INDEX

A
A-1 evaporites, 178
A-2 evaporites, 178
Aalenian, 267
Abathomphalus mayaroensis, 284
Accommodation, 50, 56, 83, 110, 156
and accumulation diagrams, 65
definition of, 110
in vertically stacked events, 377
negative, 48
of sediment accumulation, 47
potential, 377
realized, 377
Accommodation envelope, 110
illustration of, 114
Accommodation potential, 162
Active-sediment influx, 56
Adaville Formation, 379
Age dating, 72
direct methods, 72
indirect methods, 72
with biostratigraphic events, 72
with climatic events, 72
with magnetic-polarity events, 72
with radiometric horizons, 72
Age estimates
K/Ar, 76
Rb/Sr, 76
Aggradation, 48, 49, 50
rate of, 52
Aggradational facies, 56
Alabama
Braggs, 200, 318
Butler County, 301
central, 299
chronostratigraphy chart, 340
Clarke County, 314
Crenshaw County, 301
estimated sea level, 351
Henry County, 313
Little Stave Creek, 196
Lowndes County, 202, 301, 314, 318
offshore, 329
offshore interpreted seismic line, 340
Pike County, 301
St. Stephens Quarry, 196
Washington County, 317
Wilcox County, 301, 314
Alabama River, 301
Alberta, 229, 285, 365
Albian
marine sediments, 294
middle-late, 294
Alexander's Landing, 301
Algal stromatolites, 6
Allochthonous, 227
Allochthonous lowstand wedge
typical examples of, 173
Allochthonous wedge, 179
Allostratigraphic units, 309
Alluvial equilibrium, 58
Alluvial sediments, 55, 56
Alprian Stage, 231
Alps, 82
Alluvial plain onlap, 12
Ammonite, 92
biozones, 76
Dunierian, 251
Greisbachian, 251
zonality data, 82
zonation, 90
Amundson Member, 369
Angular discordance, 313
Anisian, 251
"Anodontia?" augustana, 322
Antarctica, 32
Apparent sea-level
contemporaneous fluctuations in, 27
estimates for magnitude of, 23
fall of, 20
record, 19
Aptian, 81, 93, 275
Ar isotope ratios, 76
Arabian Peninsula, 275
Arabian Sea, 381
Aragonitic mollusc molds, 314
Arizona, 229, 234
Arkansas, 170
Aruna Group, 277
Asia, 236
Atlantic Ocean, 26, 381
Deep Sea Drilling Project, 32, 35
seafloor spreading profiles, 78
Austin Formation, 280
Australia, 236
tectonic provinces within, 24
Authigenic minerals
marine, 76
Autochthonous lowstand wedge
typical examples of, 176
Autochthonous wedge, 179
B
Backstepping marine parasequences, 299
Backstripping
diagram of, 7
Bad Heart formation, 369
Bahama Platform, 158
Bajocian, 267
Baltimore Canyon Trough, 289, 329
U.S.G.S. Line 25 through, 290
Banc Royal mioloids, 89
Banda arc, 25, 26
Bank margin, 159
Barbados
crustal records in coral reefs of, 8
Barremian, 275
Barrow Formation, 251
Jenness Member, 251
Barton Formation, 314
Barton Stage, 316
Bartonian, 93, 319
Basal lithologies
characterized by rip-up clasts, 313
Base level
and stream equilibrium profile, 132
Basement subsidence
global comparison of, 8
Basin
evolution, 22
Basin floor facies belt, 160
Basin floor fan, 42, 139
Basins
foreland, 19
intracratonic, 19
Bass River Formation, 294
Bathonian, 81, 267
Bay of Bengal
thick sedimentary loads in, 22
Bayline
definition, 131
vs. shoreline, 118
Bayline position
and lowstand deposits, 147
Beach facies, 50
Bearpaw Formation, 287
Benciff Grit, 264
Benthic foraminifera, 289
Benthic macroinvertebrates, 219
Benthic organisms, 6
Benton Formation, 287
Bentonites, 76
Berriasian, 275
Best-fit age models, 72
Best-fit of magnetic anomaly ages
table of, 105
Bickerdike Member, 357
Biofacies
analysis across Cretaceous/Tertiary, 318
analysis across Eocene/Oligocene, 317
distribution of in New Jersey, 295
foraminiferal, 290
Biogenic depositions, 84
Biostratigraphic data
sources of error in, 77
Biostratigraphic events
calibration of, 74
Biostratigraphy, 71, 72, 183, 200
illustration using, 185
Biozone, 72
definition of, 73, 184
Bjorne Formation, 250
Black Band, 207
Black organic shales, 49
Black Prince Limestone, 229
Black Ven Marls Formation, 264
Blairriveran strata, 223
Blackstone Formation, 358, 364
Blake Spur Magnetic Anomaly, 81
Blue Lias Formation, 264
Bolivina spp., 198
Bounding surface, 47
Bounding unconformities, 309
Braggs Member, 316
Brigg, 299
condensed section examples, 200
iridium anomalies, 299
British Columbia, 229
Bulimina biofacies, 196
Bumpnose Limestone, 198
Burdigalian, 335
Burnside Member
illustration of origin of, 367
photo of typical features, 366
Burrowed surface, 183, 304, 313, 317
Burrows, 6
Calcite
above hardgrounds, 317
Calcite compensation depth, 319
Calibrating geologic time
Cenomanian, 79, 207, 277, 287
data integration within, 90
eyearly, 294
outcrop studies of, 89
Cenomanian-Turonian boundary, 208
Cenozoic, 34, 71, 72, 92, 227
chrononstratigraphic and eustatic-cycle chart, 94
cycle chart, 83, 193
glacial events, 19
global oxygen isotope signal for, 32
global plate reorganization, 26
magnetic anomalies, 83
oxygen isotope record for, 31
radiometric dates, 79, 80, 81
sea-level cycle charts, 71
sea-level events, 32
time scales for, 71
variables affecting oxygen isotope signal in, 32
Cenozoic cycle chart
after Haq and others, 306
Cenozoic sequences, 106
Cenozoic, early, 75
Cenozoic, Late
basins of the Mediterranean region, 26
Cephalopod zone, 227
Channel levee complex, 383
seismic strike line through, 388
Chattian, middle, 319
Cherry Canyon Sandstone Tongue, 189
Chhidru formation, 91
Chickasawhay Limestone
Waynesboro Sand Member, 319
China, 229
Chokierian Stage, 231
Chronostratigraphic chart, 5
distribution, 150
framework, 90
framework for eustatic cycle charts, 71
surfaces, 4
units (stages), 73
Chronostratigraphic diagram, 185
Chronostratigraphic surfaces, 44, 61
Chronostratigraphy and lithostratigraphy, 324
Chungo Member, 368
Cibicidoides biofacies, 195
Claggett Formation, 287
Clai borne Stage, 204, 316, 319
Clayton Formation, 299, 319
Clayton Limestone Member, 200
Clear Fork sequences, 167
Clearwater Formation, 287
Clementon Well, 290
Climate
as control on carbonate facies development, 162
Clineform units, 57
Clineforms, 188
Coal distribution in the Western Interior United States, 371
Coarsening-upward sequence, 357
Coastal aggradation curve
of Vail, 14
Coastal onlap, 4, 5, 47, 52, 68, 93, 115
definition of, 283
illustration of, 154
relative change of, 5
Coastal onlap curve
elements of, 120
