprocessing, residual statics; wave-equation datuming
principal trace planes, 290, 329, 334, 344
probability distribution, 398, 399-400
production uphole (time), 103, 131, 133, 135
pull-up, permafrost anomaly, 20, 489, 499
pulse shape/amplitude variations, 114-116, 157-159, 166
Q in near-surface layers, 14
quality control (QC)
CMP gathers, 387, 457, 459, 460-461
common-surface location (prestack) method, 342, 455, 456, 471
common-surface-stack method, 348, 349-350, 459-460
crosscorrelations, summation, 392
cycle skips, 454, 456-457, 461-470, 473
dataum statics, errors in, 452, 457, 461-470
interpreters' role, 490
long-wavelength corrections, 417-418, 429, 451, 455-456, 471-472
mis-ties (line ties), 453, 472-473, 503-504
model-trace improvements, 451, 452
near-surface layers (geology), reconciliation with, 455-456, 473-477, 490, 493-497
reflection time patterns, 256, 277, 289, 342, 349-350, 363, 458, 460
refraction arrival times/picks, 163-164, 170-177
residual moveout, impact, 453, 458, 465, 471
residual statics, profile analysis, 452-457
residual statics, reversed polarity locations, 455, 456
residual statics, seismic data analysis, 457-472
stabilization of residual static values, 451-452
stack response change/improvement, 451, 457, 459, 465
stacking velocity profiles, 421, 429, 432, 442, 459, 471-472
structural time impact, 451, 455, 471-472
surface & subsurface features, coincidence, 418, 468, 470, 487-490, 491-493, 494
3-D data recording, refraction arrivals, 70, 159, 176-177
time-varying spreadlength, impact, 458, 473
trim static corrections, 441
velocity analysis, continuous, 470, 471-472
quenching, 399, 405
radial sector statics, 440
rainfall, time-variant effect on near surface, 22-23, 121-122
Rayleigh wave, 78-79
raypath
(angle)-dependent residual statics, 328, 440
angle-dependent static corrections, 259, 261
near surface, reflection versus refraction, 172, 180, 328, 395, 450, 451
Index

near surface, vertical/nonvertical, 62, 63, 66, 92, 256-263, 268-269, 278, 301, 314, 318-319, 427-428, 434, 439-441, 444
refraction corrections, uphole surveys, 117, 119-121, 122
refraction, sonic surveys, 105
techniques, refraction interpretation, 216-217
ray-traced static corrections; see dynamic (ray-traced) static corrections
receiver
array, effect on refraction arrival, 157, 158-159
binning (surface), 228, 327, 364, 413
buried, 3, 14, 18, 55-57, 110, 111, 485
datum static corrections, 53-59
delay time, 187
differential residual statics, estimation, 334, 335-337
feathered streamer, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
ground coupling, refraction arrivals, 157, 158
hydrophone, 111, 153
land streamer, 42
mis-ties, influence, 502-503
ordered displays, 171, 172, 176
refraction surveys, 152, 153, 157, 158-159
shallow reflection surveys, 72
source-to-receiver azimuths 179, 180, 330
stack, converted-wave surveys, 66-67, 444
stack, reflection times, 281, 282
stack, refraction data, 160, 168, 172
streamer feathering, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
surface binning, 228, 327, 364, 413
uphole phone (geophone), 3, 53, 131
uphole surveys, 110, 111
water-bottom recording, 42, 60
reciprocal
method, 252
time, 148
reciprocity, principle of, 148, 265
recording, delayed start to, 59, 89
recording direction based residual statics, 439-440
recording, dual, 72, 166, 417
recording spread, wavenumber response, 422-423
recording system/instrument delays, 89, 177
reduced travelt ime, 159, 169, 188-189, 197, 201; see also intercept time
reference datum (plane), 4, 42-48, 301-303
contoured surface, 45
floating (intermediate) datum, 8, 45-48, 261, 301, 314
horizontal plane, 45
load effect on near-surface features, 43
sloping datum, 44
tilted plane, 45
reference horizon, use in interpretation, 505-507
reference trace, 387, 388-392; see also model trace, common-midpoint-based method
reflection surveys
near-surface raypaths, refraction survey comparison, 172, 180, 328, 395, 450, 451
refraction data recorded, 156-157
refraction interpretation methods, 229-230
refraction survey comparison, 141, 450
see also shallow reflection surveys
reflection (time) patterns
analysis, datum static corrections, 256
near trace & full stack, comparison, 281, 282, 284, 342, 350, 363
offset ordered display, 282
partial-offset stacks, 293-294
QC usage, 256, 277, 289, 342, 349-350, 363, 458, 460
residual moveout impact, 284, 286
separate-surface stacks, 293-294
source-ordered display, 279-282, 342, 349-350, 363
subsurface features, 278, 281-284, 294, 342, 349-350, 363
surface features, 278, 279-286, 293-294, 342, 349-350, 363
reflection times, impact of topography, 10-11
reflector (depth) dependent static corrections, 257, 261, 262, 318, 438; see also dynamic (ray-traced) static corrections; wave-equation datuming
refracted wavefront/raypath, 142-144
refracted waves/raypaths, non-commonality, 169, 180, 223, 225
