<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>abandoned river course 436</td>
</tr>
<tr>
<td>accommodation rate 344, 381, 460</td>
</tr>
<tr>
<td>Adriatic (Adriatic Sea) 6, 9, 363–365, 367–368, 370, 381, 387</td>
</tr>
<tr>
<td>avulsion rate 6, 8, 10, 31, 37, 329, 331–333, 335, 344, 352–353, 355, 357–358</td>
</tr>
<tr>
<td>Alluvial architecture 6, 317–318, 325–326, 335</td>
</tr>
<tr>
<td>Ametella Formation 107, 120–123</td>
</tr>
<tr>
<td>amphidromic node 87, 89</td>
</tr>
<tr>
<td>anastomosing 246, 318, 355, 393, 420</td>
</tr>
<tr>
<td>Apennine tributaries 366, 370</td>
</tr>
<tr>
<td>AquaTellUs 13, 18–21, 28</td>
</tr>
<tr>
<td>asymmetric delta (see delta, asymmetric)</td>
</tr>
<tr>
<td>avulsion frequency 6, 21, 23, 25–26, 317, 328, 331–332, 335, 355</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>backbarrier bay 433, 439</td>
</tr>
<tr>
<td>Bangladesh 89, 98, 411–412, 415, 420, 428</td>
</tr>
<tr>
<td>Baronia Formation 107–108, 121</td>
</tr>
<tr>
<td>barrier bars 401, 441, 445, 447</td>
</tr>
<tr>
<td>barrier-island platform 400</td>
</tr>
<tr>
<td>barrier-lagoon deposit 370</td>
</tr>
<tr>
<td>barrier spit 286, 370–371, 403</td>
</tr>
<tr>
<td>basin geometry 232</td>
</tr>
<tr>
<td>basin-floor fan 5, 179–180, 182, 199, 203–205</td>
</tr>
<tr>
<td>Bay of Bengal 152, 412, 414–415, 420, 424, 433, 435</td>
</tr>
<tr>
<td>bayhead delta 66, 74, 102–103, 386, 393, 401, 437, 446–447</td>
</tr>
<tr>
<td>baymouth barrier 9, 393–395, 397–398, 400, 404–406</td>
</tr>
<tr>
<td>beach ridge plain 401, 404, 446</td>
</tr>
<tr>
<td>bed-scale facies architecture 9, 31, 33, 40</td>
</tr>
<tr>
<td>bedding correlation 31, 39, 40, 42, 44, 46</td>
</tr>
<tr>
<td>bedload 8, 16, 19, 23–24, 62, 406, 412, 472</td>
</tr>
</tbody>
</table>

River Deltas—Concepts, Models, and Examples
SEPM Special Publication No. 83, Copyright © 2005
INDEX

T

tectonic control 8, 15, 225, 428–429

tectonics 7, 9, 13, 20, 207, 210, 227, 241, 332, 252, 358, 365, 411, 415, 428

terminal distributary channel 62, 165, 172, 363, 387

tidal bar(s) 87, 89, 93–97, 99–100, 104, 106, 108, 111, 113, 120–121, 123, 490

tidal channel(s) 89, 91, 96, 102, 420, 436, 457, 491

tidal flat(s) 50, 64, 73, 87, 89, 91, 108, 121, 436, 439, 452–453, 457, 469, 479, 481

tidal influence 66, 87, 93, 116, 121, 124, 225, 328, 393, 459, 462, 471, 473

tidal range 16, 24, 87, 89–91, 100, 222, 439, 453, 465, 468

tidal resonance 87, 89–90

tidal shelf sand ridge 108

tide- and wave-dominated delta 451, 460, 462

tide-dominated delta 37, 70, 72, 90, 103, 107, 118, 122, 451, 460, 462–463

trace fossil(s) 4, 50, 54, 57, 66, 72, 78, 100, 167, 213

transgressive ravinement 106, 111, 123, 258

transgressive sand 8, 123, 203, 370, 457

Trinity–Sabine–Brazos delta 260, 265–266, 268, 270

trophic generalists 4, 49, 64, 70, 78

tropical 89, 123, 414–415, 424, 466–468, 487

turbidite 58, 60, 62–64, 73, 156, 174, 179–180, 183, 186–189, 191, 194–197, 201, 204, 225

Type 1 sequence boundary 281

Type 2 sequence boundary 5, 21

U

unconformity 179, 192, 194, 195, 234, 235, 274, 280, 281

upstream accretion 5, 8, 173–175

V

Vasishta lobe 441, 446–447

Vietnam 39, 451–453, 463

Volga canyon 234–235, 239, 253–254

Volga Delta 3, 64, 231–233, 235, 240–242, 244–254

W

wave-influenced delta 5, 37, 58, 64–66, 72, 110, 133, 136, 141–142, 149, 277, 288–289, 363, 386, 397–398, 441, 462, 465–466

western Louisiana delta 260, 266, 269, 272, 274

Y

Yangtze delta 40, 42

Z

Zoophycos 52, 60, 62–63, 66, 74, 76–77, 111