illustration of elements of, 122
Coastal onlap/offlap, 23
Coastal plain, 48, 49, 54, 57
facies, 55
New Jersey, 289
sediments, 49
Coastal-onlap chart, 311, 323
Coastal-onlap curve
for the Cambrian through Devonian, 244
for the Carboniferous and Permian, 243
of Vail, 31
Coastline
deltaic, 50
in geologic model, 53
migration, 49
retrogradation, 52
Coastline facies, 49
Coastline position
and relative sea level rise, 122
Cocoa Sand, 322
Cocos plate, 25
Coenecorrelation curve, 223
Coexistence,公子
concretionary limestone horizon, 264
Colorado, 285
Compaction, 10, 11, 47, 51, 56
algorithms for estimating, 12
effect of 6, 7
Complexioellips-Atlantiopollis
pollen zone, 294
Composite standard definition of, 283
Compressive-stress field, 25
Conceptual model
to predict lithologic succession, 109
Concordant boundaries, 61
Condensed section, 5, 44, 84, 109, 261, 285, 300, 312
age determination from, 183
and depositional sequences, 186
and surface of maximum starvation, 317
and tocs of the clinoforms, 319
and water depth, 188
between Navarro and Midway stages, 202
correlation of three examples, 203
definition of, 110, 186
example of in Alabama, 196, 198
example of in Gulf of Mexico, 192
examples of from Gulf Coast, 204
geochemistry, 207
Oligocene, 191
predictive model, 187
recognition of, 186
seismic expression of, 188
Condensed sections, 47
Conformity, 41
Conglomerates, 358
Coniacian, 287
Conodont, 92
Continental interiors, 217
Continental margin, 47
sequence boundaries, 186
sequences, 183
Continental margin sedimentation parameters of simulation of, 11
simulation of, 9
Coral reef terrace, 6
Correlative conformity, 51
Cost B-2 Well, 290, 330
geohistory curve, 346
Cost B-3 Well, 290, 330
Cow Creek Limestone, 281
Cretaceous, 79, 92, 189, 321, 369
boreal macrofossil zones, 92
changes in spreading rates since the, 23
chronostratigraphic and eustatic-cycle chart, 96
coals, 378
comparison of sea-level curves for, 276
cross section across, 287
eustatic sea-level changes, 278
magnetic anomalies in, 85
Magnetic Quiet Zone, 82
paleomagnetic studies of, 82
record of relative sea-level changes, 285
sea-level curves for, 6
seaway of the interior, 286
Cretaceous sequences, 107
Cretaceous, early, 75, 287, 338
sea-level curves, 275
Cretaceous, late, 71, 72, 75, 81, 287, 289, 314, 319
depositional sequences, 293
eustatic curve for, 289
sequence boundary from biostratigraphic data, 293
Cretaceous, lower, 277
Cretaceous, upper, 371
fourth-order cycles in, 375
Cretaceous-Tertiary boundary
complete section across, 299
Cretaceous/Tertiary boundary, 318
Crockett Formation, 201
Crustal subsidence, 12
Crustal-subsidence curves, 6
diagram of from North Sea, 7
stacked and averaged, 8
Cubitostrea lisbonensis, 322
Cubitostrea perplicata, 322
Cuesta del Cura Formation, 280
Cycle chart
for Gulf coastal plain, 193
new generation of, 92
D-Sandstone Formation, 287
Dakota Sandstone, 378
Danian, 301
Danian, early, 299, 304
Data integration
importance of, 158
in calibrating geologic time, 78
in preparation of cycle charts, 92
need for in eustatic cycle determinations, 326
to delineate carbonate sequences, 155
Deep Sea Drilling Project, 34, 74, 75
Site 277, 201
Site 292, 201
Site 502B, 35
Site 504, 35
Site 552, 35
Deep-sea fan
deposition of, 312
in Northeast Atlantic, 387
Deep-sea stratigraphy
schematic illustration of, 185
Deicke, 224
Delaware 904 Well, 290
Delta plain, 57
Deltaic coastline, 50
Deltaic deposition, 135
Deltaic facies
in the Potomac Group, 293
Deltaic plain, 48
Danianian stage, 217
Danianian transgression, 224
Density-flow mechanisms, 56
Denver basin
Horsetooth Member, J Sandstone, 314
Depocenter, 139, 144
Deposition system
fluvial, 129
Depositional equilibrium surface, 64
Depositional model
sequence stratigraphy, 310
Depositional sequence, 47, 83, 183, 227, 309
Baltimore Canyon Trough, 332
boundary, 313
comparison of study areas, 339
definition of, 283
from geologic model, 51
of Owens and Gohn, 294
terminology applied to, 73
Tertiary, 329
Depositional setting, 156
as control on carbonate facies development, 162
Depositional shoreline break, 41, 43, 83
definition of, 125
Depositional surface, 47
Depositional system, 42
definition of, 110
Depositional-shoreline break, 41, 43, 83
Depth-dependent sedimentation, 219
Determining eustatic changes
comparison of methods, 33
Devonian, 242
Devonian, upper, 164, 230
Diagenesis, 76
Disaster
definition of, 283
Dickeyville K-bentonites, 224
Dickinson 1 Well, 290
Dinoflagellate, 92
Diplocraterion, 264
Discocorida saipanensis, 198
Disconformity, 142
definition of, 283
Distal Rat Member, 364
Distributary channels, 56
Divergent margins, 47
Dorset Coast, 264
Downdipping slab, 24
Downlap, 5
downlap surface, 42, 44, 84, 121, 142, 186, 261, 300, 319
downlapping sequences, 65
DSDP
see Deep Sea Drilling Project, 34, 74
E
Eagle Formation, 287
Earthquake focal mechanisms, 25
Elk Point Basin, 179
Elkport K-bentonites, 224
Ellesmere Island, 252
photographs from, 254
Elphidium biofacies, 195
Elphidium-Hanzawaia biofacies, 195
Emery Coalfield, 375
Emery Sandstone, 378
Encroachment, 47, 52, 58
England, 236
Alum Bay, 314
Humberside, 207
Engliscottown Formation, 294
Environmental facies, 50
Eocene, 31, 34, 88, 198
deep-sea fan, 381
erosional surface, 335
lithofacies and biofacies analysis, 317
sequence boundaries, 331
Eocene, late, 314
Eocene, middle, 314, 321
Eocene/Oligocene boundary, 317
Epeiric seas, 217
Epibrachic seas, 217
Equilibrium point, 116
definition of, 110
Equilibrium point position
and fluvial deposition, 152
Equilibrium profile
definition of, 110, 129
Equilibrium profiles
and eustatic change, 135
Ericson Formation, 287
Erosion, 48, 50
Erosional unconformity, 51, 264
Estuarine channel-fill deposits, 314
Estuarine sediments, 55
Europe
central, 86
European
regressive events, 269
Eustasy, 10, 83, 309, 329
and relative sea level, 110
and subsidence, 109
datum, 3
definition of, 283
estimated short term, 352
estimates for Baltimore Canyon Trough, 352
estimates for offshore Alabama, 352
indirect methods of determining, 3
Paleozoic, mechanism for, 245
sedimentary record of, 6
use of backstripped subsidence, 6

