Bibliography

CASE STUDIES

Petroleum Engineers Middle East Oil Show, Bahrain, SPE Paper 29869.

Gastaldi, C., 2000, Reservoir characterization from seismic attributes; an example from Peciko field (Indonesia) (abs.): AAPG Bulletin, v. 84, p. 1429.

Hohn, M. E., 1993b, Petroleum geology and reservoir characterization of the Big Injun sandstone (Price Formation) in the Granny Creek field, Clay and Roane counties, West Virginia: Morgantown,

Department of Energy 10th Symposium on Improved Oil Recovery, SPE/DOE 35407, 7 p.

Kongwung, B., and S. Ronghe, 2000, Reservoir identification and characterization through sequential horizon mapping and geostatistical analysis; a case study from the Gulf of Thailand: Petroleum Geoscience, v. 6, p. 47–57.

MacDonald, A. C., and E. K. Halland, 1993, Sedimentology and shale modeling of a sandstone-rich...

Norris, B., C. V. Deutsch, and D. Leckie, 2000, Deterministic geological control on a probabilistic, 3-dimensional geostatistical reservoir model of the Lower Cretaceous S1A marine sandstone, upper Qishn Formation, Heijah field, Yemen: Geo-Canada 2000, Calgary, June, 4 p.

Basin Oil and Gas Recovery Conference, Midland, Texas, SPE Paper 23970.

Vejbaek, O. V., 1999, Clastic reservoir characterization using seismic impedances and geostatistics; Middle Jurassic unit of the Harald field, Danish North Sea (abs.): AAPG Annual Meeting Program, v. 9, p. A142.

Yang, C. T., A. K. Chopra, J. Chu, X. Huang, and

Yeung, K., 2000, Application of 3-D geostatistical models to characterize and simulate an oil sands reservoir using the steam assisted gravity drainage (SAGD) recovery process in northeastern Alberta, Canada (abs.): AAPG Bulletin, v. 84, p. 904.

Yeung, K. C., 2000, Application of 3-D geostatistical models to characterize and simulate an oil sands reservoir using the steam assisted gravity drainage (SAGD) recovery process in northeastern Alberta, Canada: AAPG/SPE Conference, California, June, CD-ROM.

METHODOLOGICAL APPLICATIONS

Allard, D., 1994, Simulating a geological lithofacies with respect to connectivity information using

Bean, C. J., and J. McCloskey, 1995, Seismic constraints

Caers, J., and S. Strebelle, 2003, Multiple-point geostatistics: Integrating geological and seismic data in the deepwater environment (abs.): AAPG Pacific Section and SPE Western Regional Joint Meeting, May 19–24, Long Beach, California, Abstracts, CD-ROM.

Hohn, M. E., and M. V. Fontana, 1993, Geostatistical simulation of reservoir heterogeneity in a lower Missippian sandstone, Appalachian basin (abs.): AAPG Annual Meeting Program, v. 2, p. 120.

Muge, F., M. Vairinho, and P. Pina, 1994, A methodology for supervised classification of exploration areas based on the joint use of geostatistics and image analysis techniques, in C.-J. F. Chang,

Oliver, D. S., 2002, Conditioning channel meanders to well observations: Mathematical Geology, v. 34, p. 185–202.

Overbey, W. K., T. K. Reeves, S. P. Salamy, C. D. Locke, and H. R. Johnson, 1991a, Novel geotechnical/geostatistical approach for exploration and

Switzer, P., 1989, Non-stationary spatial covariances estimated from monitoring data, in M. Armstrong,

Tyler, K., A. Henriquez, and T. Svanes, 1994a, Modeling heterogeneities in fluvial domains: A review of the influence on production profiles, in J. M.

Yang, A. P., 1992b, A geostatistical interpolation method from only two or three wells: Society of Petroleum Engineers International Meeting on Petroleum Engineering, Beijing, SPE Paper 22346.

Yang, A. P., 1995, Mapping temperature with geostatistics can help identify steam-chest and optimize oil production: Society of Petroleum Engineers International Heavy Oil Symposium, Calgary, SPE Paper 30254.

Zhang, F., A. C. Reynolds, and D. S. Oliver, 2002, Evaluation of the reduction in uncertainty obtained by conditioning a 3D stochastic channel to multiwell pressure data: Mathematical Geology, v. 34, p. 715–742.