refraction across an interface, 142-143
refraction surveys
arrival-time adjustments, 177-182; see also near-surface corrections, refraction surveys
arrival-time picking, 159-170
arrival times, display, 170-177
arrivals, shape/amplitude variations, 157-159, 166
converted waves, 244
data acquisition, 152-159
depth conversion; see refraction surveys, depth conversion; refraction surveys, depth conversion velocities
interpretation; see refraction surveys, interpretation
near-surface raypaths, refraction survey comparison, 172, 180, 328, 395, 450, 451
observational errors, 231, 239
QC, 3-D data recording, 70, 159, 176-177
reflection survey comparison, 141, 450
refractor velocity; see refraction surveys, refractor velocity
residual static corrections, 328, 450-451
shear waves, 244
subwater-bottom features, 153, 227
summary, 69-70
time-distance curves, layered media, 145-152
timing requirements (accuracy), 152, 160, 161
see also refraction surveys, basic terminology
refraction surveys, arrivals’ shape/amplitude variations
array impact, 157, 158-159
ground coupling, 157, 158
intra-array statics, 158-159
shingling, 158
thin layers, 158
vibroseis recording, 157, 166
refraction surveys, arrival-time adjustments
array length correction, 179
crooked-line recording, 180
direct arrivals, 178, 180
elevation correction, 180, 181-182, 201, 211
first break times, conversion to, 177
near-surface corrections, 180-182, 196, 201, 206, 208, 210, 211
recording instrument delay, 177
source initiation time delay, 177
source-offset correction, 179-180
source-to-receiver azimuth dependence, 179, 180
surface-to-surface times, 177-179
3-D recording, 180
uphole time, 177-179
weathering correction, 180-181, 182, 201, 211
refraction surveys, arrival-time picking
automated methods, 161-164
crosscorrelation techniques, 166-170
crossplots, 163
display, 170-177
energy variations, 162-163
first breaks/arrivals, 160, 161, 162
inflection point, 162, 163
manual picking, 160-161
neural networks, 163
pattern recognition, 161, 163
prediction approach, 163
receiver stacks, 160, 168, 172
reduced traveltime, 159, 169
second arrivals, 164-166
seismic attributes, 163
shape/amplitude variations, 157-159, 166
source stacks, 160, 172
threshold approach, 162-163
timing accuracy, 152, 160, 161
validation checks, 163-164
vibroseis data, 166-167
refraction surveys, arrival-times pick display
common-surface stacks, 172
first-arrival-time surface, 176
offset-ordered, 172
offset panel, 171
receiver-ordered displays, 171, 172, 176
reduced traveltime, 188-189
source-ordered displays, 171, 172, 176
time-distance displays, 172
refraction surveys, basic terminology
blind zone, 150-152
bow wave, 143
coincident-time curve, 143-144
composite time-distance curves, 212
critical angle, 143, 144
critical distance, 146, 216, 227
crossover distance, 144, 146, 147, 150, 151
delay time, 183, 187-189
displacement (distance), 189; see also refractor offset distance
diving waves, 220, 222
emergent point, 201-202
emergent wavefront/ray, 143-144, 212-217, 217-218
delay-to-end time, 148
head wave, 143
hidden layer, 149, 150-152, 200, 206
Huygens’ principle, 142
incident wavefront/ray, 142-143
intercept time, 145, 147, 148, 185, 187, 200, 201-205
masked layer, 150
Mintrop wave, 143
parallelism, law of, 153, 155, 212, 223
reciprocal time, 148
reciprocity, principle of, 148
reduced traveltime, 159, 169, 188-189, 197, 201
refracted wavefront/raypath, 142-144
refraction across an interface, 142-143
refraction wave, 143
refractor moveout/stepout, 159, 169, 171, 172, 450
refractor offset distance, 189, 195, 201-203, 205-206, 229-230
reversed refraction profile, 148
second arrivals, 146, 164-166
shadow zone, 150
shingling, 158
transmission, refracted waves, 143-144
turning waves, 220, 222
refraction surveys, crosscorrelation techniques, 166-170
crooked-line recording, 168, 169, 170
crosscorrelation function, 167
offset source locations, 169
receiver stack, 168
refracted raypaths, non-commonality, 169
relative arrival-time profile, 168-169
reversed polarity locations, 168, 169
3-D data, 168, 169, 170
velocity error impact, 169, 170
refraction surveys, data acquisition
arrays, 152, 157, 158-159, 166
LVL surveys, 153-156
offset range, 152, 153, 155, 157, 227
receivers, 152, 153, 157, 158-159
reflection survey recording, 156-157
refraction arrivals, shape/amplitude variations, 157-159, 166
sources, 152, 155, 157, 166
timing (accuracy) requirements, 152
weathering surveys, 153-156
refraction surveys, depth conversion
blind zone, 150-152
delay time, 188
dipping interface, 148
errors in, 142, 150-151, 238-244; see also near-surface velocity and refractor depth ambiguity
factor, GRM, 198-199
Gardner method, 205-206
hidden layer, 150-152
migration, refraction profiles, 199, 237-238
multilayer, 149
non-uniqueness, 69, 142, 183, 220, 222, 228-229, 241
refractor depth and near-surface velocity ambiguity, 75, 124-125, 183, 191, 231, 238-239, 242