Eustasy estimations
crustal subsidence curves, 15
forward modeling, 15
hyposometric, 15
oxygen isotopes, 15
paleo-bathymetric markers, 15
Vail sediment onlap, 15

Eustatic controls on clastic deposition, 109
sea-level curve, 23
sea-level fluctuation, 53
Eustatic change, 19, 47
as global control, 124
equilibrium profile shifts, 135
illustration of elements of, 115
long-term vs. short-term, 376
rate of, 312
Eustatic controls on clastic deposition, 125
Eustatic curve
Atlantic margin, 289
convolution of in modeling, 376
Late Cretaceous, 289
Eustatic cycle chart
for the Cenozoic, 94
for the Cretaceous, 96
for the Jurassic, 98
for the Triassic, 100
Eustatic cycles
second-order, 346
third-order, 346
Eustatic estimations
summary of methods for, 15
Eustatic events, 12
glacial, 8
Eustatic excursions, 12
Eustatic fall, 44
and type 1 unconformities, 146
and type 2 unconformities, 146
effects of, 146
illustration of, 121
late, 44
response of topset bed thickness, 117
Eustatic highstand, 135
Eustatic lowstand, 53
Eustatic records in coral reefs
in Barbados, 8
in Indonesia, 8
in New Guinea, 8
Eustatic rise, 44
early, 44
rapid, 44
response of topset bed thickness, 117
Eustatic rise and fall
illustration of effects of, 123
Eustatic sea level change, 54
Eustatic sea-level changes and subsidence, 5
glacio-eustatic curves, 9
global comparison of curves for, 8
methods for estimating excursions of, 15
Eustatic sea-level change, 31, 35
for the Triassic, 259
global record of, 31
of the Texas Gulf Coast, 278
six possible models for cycles, 259

Eustatic sea-level charts
construction of, 71
new generation of, 71
Eustatic sea-level curve, 323
Eustatic sea-level rise, 52
Evaporite lithofacies
schematic illustration of, 177
Exxon 624-1 well, 331
F
Facies
aggradational, 54, 56
beach, 50
carbonate, 31
coastal plain, 55
coastline, 49
crevasses deposits, 52
deltaic, 293
distribution, 47
environmental, 50
fluvial, 52, 293
highstand, 84
lowstand, 84
marine, 149
paraclastic, 149
quartz arenite, 314
reservoir, 47
sand-prone, 48, 52, 56
shale-prone, 52
shale-prone marine, 48
shaley, 52
siliciclastic, 31
transgressive, 50, 84
turbidite, 50, 56
Facies and accommodation, 48
facies models, 158
textural types, illustration, 159
Factor and cluster analysis, 290
Fall River Formation, 287
Falling sea level, 329
Fan models
of Mutti and Mitchum, 381
Fan system
depth-sea, 381
seismic facies diagram of, 382
Farallon plate, 25
Faunal zone NP1, 304
Ferron Sandstone, 378
Fifth-order cycles, 31
Finite element techniques, 20
Firm ground
definition of, 283
First Mancos sandstone, 369
First-order cycle
as presequence, 73
Flexural moats, 27
Flexural stresses, 22
Flood-plain sediments, 52
Floodplain aggradation
illustration of, 133
Flores, 25
Fluvial aggradation
and reservoir sedimentation, 134
illustration of, 135
Fluvial deposition
and eustatic asymmetry, 151
and eustatic change, 150
and shifting equilibrium point, 140
and subsidence rates, 149
INDEX

Glacial terminations, 34
Glacio-eustasy, 31
Glacio-eustatic changes, 19, 26
event, 27
fluctuations, 9, 224
rates of deposition, 162
sea-level curves, 9
Glaucolinite, 76, 186, 313
Glaucolonic relict sands, 49
Glaucolonic sands, 55
Glendon Limestone
photo, 321
Global circulation patterns, 31
climate patterns, 31
goastal-onlap chart, 345
cycle charts, 47, 71, 72
ice volume, 31, 35
isotope patterns, 31
isotope signal, 32
oxygen isotopic events, 32
Paleozoic cratonic shelf areas, 228
sea level fluctuations, 151
seismic stratigraphic sequences, 61
stratigraphic correlation, 151
stratigraphic framework, 71
stratigraphy, 92
synchronous subaerial unconformities, 115
synchronous unconformities, 227
transgressive events, 269
transgressive/deepening events, 266
Global sea-level curve
of Vail and others, 26
Globigerapsis index, 198
Globigerina eugubina, 302
Globorotalia cerroazulensis cerroazulensis, 198
Globorotalia cerroazulensis cocoaensis, 198
Globotruncana elevata, 294
Globotruncana calcarata, 294
Globotruncana gansseri, 294
Globotruncana stuartiformis, 294
Gondwanaland
 glaciation in, 224
Gosport Sand, 314, 319
Graphic correlation
definition of, 283
of Cretaceous sea-level curves, 275
Gravel Creek Sand Member
of the Nanafalia Formation, 319
Grayburg Formation, 167, 189
Great Britain, 227
Green River basin, 378
Greenhorn Formation, 287
Greenland, 235, 262
Guadalupe Mountains
Last Chance Canyon, 189
Guadalupian, 238
Gulf Basin
cross section of, 174
Gulf Coast
paleodepth curve, 279
sea-level curves, 275
Gulf Coast Stages, 319
Gulf of Mexico, 338
Hammett Shale, 281
Hardground, 277
definition of, 283
marine, 183, 303
paleontologic hiatus, 319
Hatchitigbee Formation
INDEX