THEORETICAL DEVELOPMENTS

Arpat, B. G., and J. Caers, 2005, A multiple-scale,

Cressie, N., 1985a, When are relative variograms useful in geostatistics?: Mathematical Geology, v. 17, p. 693–702.

Delfiner, P., and J. P. Delhomme, 1973, Optimum interpolation by kriging, in J. C. Davis and M. J. McCullagh, eds., Proceedings of the NATO advanced study institute, display and analysis of

Goovaerts, P., 1994a, Comparison of CoIK, IK, mIK

Gunst, R. F., and M. L. Hartfield, 1997, Robust semivariogram estimation in the presence of influential spatial data values, in T. G. Gregoir, D. R.

Mantoglou, A., and J. L. Wilson, 1981, Simulation of random fields with the turning band method: Cambridge, Massachusetts Institute of Technology, Department of Civil Engineering, Ralph M. Parsons Laboratory, Reprint 264, 199 p.

Marschalinger, R., 1993, Improving geostatistical
modeling by pre- and post-processing input and result data in a 3D CAD system (abs.), in R. B. McCammon and D. F. Merriam, eds., Program and Abstracts, Silver Anniversary Meeting, 1968–1993: International Association for Mathematical Geology, p. 34.

Myers, D. E., 1989a, To be or not to be... stationary? That is the question: Mathematical Geology, v. 21, p. 347–362.

(translation of Teorija Verojatnostei i ee Primenenija), v. 37, p. 345–347.

Rivoirard, J., 1993, Relations between the indicators...

Wackernagel, H., 1994, Cokriging versus kriging

saturated Zone: Las Cruces, New Mexico State University, p. 505–510.

DISSERTATIONS AND THESES

Chiles, J. P., 1977, Géostatistique des phénomènes
Laine, E., 1998, Geostatistical, geological and geophysical modeling of subsurface structures of

Liu, Y., 2003, Downscaling seismic data into a geological sound numerical model: Ph.D. Dissertation, Texas A&M University, College Station, 130 p.

SOFTWARE, SOFTWARE APPLICATIONS, AND USER MANUALS

O’Leary, J., and A. Monge, 1980, VAR: A program to calculate the semivariance function in three

Tran, T. T., 1994, Improving variogram reproduction

GENERAL INTEREST PAPERS, DISCUSSIONS, AND COMMENTARIES

Parker, W. C., 1989, Kriging applications and pitfalls: A layman’s discussion (abs.): Geological Society of America Abstracts with Programs, v. 21, p. 54.
Yarus, J. M., 1992, 3-D reservoir modeling—A lot of noise can go a long way: Geobyte, v. 7, p. 76.

BOOKS, REVIEWS OF BOOKS, AND COURSE NOTES
Carr, J. R., 1991, A short course for geostatistics and
multivariate data analysis: Utah Geological Survey Course Notes, 192 p.
Clark, I., 1992, Geostatistics applied to real data: Reno, University of Nevada, Mackay School of Mines, Course Notes, 28 p.
David, M., 1974b, A course in geostatistics: Reno, University of Nevada, Mackay School of Mines, 303 p.

Ripley, B. D., 1986a, Review: Statistical analysis of spatial point patterns (P. J. Diggle, Academic
Ziegel, E., 1990, Review: Geostatistics and petroleum
Stochastic Modeling And Geostatistics:
Principles, Methods, and Case Studies, Volume II

Since publication of the first volume of Stochastic Modeling and Geostatistics in 1994, there has been an explosion of interest and activity in geostatistical methods and spatial stochastic modeling techniques. Many of the computational algorithms and methodological approaches that were available then have greatly matured, and new, even better ones have come to the forefront. Advances in computing and increased focus on software commercialization have resulted in improved access to, and usability of, the available tools and techniques.

Against this backdrop, Stochastic Modeling and Geostatistics Volume II provides a much-needed update on this important technology. As in the case of the first volume, it largely focuses on applications and case studies from the petroleum and related fields, but it also contains an appropriate mix of the theory and methods developed throughout the past decade. Geologists, petroleum engineers, and other individuals working in the earth and environmental sciences will find Stochastic Modeling and Geostatistics Volume II to be an important addition to their technical information resources.

American Association of Petroleum Geologists
P.O. Box 979
Tulsa OK 74101-0979

www.aapg.org