refractor velocity and shallow velocity ambiguity, 239, 242
two/three layers, horizontal interfaces, 146, 147
velocity control; see refraction surveys, depth conversion velocities
velocity inversion, 150-151, 200, 206
refraction surveys, depth conversion velocities
delay time analysis, 233-234
direct arrivals, 232-233
errors in, 242-244
horizontal-to-vertical velocity conversion, 233, 237, 241
near-surface velocities, 231-236
reflection surveys, 234, 236, 237
refractor velocity, 236-237; see also refraction surveys, refractor velocity
shallower refractor information, 233
uphole surveys, 232, 237
uphole times, 232
refraction surveys, interpretation
ABC method, 189-191, 229, 230, 252
ABCD method, 190-191
applicability of methods, 228-231
arrival-time adjustments, 177-182; see also near-surface corrections, refraction surveys
arrival-time picking, 159-170
Banta method, 252
Barry’s method, 252
Barthelmes method, 252
Baumgarte ray-stretching method, 252
Blondeau method, 206-211, 229, 252
choice of methods, 182-183, 228-231
common emergent point analysis, 183
common-midpoint analysis, 160, 183
common-subsurface-location analysis, 183, 195, 201
common-surface-location analysis, 183, 189, 192, 195
crooked-line surveys, 223-225
crossdip on refractor, 183, 225
decomposition, refraction arrival times, 221, 226
delay time concept, 183, 187-189
delay time techniques, 179, 200-206, 230
depth conversion; see refraction surveys, depth conversion; refraction surveys, depth conversion velocities
downward-continuation procedure, 214, 218-219
errors, refractor depth profiles, 142, 150-151, 238-244; see also near-surface velocity and refractor depth ambiguity
first-break intercept-time method, 252
Gardner method, 200-206, 252
generalized linear inversion (GLI), 219-220, 226, 230
generalized reciprocal method (GRM), 195-200, 229, 230, 252
glossary of methods, 252-253
graphical techniques, 144, 211-215
Hagedoorn (plus-minus) method, 191-195, 217-218, 229, 252
Hales’ method, 252
intercept-time method, 185-187, 229, 230, 252
inversion methods, 219-220, 226, 230
least-squares solution, 220, 222
limitations, 228-231
LVL (weathering) surveys, methods, 155, 229
marine surveys, 227-228
method of differences, 189-191
near-surface complexities handled, 229-231
near-surface velocity and refractor depth ambiguity, 75, 124-125, 183, 191, 231, 238-239, 242
non-uniqueness, 69, 142, 183, 220, 222, 228-229, 241
raypath techniques, 216-217
reciprocal method, 252
reflection survey recording, methods, 229-230
refractor crossdip, 183, 225
refractor identification issues, 221, 229, 239
refractor velocity and shallow velocity ambiguity, 239, 242
Slotnick method, 253
summation method, 253
surface-consistent decomposition, 221, 226
Tarrant method, 253
Thornburgh’s method, 253
3-D surveys, 225-228

time-term method, 221, 226
tomographic methods, 221-222, 226
wavefront methods, 211-219, 230, 253
weathering (LVL) surveys, methods, 155, 229
Wyrobek method, 253

refraction surveys, refractor velocity
decomposition method, 221
delay time technique, 203-204, 230
dipping interface, 147-148
errors in, 242-244
Gardner method, 203-204
Hagedoorn method, 192, 193
intercept-time method, 185-186
plus-minus method, 192, 193
- shallow velocity ambiguity, 239, 242
time-term method, 221
two/three layers, horizontal interfaces, 145-146, 147
velocity analysis function, GRM, 195-198
wavefront methods, 214, 215

refraction surveys, time-distance curves
blind zone, 150-152
curved raypaths, 149-150, 207
dipping interface, 147-148
faulted interface, 152
hidden layer, 149, 150-152
masked layer, 150
multilayer, 148-149
two/three layers, horizontal interfaces, 145-147
velocity increase with depth, 149-150, 206-207; see
also diving waves
velocity inversion, 150-151
refraction theory, 142-144
refraction wave, 143
refractor crossdip, 183, 225
refractor displacement; see refractor offset distance
refractor moveout (stepout), 159, 169, 171, 172, 450
refractor offset distance, 189, 195, 201-203, 205-206, 229-230
replacement velocity, 43-44, 49, 64, 92, 236-237, 241, 263, 265, 266, 270, 474
constant, statics scan, 70, 498
display of values, 45, 49, 92, 93
ero offset impact, 43-44, 92, 243, 490, 494, 499-500
refractor velocities, estimated from, 236-237, 241
sensitivity analysis, 498-500
reproduction, genetic algorithm, 405
residual moveout, estimation, 341, 344, 346, 354, 378, 392-393
residual moveout, impact on
partial-offset stacks, 296
reflection (time) patterns, 284, 286
residual static corrections, 327, 335-336, 337-341, 346, 347, 389-390, 396, 423; see also decomposition,
taveltime equations
separate-surface stacks, 296
stack response, 315
stacked data, 364, 368, 370, 458
taveltimes' decomposition, 360, 363-364, 366, 370, 376, 378, 458
residual static corrections
angle (near-surface raypath) dependent, 328, 440
bandwidth (frequency)-dependent, 449, 471