Bashi Marl Member, 321
Hawaiian Islands, 27, 80
Heiberg Formation, 251
Henry Mountains, 378
Hettangian, 93, 266
Hiatal surface, 48, 62, 66, 254
Highstand, 84
depositional system, 138
deposits, 68, 312
deposits and sea level, 295
progradation, 62
regression model, 286
Highstand systems tract, 43, 44, 84
carbonates and accumulation rates, 163
discussion of, 126
HST, 300
illustration of, 111, 113, 126
prograded, 196
vs shelf margin systems tract, 145
Hilgard Formation, 287
Himalayan collision events, 26
Hinge, 53, 148
point location, 348
Holocene, 160, 263
depositional sequence, illustration, 195
Hornbeck Member, 357
Hornerstown Formation, 294
Horquila Limestone, 229
Hoyle Bay Formation
Cape Richards Member, 251
Eden Bay Member, 251
HPC
see Hydraulic Piston Corer, 74
Humberside
South Ferriby section, 207
Hungary, 82, 86
Hydraulic Piston Corer, 74
Hyposographic curve
see also Hyposometric curve, 3
Hyposometric curves, 3, 12
Illinois basin, 26, 229
Incised-valley fill, 42, 138, 312
Incised-valley systems, 50
Incised-valley-fill surface, 314
Indian Ocean, 82, 281
intrafaceal stress fields in, 24
Indo-Australian plate, 25
Indonesia, 164
Indus fan, 381
aggradational zone, 386
bathymetry map, 384
degradational zone, 386
discussion of, 383
sedimentation model, 385
transitional zone, 386
Inflection point, 148
F, 111, 119
on eustatic curve, 110
R, 111
significance of, 111
Inner coastal plain margin, 58
Integrated chronology, 78
Intercalated neritic deposits, 53
International Stratigraphic Guide, 73
Intertonguing pattern, 56
Intracratonic basins, 25, 27
Intraplate
stress fields, 19
intraplate seismicity, 25
intraplate stress fields
evidence for fluctuations in, 24
modeling of, 27
Iowa
Decorah, 218
Guttenberg, 218
Iridium, 186
Iridium anomalies, 205
near Braggs, 299
Iridium distribution near Braggs, 304
Isostacy
Airy’s concept of, 7
Isotope
chronostatigraphy, 31, 35
ratios, 8
records, 31
Italy, 86
Dolomite Mountains, 177
J
J-Sandstone Formation, 287
Jabal Alhdar, 281
Jackson Formation, 201
Jackson Stage, 304, 319
James Limestone, 281
Java-Sumatra trench, 25
Judith River Formation, 287
Jurassic, 79, 92, 167, 170, 174, 255
chronostratigraphic and eustatic-cycle chart, 98
coastal-onlap curve for, 262
paleomagnetic studies of, 82
regressive events due to regional tectonics, 269
sea level, 23
sea-level curve by Hallam, 270
sea-level curve for, 6, 262
Jurassic sequences, 108
Jurassic, late, 75
K
K-bentonites, 220
K-T boundary, 299
and geochemical anomalies, 305
biostratigraphy of in Braggs, 303
in central Alabama, 301
lithostratigraphy of in Braggs, 302
sequence stratigraphy of in Braggs, 305
K/Ar age estimates, 76
Kataia Mudstone, 198
Kaiparowits Coalfield, 378
Kakwa Member, 357
gamma-ray log profiles, 358
log and core cross section, 361
Kansas, 234
Karr Member, 364
Karst, 313
Keep-up carbonate systems
definition of, 153
Keep-up deposition rates of, 162
Keep-up systems tract
interpretation of, 179
Kimmeridgian, 93, 268
Kirkfieldian stage, 223
Kolob-Alton Coalfield, 378
La Casita Formation, 277
Ladinian, 176, 251
Lagoonal facies, 177
Lagoonal sediment, 52, 135
Lakota Formation, 287
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/378898/9781565760889_backmatter.pdf by guest on 16 October 2019
INDEX

