(2005) and Sinha et al. (2007) for a description of these rhythms. Photo by M.R. Gibling.

S18. Colluvial gully fills up to 10 m thick in cliffs along the Yamuna Valley near Kalpi, India. Strata filling a major gully dip systematically to the right across most of the illustrated cliff face, and are cut by two successive gully fills at right of the photo. Cliff is 10 m high, and the topmost cliff strata represent the cultural level of human occupation. The gully forms and fills are analogous to modern badland features that border the modern Yamuna River. See Gibling et al. (2005) for a detailed account of these gully fills, which yielded a date of 36 ka B.P. Photo by M.R. Gibling.


S20. Close-up of calcrete in DVD 19 to show closely packed nodules. Scale is 9 cm long. Photo by M.R. Gibling.

S21. Gullied badlands behind incised valley of the Yamuna River near Kalpi, India. Gullies are well vegetated and up to 15 m deep, and they dissect late Quaternary alluvium along a broad belt bordering the river. Photo by M.R. Gibling.

S22. Gullied cliff face along the Betwa River near Kotra, India (Text-figure 2A). Gullies are up to 15 m deep and form part of a wide belt bordering the river. They cut into an undated alluvial succession that contains erosional surfaces and comprises stacked aggradational and degradational rhythms. The succession contains fluvial carbonate gravels derived from erosion of floodplain deposits. Tough material in foreground is an older, well cemented alluvial unit. See description in Gibling et al. (2005). Photo by M.R. Gibling.

S23. Gullied cliff face along the Yamuna Valley at Tilauli near Allahabad, India. The main part of the cliff consists of red-brown floodplain silt and clay. At the cliff top is an indurated, well stratified yellow silt 3 m thick that is rich in gastropods and interpreted as a lacustrine unit. Shells yielded a date of 15.5 radiocarbon years B.P. (Williams and Clarke 1995), calibrated to ~18.8 ka B.P. The change from floodplain to lake deposition at the cliff top represents a period of reduced discharge on the alluvial plain. Subsequent incision by the Yamuna River post-dates the lacustrine unit, and is attributed to enhanced discharge during intensification of the Southwest Indian Monsoon following the Last Glacial Maximum (Tandon et al. 2006). Photo by M.R. Gibling.

S24. Close-up of lacustrine unit at Tilauli (DVD 23). The unit is 3 m thick, and has partly slumped down the cliff in the foreground. Note gullied landscape and Yamuna Valley in distance. Photo by M.R. Gibling.

S25. Alluvial terrace (centre-right) where the Gandak River has cut through alluvium from a tributary valley near Kalopani, Nepal Himalaya. The higher cliff at centre-left is largely cut through bedrock. Hut in fields at centre-right of photo is 5 m high. Photo by M.R. Gibling.

S26. Alluvial terrace from the tributary Miristi Kholi, incised by the Gandak River north of Tatopani, Nepal Himalaya. House on terrace top is 8 m high. See Monecke et al. (2001) for a description of the alluvium. Photo by M.R. Gibling.

S27. Terraces at base of Gandak Valley south of the Main Central Thrust near Tatopani, Nepal Himalaya. The valley cuts through the Annapurna and Dhaulagiri Massifs, 8 km above sea-level, parts of which are visible in the distance. The valley is about 6.5 km deep. People on bridge in foreground for scale. Photo by M.R. Gibling.

S28. Close-up of terraces in DVD 27 to show coarse-grained alluvium and occurrence of terraces in small rock-cut embayments. People on bridge in foreground for scale. Photo by M.R. Gibling.

S29. Alluvial terraces of the Belan River, India, with Kaimur Hills of the Indian Craton visible to the south. The river at left is cut into Proterozoic quartzites, and the terrace succession at right commences with channel-base groundwater calcrete, which projects as ledges into the river. People are standing on the top of the calcrete. The alluvium in the cliff yielded dates of about 90 to 20 ka B.P. (Williams et al. 2006). Photo by M.R. Gibling.

S30. Alluvial terrace and cultivated inset terrace, Belan River, India. The alluvium at this location yielded dates back to about 13 ka B.P. (Gibling et al. 2008), a quite different spectrum of ages from the terrace succession shown in DVD 29, about 5 km upstream. Photo by M.R. Gibling.

S31. Strath (bedrock) terrace on Proterozoic quartzite, with thin alluvial cover, Chopani-Mando, Belan River, India. The terrace level on the far bank of the river was the site of Palaeolithic and Mesolithic settlements (Gibling et al. 2008). Photo by M.R. Gibling.

S32. Charity Creek on the Manning River, New South Wales, Australia, looking upstream. At the bend at the extreme left, the alluvial terrace has been partially stripped away by flood events in the 1968 to 1978 period, leaving an expanse of gravel. Site of “catastrophic stripping” described by Nanson (1986). Photo by M.R. Gibling.

S33. Close-up of Charity Creek site at river bend at extreme left in DVD 32, looking downstream. The alluvial terrace has been stripped away over a width of about 50 m, leaving an incised terrace margin and a gravel expanse. Photo by M.R. Gibling.