binning (subsurface), 328, 329, 346, 353, 354, 364, 382, 385
binning (surface), 327, 364, 413
common-midpoint-based method, 330-331, 352-394, 420-421
common-offset-based method, 394-395
common-surface location (prestack) method, 330, 334-343, 345, 419
common-surface-stack method, 343-352, 420-421
complex areas, 355-357, 381, 385, 386, 390, 391
converted-wave surveys, 443, 444-445
crosscorrelations, 331-333
cross-line dip, 329-331, 346, 353, 358-361, 376, 382, 385, 407, 465, 471, 473
cross-line statics; see seam statics

cycle skips, 354, 394, 454, 456-457, 461-470, 473
data processing flow, 326-327
data selection, 335, 345, 384-387, 407
decomposition, traveltime equations; see
decomposition, traveltime equations
decoupled solution, 366-368, 408, 410-414, 458, 473
dip moveout (DMO), impact on estimation, 335, 356, 381, 384, 385
display, 92-93, 407-408, 452
equations, traveltime, 329-331, 344, 358-361, 394; see also decomposition, traveltime equations
errors, seismic interpretation impact, 484, 485-486, 497-500
fine-tuning capability (limitation), 68, 111-112, 255, 323, 451, 465
frequency (bandwidth)-dependent, 449, 471
future trends, 7
genetic algorithms, 405-406, 421-422
global/local solution, 327, 354, 394, 395, 451, 459, 471
global-optimization techniques, 395-406
historical background, 325
impulse response, static anomaly, 281, 344-345, 374, 379, 431-433
large values, 326-327, 344, 354, 380, 383-384, 388, 390, 395-396, 442
local/global solution, 327, 354, 394, 395, 451, 459, 471
long wavelength; see long-wavelength residual static corrections
mis-ties (line ties), 453, 472-473, 503-504
Monte-Carlo techniques, 395-406, 421-422
nonsurface consistent, 438-441
non-uniqueness, 358, 360, 361, 394
offset variant (dependent), 328, 407, 439-440, 471
phase corrections, 328, 331, 445-449
poststack, 3-D surveys, 414, 416, 441
profile analysis, 452-457
QC, 342, 348, 349-350, 363, 392, 417-418, 429, 441, 451-477; see also quality control
radial sector, 440
raypath dependent, 440
recording direction based, 439-440
refraction data, 328, 450-451
reversed polarity location, 333, 336-337, 338, 347, 455, 456
seam statics, 367, 368, 408, 410-414, 458, 473
shear-wave surveys, 441-445
simulated annealing, 396-405, 421-422
stabilization of values, 346, 372, 376, 451-452
stack power methods, 393-394, 421
static anomaly, impulse response, 281, 344-345, 374, 379, 431-433
subsurface binning, 328, 329, 346, 353, 354, 364, 382, 385
surface binning, 327, 364, 413
surface-consistent values, 7, 328, 439, 440, 459, 471
3-D surveys; see 3-D surveys, residual static corrections
time-variant, 262, 328, 439-440, 471
taveltime equations, 329-331, 344, 358-361, 394; see also decomposition, traveltine equations
tim; see trim static corrections
velocity analyses, processing order, 270, 303, 308-309, 326-327, 380-381, 457-458
see also dynamic (ray-traced) static corrections
resistivity method, 83-84
reverse VSP surveys, 106, 127
reversed polarity location
crosscorrelations, 168, 169, 333, 336-337, 338
residual static estimates, 336-337, 338, 347, 455, 456
reversed refraction profile, 148
river delta features, 18
rocks, velocities, 25

sabkha, 16-17
sample intervals, uphole surveys, 111-112
sand
 compaction/thickness (velocity) curve, 16-17, 70
dune topography, 16-17; see also near-surface layers, time-variant changes
waves, 24
calcing, 384
seam statics, 367, 368, 408, 410-414, 458, 473
second arrivals, 146, 164-166
section (line) ties, 52-53, 419, 453, 472-473, 500-502
sedimentary rocks, velocity, 25
SEG tape format standards, 89, 94
seismic attributes, refraction arrival-time picking, 163
seismic characteristics, weathered layer, 14
seismic data acquisition; see data acquisition
seismic data processes
 limitations and effect of static corrections, 255-319
 sensitivity to errors in static corrections, 310-316
seismic datum; see reference datum (plane)
seismic interpretation
datumizing, 505
flattened section, 505
horizon times & static profile correlation, 486-497
isotimes, 287, 289, 505-506
layer stripping, 43, 505
line (section) ties, 419, 453, 472-473, 500-502
long-wavelength static anomalies, 418, 471-472, 484, 485-486; see also sensitivity analysis, long-wavelength anomalies
marker horizon, usage, 43, 484, 505-507
mis-ties, 453, 472-473, 500-505
QC, static corrections, 490
reference horizon, usage, 505-507
replacement velocity, impact of, 490, 494
residual static errors, impact of, 484, 485-486, 497-500
residual statics, reconciliation with near-surface layers (geology), 490, 493-497
sensitivity analysis, 490, 497-500; see also sensitivity analysis, long-wavelength anomalies
shallow horizon, usage, 491, 505-506
surface & subsurface features, coincidence, 487-490, 491-493, 494
time lapse surveys, 485
time-to-depth conversion, 484, 488, 489
time-varying spreadlength, impact, 286-289, 485, 486, 505
seismic weathering, 11-12, 14