Lance Formation, 287
Last Chance Canyon
photograph showing stratal geometry in, 190
Lava flows, 76
Line of correlation
definition of, 283
Lithofacies, 151
analysis across Cretaceous/Tertiary, 318
analysis across Eocene/Oligocene, 317
interpretation in Delaware Basin, 161
Lithofacies distribution, 155
major variables that control, 155
Lithology, 200
Lithosphere
changing mechanical properties of, 20
continental, 20
cooling of, 47
deflection of, 19, 21, 22
deformation of, 26
depth-dependent rheology of, 22
elastic models of, 21
horizontal stresses in, 19, 24
oceanic, 20, 22
perturbation of, 22
thermal contraction of, 20
viscoelastic models of, 21
Lithospheric flexure, 217, 221
Lithostratigraphic units, 73
Lithostratigraphy
and chronostratigraphy, 324
Little Totara Sand, 198
Local factors
climates, 125
sediment supply, 125
subsidence, 125, 148
tectonics, 125
Louisiana, 170
shelf, 195
Lower Triassic
data integration within, 91
outcrop studies of, 90
Lowstand, 285
Lowstand delta, 312
Lowstand deltaic sedimentation, 50
Lowstand deposits
illustration of, 148
shelf-perched, 146
Lowstand fan, 140, 187
deposits, 383
Lowstand fan time
photo, 142
Lowstand sea level
as basin-wide erosional surface, 286
Lowstand systems tract, 42, 44, 188
definition of, 171
discussion of, 139
illustration of, 112, 127
Lowstand wedge, 42, 44, 83, 138, 139, 188, 312
definition of, 142
deposits, 383
distal, 143
illustration of, 144, 145
Lutetian
discussion of sequence boundaries in, 88
Lytle Formation, 287
M-series magnetic anomalies, 92
ages of, 84
Maastrichtian
eustatic fall, 299, 304
Maastrichtian, late, 299, 304
Maastrichtian, 287, 294
Maestrichtian/Danian boundary, 318
Magnetic chron C12, 75
Magnetic data
sources of error in, 77
Magnetic stratigraphy
near Bragg, 304
Magnetic-anomaly profiles
seafloor, 72
Magnetic-polarity chron, 72
Magnetic-polarity reversals, 71
events, 74
Magnetic-reversal stratigraphy
of the Triassic, 82
Magnetobiochronostratigraphy
data integration for, 73
Magnetobiostratigraphy, 71
in cycle chart construction, 72
Magnetostatigraphic events
calibration of, 74
Magnetostatigraphy, 71, 82
illustration using, 185
Magothy Formation, 294
Main Pass, 335
Main Pass 154 well
geohistory curve, 346
Manlius Formation, 6
Mannville Formation, 285
Marginotruncana concaivana, 294
Marginotruncana helvetica
in the Turonian, 294
Marine hiatal surfaces, 49
Marine-current systems, 49
Marine-flooding surfaces, 39
Marsh sediments, 52
Marshalltown Formation, 290
Matthews Landing Marl Member
of the Porter’s Creek Formation, 314
Mauddad Formation, 281
Maximum flooding surface, 121, 300
McKamie Patton Field, 178
McMurray Formation, 287
Mediterranean
Cenozoic basins in, 26
Megasquence, 93
Membrane stresses, 25
Mendana Fracture zone, 25
Merchantville Formation, 294
Meridian Sand, 316
Meridian Sand Member, 319
Mesaverde Formation, 287
Mesozoic, 31, 79, 92, 227
glacial events, 19
sea-level cycle charts, 71
time scales for, 71
Mexico, 277
Mianwali Formation, 91
Michigan reef trend, 178
Microplanktonic biohorizons, 72
Mid-Atlantic Ridge, 78
Middle Devonian Basin, 178
Middle Loup River, 132
Midland Basin, 167
Midway Field, 170
Midway Shale, 339
Midway Stage, 204, 319
Milburn Dam, 134
Milk River Formation
Virgelle Member, 368
Millbrig K-bentonites, 224
Miller’s Ferry, 301
Minnesota
Greenleafston, 218
Rochester, 218
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3788988/9781565760899_backmatter.pdf by guest on 16 October 2019
| St. Paul, 218 |
| Mint Springs, 198 |
| Mint Springs Marl, 322 |
| Miocene, 79, 158, 164, 191, 329, 383 |
| Baltimore Canyon Trough, 336 |
| clinoforms, 335 |
| erosional unconformity, 335 |
| glacial events, 19 |
| sequences, 331 |
| slope erosion and onlap, 344 |
| Mississippi River, 137 |
| Missouri |
| Kimmswick, 218 |
| New London, 218 |
| Missouri River, 130 |
| Model |
| stratigraphic sequence depositional, 88 |
| Modeling |
| basin filling, 47 |
| Mohawk Valley, 223 |
| Molluscan molds, 88 |
| Mowry Formation, 287 |
| Mowry Shale, 316 |
| Mt. Laurel Formation, 290 |
| Mudlump borehole |
| at mouth of Mississippi River, 196 |
| Multiple cycles, 49 |
| Murray Harbour Formation |
| Eldridge Bay Member, 251 |
| Musreau Member, 357 |
| Mussel Creek, 301 |
| Nahr Umr Formation, 277, 281 |
| Nammal Gorge, 91 |
| Namurian Stage, 227 |
| Nanafalia Formation |
| Gravel Creek Sand Member, 319 |
| Nanofossil |
| zones N10-N14, 331 |
| Naith Formation, 277 |
| Natuna Field, 176 |
| Navesik Formation, 294 |
| Nazca plate, 25 |
| Nebraska |
| Middle Loup River, 132 |
| Milburn Dam, 134 |
| Negative accommodation, 48 |
| Neogene, 31, 34, 74, 329 |
| eustatic highstands, 350 |
| Neostratotype |
| of the Lutetian, 88 |
| New Egypt Formation, 294 |
| New Jersey |
| chronostatigraphic chart, 332 |
| coastal plain, 289 |
| estimated sea level, 351 |
| eustatic curve for, 289 |
| offshore interpreted seismic line, 336 |
| offshore study area, 330 |
| New Mexico |
| Carlsbad, 161 |
| New space added, 110 |
| illustration of, 145 |
| New York |
| Black River Valley, 218 |
| Central, 6 |
| Mohawk River Valley, 218 |
| New Zealand |
| North Otago Region, 192 |
| South Canterbury Region, 192 |
| South Island, 191 |
| Niobrara Formation, 287 |
| Nondeposition, 41, 49 |
| Nondepositional surfaces, 48 |
| Norian, 251 |
| Norian-Rhaetian |
| stratigraphy, 257 |
| North America, 227 |
| midcontinent, 217 |
| North American plate, 26 |
| North Atlantic Basin, 82 |
| North Carolina |
| New Hanover County, 314 |
| Pender County, 314, 321 |
| North Sea |
| crustal-subsidence diagram of, 7 |
| histograms of subsidence of, 23 |
| Nosehill Member, 357 |
| Numerical time scale |
| tuning of, 76 |
| Nummulites, 322 |
| Nummulites laevigatus, 88 |
| Nummulites preswichianus, 314 |
| O |
| Oblique-slip zones, 26 |
| Ocean Drilling Program, 74 |
| Oceanic |
| oxygen isotope events, 31 |
| paleotemperature change, 31 |
| Oceanic Anoxic Event, 207 |
| ODP |
| see Ocean Drilling Program, 74 |
| Offlap, 62 |
| Offshore bars, 357 |
| discussion, 369 |
| events in origin of, 368 |
| transgressive, 369 |
| Oligocene, 26, 93, 191, 198, 383 |
| erosional unconformity, 335 |
| lithofacies and biofacies analysis, 317 |
| sea-level fall, 335 |
| unconformities in, 19 |
| unconformity, 331 |
| Oligocene, early, 75 |
| Oligocene, late |
| sequence, 331 |
| Oligocene-Miocene |
| abyssal circulation changes, 23 |
| carbon isotope cycles of, 23 |
| Oman, 275 |
| Oman Mountains |
| Lower Cretaceous section, 281 |
| Onlap marine sequences, 56 |
| Onlap/offlap, 20 |
| seismic stratigraphic patterns, 26 |
| sequences, 19 |
| successions, 21 |
| Overlapping cycles, 65 |
| Oolite, 230 |
| Ordovician, 242 |
| Ordovician, middle |
| paleogeography, 218 |
| transgression, 217 |
| Osmington Oolite Formation, 264 |
| Ostracods, 92, 302 |
| Ostraea thrisae, 204 |
| Otoceras, 250 |
| Otto Fiord, 252 |
| Outcrop sections, 192 |
| Outcrop studies |
| some examples of, 85 |
| Overbank deposits, 384 |
| Oxfordian, 93, 170, 264, 268, 275 |
| Oxygen isotope, 200 |
INDEX

modeling, 32
ratio in sea water, 12, 31
record, 31
shift, 198
stratigraphy, 31
Oxygen isotope record, 194
as relative measure of eustasy, 9
Oxygen isotope stratigraphy
as independent check of eustasy, 35
Oxygen isotope variations
as age indicator, 72
Oxygen minimum, 319
Oxygen-minimum zone, 207
Ozark Uplift, 224
Pachuta Marl, 198
Pacific Ocean, 82
Deep Sea Drilling Project, 32
seafloor spreading profiles, 78
Pacific plate, 27
Pacific-Antarctic Ridge, 78
PACs
see Punctuated Aggradation Cycles, 6
Pakistan
Salt Range, 85
Paleo-sea level
technique for estimating, 289
Paleo-stress field, 19
in the Pacific plate, 27
Paleo-stress state, 27
Paleobathymetric change, 289
Paleobathymetry
as datum, 7
Paleobiogeography, 75
Paleocene
deep-sea fan, 381
Gulf Coast rocks, 314
progradational wedge, 335
sequence boundaries, 331
Paleocene F1 zone
of Otsson and Wise, 294
Paleocurrent
direction of gravity flows, 218
Paleodepth curve, 289
of the Gulf Coast, 279
Paleofusulina simplex, 238
Paleofusulina sinenus, 238
Paleogene, 75, 77
Gulf basin stratigraphy, 205, 206
outcrops in the Gulf and Atlantic Basins, 309
Paleogeographic mapping, 4, 12
Paleogeography, 81
Paleomagnetic
magnetic-polarity reversals, 86
Paleomagnetic stratigraphy, 183
Paleontologic age control, 71
Paleodepo models for the Campanian, 291
for the Maestrichtian, 291
of foraminifera, 289
paleobathymetry derived from, 295
steps in completion of, 292
Paleozoic, 31, 165
transgressive-regressive deposition, 227
Paleozoic, early, 224
Palimpsest sediments
distribution of in Gulf in Mexico, 197
Paralic/deltaic sediments, 145, 150
Parasequence, 39, 43
definition of, 110, 158
Parasequence scale
and eustatic rise or fall, 121
Parasequences, 299, 316
backstepping marine, 299
cross-section of regional, 301
Parent-daughter isotope ratio, 76
Paris Basin, 88
Passive margin
processes, 20
Passive margins, 19, 25
continental lithosphere, 22
Pat Bay Formation, 251
Pearsall Formation, 280
Bexar Shale Member, 281
Pennsylvanian, 227
Pennsylvanian, early, 227
Permian, 90, 161, 167, 229
coastal-onlap curve for, 243
Permian Basin, 147
Permian, early, 227
Permo-Triassic boundary, 90
Peru-Chile trench, 25
Peruvian trench, 25
Phosphate pebbles, 313
Phosphorites, 49, 55, 69
Pictured Cliffs Sandstone, 378
Pierre Formation, 287
Pine Barren Member, 200
Planktonic foraminiferal zone Pla, 302
Planktonic microfossils, 9
controls on distribution of, 185
Planktonic-datum events, 75
Planulina biofacies, 195
Plate
fragmentation, 19
riifting, 19
Plate motion patterns, 25
Plate-tectonic forces, 25, 26
Platform margin, 159
Pleistocene, 31, 34, 93
Pleistocene, Late
eustatic sea-level curve for, 8, 9
Pliensbachian, 266
Pliocene, 71, 93
highstand maximum, 344
sequences, 335
Pliocene, early
highstand, 329
Pliocene, late, 331
Plutonic rocks, 76
POGO
position of, 14
see also Point of greatest onlap, 11
Point of greatest onlap (POGO), 11
Polarity chron, 72, 77
Pollern Zone II, 294
Pollern Zone III, 294
Polydierodina, 238
Porcupine Basin, 381
discussion of fans in, 387
fan location in, 389
seismic strike line from, 391
Porter's Creek Formation
Matthews Landing Marl Member, 314
Portlandian, 93
Postdepositional diagenesis, 31