attenuation (Q) in, 14
seismic characteristics, 14
selection, genetic algorithm, 406
sensitivity analysis, long-wavelength anomalies, 343, 346, 419, 427, 429, 472, 490, 497-500
separate-surface stacks, 292-296, 418-419, 422-427, 458, 486
sharow zone, 150
shallow horizon, use in interpretation, 491, 505-506
shallow reflection surveys, 70-75
data acquisition, 72-74
depth conversion, 74-75
refractor depth conversion velocities, 234, 236, 237
shallow-water uphole surveys, 108
shear-wave surveys
datum static corrections, 42, 64-67
datum statics, P- and S-wave comparison, 64-65
near-surface velocities, 25-26, 30-31, 32, 64, 65
refraction surveys, 244
residual static corrections, 441-445
S-wave splitting (birefringence), residual statics, 443-444
sonic tool, 105
uphole surveys, 135
see also converted-wave surveys
shingling, 158
short wavelength
residual statics; see residual static corrections
static anomaly, 275-277
shot; see source
shothole anchor, 108
side label, 93, 484, 490
sign convention, static corrections, 40, 324
simulated annealing method, 396-405, 421-422
convergence, 398, 399, 401, 404
cooling function/rate (schedule), 398-399, 401
crosscorrelations, 399-400
crystallization point, 398, 401
generalized simulated annealing, 399
heat-bath method, 399-401
long-wavelength capability, 397, 405, 421-422
Metropolis algorithm, 397, 398
objective function, 397
one-step method, 399-401
probability distribution, 398, 399-400
quenching, 399, 405
stack power, 397, 398, 400, 401
temperature, 396-397, 398-399, 400-401, 404
two-step method, 398-399
single channel processes, static error/shift impact, 310-311
single-fold residual static case history, 3-D survey, 411-412
skew corrections/delays (multiplexed data), 88, 89-90, 309-310
slant cable method, 60
sloping datum, 44
Slotnick method, 253
Snell’s law, 143
snow, velocity, 30
sonic tool, 104-105
source
array, effect on refraction arrival, 157, 166
datum static corrections, 53-59
deep-hole dynamite surveys, 14, 41, 55-59, 67, 103, 106, 110, 131, 133, 135, 368, 445, 454, 455
delay time, 187
differential residual statics, estimation, 337
ground coupling, refraction arrivals, 157
initiation time delay, 59, 89, 177
LVL surveys, 155
mis-ties, influence, 502
offset; see offset source locations
ordered display, 171, 172, 176, 279-282, 290-291, 342, 349-350, 363
refraction surveys, 152, 155, 157, 166
shallow reflection surveys, 72-74
source-to-receiver azimuths, 179, 180, 330
stack, refraction data, 160, 172
uphole surveys, 108-110, 111, 114
vibroseis recording, refraction arrivals, 157, 166
weathering surveys, 155
spatial consistency, uphole survey results, 122-125
spatial control
near-surface layer definition, 49-53
uphole surveys, sampling, 111-112
spreadlength
floating datum, time-varying implications, 47
stack power, 393, 397, 398, 400, 401
stack power methods, 393-394, 421
stack response
change/improvement, 341, 393, 451, 457, 459, 465
residual normal moveout, impact of, 315
static errors/anomalies, impact of, 276, 277, 314-315, 485
stacking charts, 290-292, 329, 334, 344
(principal) trace planes, 290, 329, 334, 344
wavelet map, 290
stacking velocity
inversion, residual static analysis, 427-433
mis-ties, influence, 504
profiles, 266, 271, 305-308, 419, 421, 424, 429, 432, 442, 459, 471-472
see also normal moveout corrections
stacking velocity, static shift/error impact
datum shift, 301-303
impulse response, 305, 308, 432, 433
large values, 45, 326-327, 380
multiplexer (skew) corrections/delays, 309-310
random time shifts, 303-304
static anomalies, 303-310, 471-472, 486
time-varying spreadlength, impact of, 300-301
X2-T2 analysis, 300, 302-303, 304-305, 432
Index 527

stacks
 common midpoint, refraction data, 160
 cycle skips, 11, 287-288, 327, 354, 387, 457, 461-470, 473
 near trace & full, comparison, 281, 282, 284, 342, 350, 363, 424-427, 465, 470; see also partial-offset stacks
 partial-offset, 292-296, 418-419, 422-427, 458, 486
 receiver, converted-wave surveys, 66-67, 444
 receiver, reflection times, 281, 282
 residual moveout, impact of, 315, 364, 368, 370, 458
 restricted (selective) offset, 293
 separate-surface, 292-296, 418-419, 422-427, 458, 486
 source, refraction data, 160, 168, 172
static anomaly
 high frequency (short wavelength), 275-277
 impulse response, 281, 344-345, 374, 379, 431-433
 long wavelength (low frequency), 275-277
 time-varying spreadlength, impact of, 275-276
 see also data processes, static shift/error impact; long-wavelength residual static corrections; residual static corrections; stacking velocity, static shift/error impact
static corrections
 analog data, time break, 88-89
 angle dependent, 259, 261
 basic principles/concept, 4, 10-11
 cycle skip, 354, 387, 457, 461-470
 datum; see datum static corrections
 definition, 1-2
 delayed start to recording, 59, 89
 Delphi survey, 3-4, 7
 depth (reflector) dependent, 257, 261, 262, 318, 438; see also dynamic (ray-traced) static corrections; wave-equation datuming
 dynamic, 268-274, 356, 437-438, 441, 444, 453
 future trends, 6-7
 historical background, 2-4
 intra-array, 7, 14, 17, 18-19, 65, 158-159, 258, 277, 311, 454
 long wavelength, 275-277
 miscellaneous time-invariant time shifts, 88-90
 mis-ties, 52-53, 90, 93, 453, 472-473, 503-504
 multiplexer (skew) corrections/delays, 88, 89-90, 309-310
 near-surface raypaths, vertical/nonvertical, 62, 63, 66, 92, 256-263, 268-269, 278, 301, 314, 318-319, 427-428, 434, 439-441, 444
 offset dependent, 259, 318
 poststack, 414, 416, 441
 raypath angle dependent, 259, 261
 skew (multiplexer) corrections/delays, 88, 89-90, 309-310
 source initiation time delay, 59, 89, 177
 stacking velocities, impact on, 301-310, 471-472, 486
 static or dynamic corrections?, 4, 6, 257, 319; see also dynamic (ray-traced) static corrections; vertical/nonvertical near-surface raypaths; wave-equation datuming
 summary, 7-8
 time break, analog data, 88-89
 trim; see trim static corrections
 wavefield distortion, 257, 261
streamer feathering, 41-42, 62, 227, 262-263, 270, 327, 353, 364, 413, 502
stringer (high-velocity layer), 16
structural times
 common-midpoint-based method, 353, 360, 361
 common-surface location (prestack) method, 335, 337, 338, 341, 343
 common-surface-stack method, 345, 346
 intrabin, shifts, 382, 385, 407, 441
 long-wavelength static anomaly impact, 277, 328, 417-418, 455, 471-472, 485
 time-varying spreadlength, impact of, 286-289
 see also replacement velocity, error impact
submarine canyons, 9, 266-267, 271, 274
subsurface
 anomalies; see subsurface features
 binning, 328, 329, 346, 353, 354, 364, 382, 385, 441
 consistent static corrections; see trim static corrections
 features; see subsurface features
 location analysis, refraction data, 183, 195, 201
subsurface features
 near trace & full stack comparison, 281, 282, 284, 342, 350, 363; see also partial-offset stacks
 offset ordered display, 282
 offset panel, 282
 partial-offset stacks, 294, 422, 458
 receiver stack, reflection times, 281, 282
 reflection (time) patterns, 278, 281-284, 294, 342, 349-350, 363
 separate-surface stacks, 294, 422, 458
source-ordered display, 281-282, 342, 349-350, 363
surface features, coincidence with, 418, 468, 470, 487-490, 491-493, 494
subwater-bottom features, 62-64, 153, 227
subweathered layer (subweathering), 12, 14, 15, 19, 20, 88
velocity; see replacement velocity
summary, 7-8
refraction surveys, 69-70
uphole surveys, 69
summation method, 253
super-bin, 412-413
surface anomalies; see surface features
binning, 228, 327, 364, 413
common-surface location (prestack) method, 330, 334-343, 345, 419
common-surface-stack method, 343-352, 419-420
correction zone; see weathered layer
features; see surface features
following approach, spatial interpolation, 50
location analysis, refraction data, 183, 189, 192, 195
stacks (refraction data), 160, 168, 172
to-surface times, refraction adjustments, 177-179
wave dispersion, 78-80
surface-consistent
amplitudes, 328, 331, 445-446
datum static corrections, 41, 256, 257, 260, 268, 326, 382, 414, 438, 439
decomposition, refraction arrival times, 221, 226
offset dependent residual statics, 439-440
phase corrections, 328, 331, 445-449
residual static corrections, 7, 328, 439, 440, 459, 471
surface features
common-surface location (prestack) method, 330, 334-343, 345, 419
common-surface-stack method, 343-352, 419-420
near trace & full stack, comparison, 281, 282, 284, 342, 350, 363, 424-427, 465, 470; see also partial-offset stacks
offset ordered display, 282
offset panel, 282
partial-offset stacks, 293-296, 422-427, 458, 486
receiver stack, reflection times, 281, 282
reflection (time) patterns, 278, 279-286, 293-294, 342, 349-350, 363
residual moveout impact, 284, 286
separate-surface stacks, 293-296, 422-427, 458, 486
source-ordered display, 279-282, 342, 349-350, 363
spreadlength dependence, 284, 286-289, 296
subsurface features, coincidence with, 418, 468, 470, 487-490, 491-493, 494
surface wave dispersion, 78-80
dsurvey objectives, 5, 67-68, 87, 111-112, 242, 474, 483
swamps, 17-18
swell, ocean, 23, 60
tape formats, 89, 94
Tarrant method, 253
temperature
genetic algorithm, 406
simulated annealing method, 396-397, 398-399, 400-401, 404
time-variant effect on near surface, 22, 23
theory, refraction technique, 142-144
thin layers, refraction arrivals, 158
Thornburgh’s method, 253
three-dimensional (3-D) surveys
displays, 90, 93
QC using refraction arrivals, 70, 159, 176-177
raypaths in near-surface layers, 262
refracted raypaths, non-commonality, 180, 225
refraction arrival-time adjustments, 180
refraction crosscorrelations, 168, 169, 170
refraction interpretation, 225-228
residual static corrections; see 3-D surveys, residual static corrections
tidal changes & corrections, 23, 60
water depths, 62, 262-263, 270