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/378898/9781565760899_backmatter.pdf
<table>
<thead>
<tr>
<th>INDEX</th>
<th>403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potomac Group</td>
<td>fluvial and deltaic facies in, 293</td>
</tr>
<tr>
<td>Prairie Bluff Formation</td>
<td>299</td>
</tr>
<tr>
<td>Chalk</td>
<td>314</td>
</tr>
<tr>
<td>Pre-Neogene</td>
<td>74</td>
</tr>
<tr>
<td>Predictive depositional model</td>
<td>155</td>
</tr>
<tr>
<td>Priabonian Stage</td>
<td>198</td>
</tr>
<tr>
<td>Priabonian/Rupelian boundary</td>
<td>198, 322</td>
</tr>
<tr>
<td>Prodelta clinoform slope</td>
<td>50</td>
</tr>
<tr>
<td>Prodelta sand wedge</td>
<td>50</td>
</tr>
<tr>
<td>Prodelta sediments</td>
<td>49</td>
</tr>
<tr>
<td>Progradation</td>
<td>51, 52, 54</td>
</tr>
<tr>
<td>coastline</td>
<td>49</td>
</tr>
<tr>
<td>Progradation/transgression cycle</td>
<td>68</td>
</tr>
<tr>
<td>Progradational basin filling</td>
<td>47</td>
</tr>
<tr>
<td>continental margin</td>
<td>51</td>
</tr>
<tr>
<td>geometry</td>
<td>56</td>
</tr>
<tr>
<td>parasequence sets</td>
<td>40</td>
</tr>
<tr>
<td>Progradational beach environment</td>
<td>illustration of, 136</td>
</tr>
<tr>
<td>Progradational event</td>
<td>origin of stacking geometries of, 373</td>
</tr>
<tr>
<td>"seaward stepping,"</td>
<td>373</td>
</tr>
<tr>
<td>vertically stacked</td>
<td>373</td>
</tr>
<tr>
<td>Prograding continental margin</td>
<td>52</td>
</tr>
<tr>
<td>Prograding delta environment</td>
<td>illustration of, 137</td>
</tr>
<tr>
<td>Progressive cnlap</td>
<td>10</td>
</tr>
<tr>
<td>Proterozoic</td>
<td>224</td>
</tr>
<tr>
<td>Providence Formation</td>
<td>301</td>
</tr>
<tr>
<td>Pseudohastigerina sp.</td>
<td>75</td>
</tr>
<tr>
<td>Punctuated Aggradation Cycles</td>
<td>6</td>
</tr>
<tr>
<td>Pyrenean basin</td>
<td>26</td>
</tr>
<tr>
<td>Pyrenees</td>
<td>142</td>
</tr>
<tr>
<td>Quaternary</td>
<td>sediments</td>
</tr>
<tr>
<td>Radiochronology</td>
<td>72</td>
</tr>
<tr>
<td>Radiolarian events</td>
<td>92</td>
</tr>
<tr>
<td>Radiometric</td>
<td>contradictory ages, 314</td>
</tr>
<tr>
<td>data, sources of error in</td>
<td>76</td>
</tr>
<tr>
<td>dates for the Cenozoic</td>
<td>79</td>
</tr>
<tr>
<td>time scales, 314</td>
<td></td>
</tr>
<tr>
<td>Raritan Formation</td>
<td>294</td>
</tr>
<tr>
<td>Raven River Member</td>
<td>364</td>
</tr>
<tr>
<td>Ravinement surface</td>
<td>see also transgressive surface, 285</td>
</tr>
<tr>
<td>Rayda Formation</td>
<td>277</td>
</tr>
<tr>
<td>Rb/Sr age estimates</td>
<td>76</td>
</tr>
<tr>
<td>Reciprocal averaging ordination</td>
<td>217</td>
</tr>
<tr>
<td>Recurrent lobe abandonment</td>
<td>137</td>
</tr>
<tr>
<td>Red Bluff Clay</td>
<td>198, 322</td>
</tr>
<tr>
<td>Redbank Formation</td>
<td>294</td>
</tr>
<tr>
<td>Reduced clastic influx</td>
<td>49</td>
</tr>
<tr>
<td>Regional platforms</td>
<td>156</td>
</tr>
<tr>
<td>Regional ramps</td>
<td>156</td>
</tr>
<tr>
<td>Regional sea-level changes</td>
<td>27</td>
</tr>
<tr>
<td>Regional tectonics</td>
<td>83</td>
</tr>
<tr>
<td>Regional unconformities</td>
<td>types of, 285</td>
</tr>
<tr>
<td>Regression</td>
<td>coastline, 48</td>
</tr>
<tr>
<td>definition of, 284</td>
<td></td>
</tr>
<tr>
<td>Regressive sequence</td>
<td>49</td>
</tr>
<tr>
<td>Regressive-transgressive cycle</td>
<td>see also T-R cycle, 285</td>
</tr>
<tr>
<td>Reichelina spp.</td>
<td>238</td>
</tr>
</tbody>
</table>

Relative sea level	3, 4, 47, 110
charts	16
eustasy and subsidence	116
eustasy and differential subsidence	119
eustasy and subsidence	130
fall calculation	348
Relative sea-level change	during the Aptian-Cenomanian, 282
in Western Interior	285
Relative sea-level curve	156
Relative subsidence	22
Relative uplift	21
Retal sediments	distribution of in Gulf of Mexico, 197
Retrogradation	52, 54, 63
Retrogradational parasequences	145
Rhaetian	251
Rhizocorallium	366
Rhone delta plain	363
Ridge axes	47
Ridge push	24
Rip-up clasts	313
Ripley Formation	301, 314
Roche Point Formation	Cape Caledonia Member, 251
Chads Point Member, 251	
Gore Point Member, 251	
Rock Springs Formation, 287, 378	
Rocklandian stage, 217	
Rocky Mountains, 378	
Ancestral, 229	
Rocky Point Member	of the Pedee Formation, 314
Rooster Bridge	301
Rotalipora cushmani	294
Rugotruncana subcircumnodifer, 294	
Rupelian/Chattian boundary, 93	
Russian platform	229