3-D surveys, residual static corrections
azimuth partition, 440
azimuthal velocity variation, 381, 385, 407, 408
binning (subsurface), 328, 353, 354, 382, 385, 441
binning (surface), 327, 413
correlation time surface, 416
cross-line control (structural), 410, 413-414
cross-line dip, 353, 382, 385, 407, 473
data conditioning/preprocessing, 407
data selection, 407
data volume, partitioning of, 407
decoupled solution, 408, 410-414, 458, 473
deep-water recording, 414
display, 93, 407-408, 452
feathered streamer, 413
horizontal time sections, 408, 412, 414, 416
jitter, trace-to-trace, 408, 413
long wavelength, 410, 416
marine, 413-414
poststack, 414, 416, 441
seam statics, 408, 410-414, 458, 473
single-fold case history, 411-412
streamer feathering, 413
structural time shifts (intrabin), 382, 385, 407, 441
subsurface binning, 328, 353, 354, 382, 385, 441
super-bin, 412-413
surface binning, 327, 413
trim statics, 407, 441; see also trim static corrections
threshold approach, refraction arrival-time picking, 162-163
tidal changes & corrections, 23, 60
tilted plane, 45
time-bandwidth product, 331, 385
time break, analog data, 88-89
time-break test, uphole survey, 113, 116
time–depth display, 104, 117-122; see also uphole surveys, interpretation
time-distance
curves, composite, 212
displays, refraction picked times, 172
time-lapse surveys, 22-24, 485
time section - comparison with depth section, 10, 43, 44
time shift, maximum allowable, 387
time-term method, refraction interpretation, 221, 226
time-to-depth conversion, 10, 21, 43, 45, 68, 74-75, 277, 315, 484, 488, 489
permafrost, 21, 489
velocity estimation, 301, 308-309, 311
very long-wavelength static anomalies, 68, 277, 484
time-to-depth relationship, 43, 44, 49
time-variant
mis-ties, 473, 500
near-surface layers, changes; see near-surface layers, time-variant changes
residual static corrections, 262, 328, 439-440, 471
time window specifications, data selection, 385-387
timing requirements (accuracy)
refraction surveys, 152, 160, 161
uphole surveys, 107-108, 112-113
tomography
crosshole surveys, 130-131
hole-to-hole surveys, 130-131
hole-to-surface surveys, 129-131
refraction interpretation, 221-222, 226
residual static corrections, 437
topography; see near-surface topography
trace envelope, 333, 384
trace planes, 290, 329, 334, 344
transition zone, base of permafrost, 21, 437
transition zone surveys
tidal changes & corrections, 23, 60; see also near-surface layers, time-variant changes
uphole surveys, 108
transmission, refracted waves, 143-144
traveltime equations
common-midpoint-based method, 330-331, 358-361
common-offset-based method, 394
common-surface-location methods, 330, 344
cross-line dip, 329-331
decomposition; see decomposition, traveltime equations
trim static corrections, 382, 384, 389, 390, 392, 407, 439, 441
quality control, 441
structural time shifts (intrabin), 382, 385, 407, 441
T²–X² analysis; see X²–T² analysis
turning waves, 220, 222
two-step method, 398-399
UKOOA P1/84, 94
unconsolidated sediments, velocity, 25-26
underconstrained equations, traveltimes, 361
undersampling, near surface, 5, 9, 49, 67, 231, 452
uphole method, 127-129
uphole phone (geophone), 3, 53, 131
uphole surveys
arrival-time corrections, 104, 116-117
arrival times, picking and timing, 112-116
data acquisition, 104, 106-111
drilling process, borehole alteration, 69, 103, 110, 121-122
interpolation between, 49-52, 86, 103, 111-112, 123-125, 141
interpretation; see uphole surveys, interpretation
invaded zone, 105, 110, 111, 121
lateral changes near borehole, 125, 127-131
marine, 106, 111
objectives, 111-112
permafrost, 122
refractor depth conversion, use in, 124-125, 232, 237
sample interval (depth, spatial), 111-112
shallow water, 108
shear waves, 135
summary, 69
time–depth display, 104, 117-122; see also uphole surveys, interpretation
timing accuracy, 107-108, 112-113
transition zone surveys, 108
uphole times, 103, 131, 133, 135; see also uphole times
uphole surveys, arrival times
absolute time, conversion, 116
camera speed requirements, 113
display gain effect, 113
geometric correction, 104, 116-117
picking and timing, 112-116
pulse shape variations, 114-116
timing accuracy, 107-108, 112-113
vertical time, conversion, 104, 116-117
uphole surveys, data acquisition
borehole lithology, 69, 106-107
charge size, 108-109, 111
depth of borehole, 104, 106
detonator shield, 108
field layout/operations, 104, 106-107, 108, 110-111
geologic analysis, 106-107, 123
receivers, 110, 111
sample interval (depth, spatial), 111-112
shothole anchor, 108
source, 108-110, 111, 114
wiring harness, 108, 109-110
uphole surveys, interpretation
anomalous points, 120
drilling process, borehole alteration, 69, 103, 110, 121-122
interval velocity computation, 118
invaded zone, 105, 110, 111, 121
lateral changes near borehole, 125, 127-131
mud/water invasion, velocity impact, 121, 493
observational errors, 118-119