Sahne Stage	209, 316, 319
Sabkha facies	177
Salil Formation	277
Salt Range	90
San Andres Formation	164, 189
San Juan basin	378
Sand continuity patterns, 47	
Sand-prone facies, 48, 52, 56	
Sands	glauconitic, 69
lenticular point-bar, 66	
Santa Rose Canyon section	277
Santee Limestone	photo, 321
Santeelampas oviformis	322
Santonian, 287, 294	
Santonian-Campanian, 368	
Scythian	90
Sea level	data integration for cycle charts of, 72, 73
definition of, 284	
documentation of change, 83	
estimates for Alabama and New Jersey, 351	
estimates of magnitude of change, 33	
excursions, 4	
from seismic-sequence interpretations, 32	
highstands, 349	
lowstands, 350	
methods for measuring, 12	
precise dating of events, 72	
rates of rise, 219	
INDEX

reconstruction of history of, 221
sinusoidal fluctuations of, 69
tectonic causes of change, 27
Sea level change
from stratigraphic data, 346
in deep-sea fan systems, 381
measurement of, 217
measurement of in epicratonic seas, 219
Sea level curve
for Europe, 287
for the Cretaceous, 276
for the Jurassic, 270
for the United States, 287
from facies sequence data, 263
reconstructed, 220
Sea level curve for Europe, 287
for the Cretaceous, 276
for the Jurassic, 270
for the United States, 287
from facies sequence data, 263
reconstructed, 220
Sea level curve for the Cretaceous, 276
for the Jurassic, 270
for the United States, 287
from facies sequence data, 263
reconstructed, 220
Sea level curve for the Jurassic, 270
for the United States, 287
from facies sequence data, 263
reconstructed, 220
Sea level curve for the United States, 287
from facies sequence data, 263
reconstructed, 220
Seismic-sequence boundaries, 48
Seismo-tectonic studies of Weins and Stein, 20
Sequence, 39
and sequence boundaries, 125
boundary patterns, 33
chronostratigraphy, 71
chronozones, 93
continental margin, 183
definition of, 110, 125
depositional, 47
geometry, 53
models, 125
progradational depositional, 49
sharp-based shoreface, 357
siliciclastic depositional, 51
Sequence boundary, 47, 48, 83, 84
Baltimore Canyon Trough, 334
Offshore Alabama, 334
Sequence stratigraphy, 39, 83, 183, 289
analysis of outcrops, 85
and coastal-plain outcrop stratigraphy, 313
Atlantic Basin, 309
concepts, 309
definition of, 110
depositional model, 310
Gulf Basin, 309
interpretation of U.S.G.S. Braggs Test Well, 306
models, 72
sedimentation rates and tectonics, 322
terminology, 44
Sequence types
Type 1, 125
Type 2, 125
Serravalian, early, 344
Serravalian, middle
sea-level falls, 331
Serravalian, 93
Shale
Midway, 339
Mowry, 316
Skull Creek, 316
Shale-prone marine facies, 48
Shales, 69
black organic, 49
Shaley facies, 52
Sharp-based shoreface, 357
core through, photo, 360
interpretation of, 362
Shelf area, 312
Shelf break, 42
Shelf edge
stacked, 331
Shelf margin systems tract, 83
discussion of, 144
illustration of, 129
Shelf margin wedge, 83
Shelf margin wedge (SMW), 300
Shelf position, 312
Shelf sediments
in Alberta, 369
Shelf slope break, 142
Shelf-margin systems tract, 42, 43
illustration of, 114
Shelf-perched lowstand deposits, 146
Shelf No. 1 Chapman well, 277
Shermanian stage, 223
Shifting equilibrium profile
and eustatic-fall asymmetry, 152
Ship Rock sandstone, 369
Shoreface
response to sea level change, 363
Shoreface sequences
 gradationally based, 359
 sharp and gradational, illustration, 359
 sharp-based, 359
Shoreline, 139
 vs. bayline, 118
Shuaiba Formation, 277
Shubuta Clay, 198, 322
Siliceous plankton, 75
Siliciclastic facies, 31
 sediment, 42
Siliciclastic sequences, 47, 51, 156
Simulation
 of depositional history, 10
 of progradational basin filling, 47
Sinemurian, 266
 regressive event, 264
Sinusoidal eustatics, 31, 35
Skate Member, 257
Skull Creek Formation, 287, 316
Skybattle Formation, 251
Slab pull, 24, 25
Sligo Formation, 280
Slope fan, 42, 143
 slope front fill, 312
Slackover Limestone, 170
Smithian, 251
South Atlantic Basin, 82
South Carolina
 Georgetown County, 321
Spain
 Pyrenees, 142
 Sparta Sand, 201
Spathian, 251
Sphenoliths distentus, 75
Spirit River Formation, 365
Spitzbergen, 235
Sr isotope ratios, 72
Stacked subsidence curves, 12
Stage boundaries, 79
Stage stratotypes, 73
Stages
 as chronostратigraphic units, 73
Straight Cliffs Formation, 378
Strandline markers, 12
Stratal pattern
 and high rate of subsides, 153
 and low rate of eustatic fall, 153
Stratigraphic column, 77
Stratigraphic correlation, 11, 183
Stratigraphic framework
 Baltimore Canyon Trough, 329
 offshore Alabama, 335
 Stratigraphic history, 12
Stratigraphic section
 comparison of regions, 230, 234, 236
Stratigraphic sequence
 depositional model, 88
Stratigraphy
 table of terminology, 75
 unified terminology of, 73
Stratotype
 of the Clairborne, Stage, 319
Stream-mouth bar, 50
Stress fields
 comparison of in various plates, 25
Stress patterns, 26
Structural hinge, 53
Stuart City formation, 280
Subaerial
 accommodation, 119
 accommodation, illus., 133
 erosion, 129
 erosion surface, 48
 hiatus, 300
 truncation, 155
Subduction zone, 24, 25
Submarine canyons, 339
Submarine erosion, 155
Submarine fan
 definition of, 140
Subsidence
 10, 47, 51
 calculation of, 349
 flexural, 338
 rates of, 31
 salt-related, 338
 thermo-tectonic, 338
Subsidence curves, 20
Subsidence processes, 19
Subsidence rate
 illustration of effects of, 120
 thermo-tectonic, 348
Subsiding margin, 54
Sunda arc, 25
Supercycle
 boundaries, 3445
Superssequence, 93
 second-order, 344
Sverdrup Basin
 eustatic sea-level changes in, 254
 stratigraphic cross section of, 252, 253, 257
 Triassic stratigraphy, 251
Switzerland, 82, 86
Syndepositional tectonism, 223
Synthems, 309
Synthesizing stratigraphies, 220
Synthetic stratigraphic column, 49
 from sediment deposition model, 375
Systems tract, 36, 156, 187
 definition of, 110
 diagram, 203
 highstand, 43, 44, 125
 lowstand, 42, 44, 125
 models, 125
 shelf-margin, 42, 125
 transgressive, 44, 125
T-R cycle
 and eustasy, 253
 definition of, 249
 third-order, 372
Taconic Orogeny, 223
Tectonic hinge, 138
 hinge point, 349
 mechanisms, 19, 27
 model, 19
 movement, 11
 subsidence, illustration, 118
 subsidence, local effects, 4
 uplift, 9
INDEX

Tectonic model
for fluctuations in apparent sea level, 20
Tectonism, 31, 76
Temporal variations in stress, 25
Tensional regional stress field, 26
Terminology
need for consistent chronostratigraphic, 73
stratigraphic, 73
used in cycle charts, 92
Terrigenous sediments, 121
Terrigenous-rich expanded sections, 301
Tertiary, 287
chronostratigraphy, 345
coastal onlap, 345
epeirogenic uplift in, 3
tensional regional stress field, 26
Tertiary depositional sequences, 329
Baltimore Canyon Trough, 336
offshore Alabama, 340
Tertiary, Early, 79
Tertiary, Late
sea-level curves for, 6
Terunbhu Formation, 178
Terunbhu Platform, 158, 167
Tethyan
ammonoid zones, 92
Tethyan Ocean, 26
Texas, 229, 277
Bee County, 280
Guadalupe Mountains, 166
Permian Basin, 147
shelf, 195
Waller County, 280
Thanetian, early, 319
Thermal cooling model, 348
Thermo-tectonic modeling, 19
Thermo-tectonic models, 12
Thermo-tectonic-subsidence curves, 6
Third-order depositional sequences, 345
Third-order cycles, 31, 73, 256, 295
causes of, 19
in the Cretaceous, diagram, 373
sea-level change in, 19
Third-order T-R cycles, 372
Tidal-flat facies, 158
Tidalites, 158
Tigris-Euphrates Delta
illustration, 138
Tigris-Euphrates River, 138
time and rock relationships, 44
time scales
for the Cenozoic, 71
for the Mesozoic, 71
timing
of turbidity-current events, 381
Tinton Formation, 294
Tithonian, 268
Toarcian, 266
Tombigbee River, 301
Toms River Well, 290
Toplap, 5
toplapping progradation, 10
total Organic Carbon, 321
Transgressive surface, 186
Transgressive-system tract, 83
Transco Wells, 290
Transgression, 48, 49, 55
definition of, 284
Transgression/regression
shoreline location, 5
Transgressive glauconitic shelf unit, 294
Transgressive deposits, 316
and rising sea level, 295
Transgressive events
correlation of, 281
Transgressive facies, 50
Transgressive surface, 43, 44, 84, 85, 285, 312
discussion of, 314
Transgressive systems tract, 43, 44, 188
definition of, 156
discussion of, 145, 171
illustration of, 113, 128
TST, 300
Transgressive-regressive cycles, 249, 372
deposition, 229
depositional sequences, 227
Tredian Formation, 91
Trench systems, 25
Triassic, 92, 93, 176, 250
carbonates sequences, 177
chronostratigraphic and eustatic-cycle chart, 100
linear time scale, 82
magnetic-reversal stratigraphy, 82
radiometric data on, 82
sequences, 108
strata distribution in the Sverdrup Basin, 250
stratigraphic cross section, 252, 253
stratigraphy of the Sverdrup Basin, 251
T-R cycles, 253
transgressions, comparison of, 258
Trinity River
composite section, 281
Trinity River Composite, 277
Truncation, 5, 85
Turbidite depositional systems
types of, 382
Turbidite facies, 50, 56
Turbidite fans, 52
turbidity currents
channelled, 384
Turonian, 287
Type 1 carbonate sequence
illustration of, 176
Type 1 depositional sequence, 189
diagram of, 203
discussion of, 312
illustration of, 310
Type 1 sequence, 83, 109, 138, 300
definition of, 125
Type 1 sequence boundary, 41
definition of, 156
discussion, 165, 168
examples of, 168
Type 1 unconformities, 295
and rapid eustatic falls, 109
Type 1 unconformity, 67, 120, 261
definition of, 125
illustration of, 143
Type 1 vs. Type 2 depositional sequence
illustration of, 311
Type 2 depositional sequences, 189
correlation surfaces, 210
discussion of, 313
illustration of, 310
Type 2 sequence, 83, 109
definition of, 125
platform/bank margin wedge, 178
Type 2 sequence boundary, 42
definition of, 156
illustration, 157
stratal patterns in, 43
Type 2 unconformities
and slow eustatic falls, 109
Type 2 unconformity: 68, 120, 261, 300
illustration of, 138

U
U.S.G.S.
Braggs #1 Test Well, 306
Line 25, 290
U.S.S.R., 86
Unconformity, 39, 48
definition of, 110, 155, 284
United States
Western Interior, 371
Upper bounding surface, 62
Utah, 378
Uvigerina spp.
indicative of lower oxygen conditions, 198

V
Vail aggradation curve, 10
Valanginian, 93, 275
Vicksburg Stage, 201, 319
Victorian Peak Formation, 166
Viking Formation, 369
Viosca Knoll, 335
Viosca Knoll 30 well
geohistory curve, 346
Virgelle Member, 368
Visean, 230
Volcanic complexes, 27
Volcanic extrusives, 76
Volcanic-ash layer, 224
gochemically fingerprinted, 217

W
Wadi Bani Kharus, 277
Wadi Maidin, 277
Wadi Tanuf, 277
Wapiabi Formation, 358, 364
Chungo Member, 368
Wasatch Plateau Deep Coalfield, 378
Washtahata Group
Buda Limestone, 281
Kiamichi Shale, 281
Waskahigan Member
illustration of origin of, 367
photos of typical features, 366
relationship to Burnstick Member, 364
Water depth
as function of stratigraphic position, 217
Water temperature
affect on marine carbonates, 31
Waynesboro Sand Member
of the Chickasawhay Limestone, 319
Weathering, 76
Wedge
basically restricted onlapping evaporite, 178
Wessonah Formation, 290
Western Europe
paleo-stress orientations in, 25
Western Interior Seaway, 357, 378
Wheeler diagram
see also Chronostratigraphic chart, 5
White Lias Formation
Langport Member, 264
Whiteinella archeocretacea, 207
Whiteinella, 207
Wilcox Group, 201
Wilcox Stage, 204
Wisconsin
Dickeyville, 218
Wisconsin Arch, 221
Wisconsinan
depositional sequence, illustration, 195
Wolfcampian, 161
Woodbine Formation, 281
Woodbury Formation, 290
Wyoming, 285
Green River basin, 378

Y
Yazoo Clay, 198
Yegua Formation, 201
Ypresian, 93
Ypresian, late, 319

Z
Zones of active transport, 48