offset recording, 119-121, 122, 125, 127-130
raypath refraction, 117, 119-121, 122
spatial consistency, 122-125
time-depth display, 104, 117-122
time-variant changes, near-surface velocities, 121-122
uphole surveys, lateral changes near borehole
crosshole surveys, 127, 130-131
downhole-crosshole surveys, 127
hole-to-hole surveys, 127, 130-131
hole-to-surface surveys, 127-130
Meissner technique, 127-129
offset recording, 119-121, 122, 125, 127-130
tomography, 129-131
uphole method, 127-129
wavefront diagrams, 127-129
uphole times
datum statics computation, use in, 53, 55-59
deep dynamite shots, 103, 131, 133, 135
refraction surveys, time corrections, 177-179
refractor depth conversion, use in, 232
upward continuation, 263-266; see also wave-equation datuming
velocity
anisotropy, 31-32, 233, 237, 241
anomalies, 308, 309, 317-319, 427-428, 431, 432-433; see also deep anomalies
compaction related, 16-17, 19, 70
constant replacement, statics scan, 70, 498
data scan, 49
- depth ambiguity, 75, 124-125, 183, 191, 231, 238-239, 242, 428
-depth model, 6, 49, 267-268, 269, 270, 356, 434, 437-438, 440, 441
elevation, 49
error, impact on refraction crosscorrelations, 169, 170
increase with depth, refraction surveys, 149-150, 206-207, 220-221, 222
interval; see interval velocity
inversion, refraction surveys, 150-151, 200, 206
iso-velocity surface, 43, 49
near surface; see near-surface velocities
refractor velocity and shallow velocity ambiguity, 239, 242
replacement, 43-44, 49, 64, 92, 236-237, 241, 263, 265, 266, 270, 474
subweathering, 49
zero-velocity layer, 314, 316
see also refraction surveys, depth conversion velocities; refraction surveys, refractor velocity; stacking velocity; stacking velocity, static shift/error impact; velocity analyses
velocity analyses
continuous estimates, 301, 428, 471-472
floating datum, implications, 47-48
function, GRM, 195-198
prestack depth migration, 268
profiles; see stacking velocity, profiles
residual statics, processing order, 270, 303, 308-309, 326-327, 380-381, 457-458
see also stacking velocity, static shift/error impact
vertical/nonvertical near-surface raypaths, 62, 63, 66, 92, 256-263, 268-269, 278, 301, 314, 318-319, 427-428, 434, 439-441, 444
vertical seismic profile (VSP) surveys, 105-106, 125, 127
vibroseis, refraction recording, 157, 166-167
volcanic activity, time-variant near-surface changes, 24
VSP surveys, 105-106, 125, 127

water
bottom recording, 42, 60
bottom topography, 9, 61-62
cross-line dip, 62, 227, 262-263
deep water, 92, 227-228, 259-260, 262, 266-267, 271, 274, 414, 438-439
depths, 62, 227, 262-263, 266, 270, 474
invasion, velocity impact, 121, 493
saturation, effect on near-surface velocities, 25, 121-122
submarine canyons, 9, 266-267, 271, 274
subwater-bottom features, 62-64, 153, 227
tidal changes & corrections, 23, 60
velocity, 29-30
water depths, 62, 227, 262-263, 266, 270, 474
water layer, characteristics, 9, 15
water layer, replacement of, 62
water layer, time-variant changes, 22, 23
wave-equation datuming, 6, 8, 45, 62, 92, 257, 260, 261, 262, 263-267, 314, 316, 318, 328, 356, 441, 444
downward continuation, 257, 263-266
replacement velocity, 263, 265, 266
upward continuation, 263-266
wavefield distortion, static corrections, 257, 261
wavefront diagrams, uphole surveys, 127-129
wavefront methods (refraction), 211-219, 230, 253
 composite time-distance curves, 212
downward-continuation procedure, 214, 218-219
 emergent wavefront, 212-217, 217-218
 Hagedoorn method, 217-218
 multilayer approach, 214-215
 raypath techniques, 216-217
 refractor definition, 214-215
 refractor velocity estimation, 214, 215
 single-layer method, 211-214
 wavefront reconstruction technique, 219
wavelength dependent conversion rate, traveltimes’
 decomposition, 372, 376
wavelet map, 290, 350
wavenumber response, recording spread, 422-423
weathered layer, 4-5, 11-15, 17-19, 39-40, 53-59, 62, 262, 263, 278-279; see also near-surface layers
 attenuation (Q) in, 14
 geologic weathering, 12-14
 seismic characteristics, 14
 seismic weathering, 11-12, 14
subweathered layers (subweathering), 12, 14, 15, 19, 20, 88
time-variant changes; see near-surface layers, time-variant changes
weathering; see geologic weathering; seismic weathering
weathering correction
 reflection data, 40-41, 53-56, 58-59, 61, 74-75, 243, 257
 refraction data, 180-181, 182, 201, 211
weathering surveys, 153-156
 interpretation methods, 155, 229
weighting schemes/factors (crosscorrelations), 333, 336, 364-365, 387, 391
wind, time-variant effect on near surface, 16, 23
wiring harness, uphole survey, 108, 109-110
Wyrobek method, 253
X^2-T^2 analysis, 2, 300, 302-303, 304-305, 429, 432
XY value, GRM, 195-200, 229-230
youthful topography, 15, 19; see also near-surface layers, time-variant changes
zero mean approach, 331, 364, 377-379
zero-velocity layer, 314, 316
zigzag pattern, seismic section, 366-368