


Beal, J. L., W. A. Morgan, and S. W. Young, 1998, Depositional facies and diageneis of hydrocarbon bearing Wolfcamp carbonate gravity flows, Howard Glasscock fields, Midland Basin, Howard County, Texas, in K.


Bohacs, K. M., G. J. Grabowski, Jr., A. R. Carroll, P. J. Mankiewicz, K. J. Miskell-Gebhardt, M. B. Wagner, and J. A. Simo, 2005, Production, destruction, and dilution—the many paths to source rock development, in N. B.


Bruce, R., G. Bowers, and R. Borel, 2000, Well planning for shallow water flows and overpressures-the Kestrel well: OTC Proceedings Contribution No. 13104.


<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glendinning, R.</td>
<td>2003, The Yafo sand; post-Messinian turbidite play, offshore Levant: AAPG International Conference, Barcelona, Spain (abs.), CD-ROM.</td>
</tr>
</tbody>
</table>


Holmes, N. A., 2002, Effective techniques in applied micropaleontological facies analysis of turbidite reservoirs: The American Association of Stratigraphic Palynologists (AASP), the British Micropalaeontological Society (BMS) and the North American Micropaleontology Section of SEPM (NAMS), University College London.(abs.).


Houston Geological Society, 2000, Deep water Gulf of Mexico Dry Hole Seminar, Course notes, November 8.

Houston Geological Society, 2003, Disappointing seismic anomalies: Dry Hole Symposium #2, Course notes, October 21.


Hubbard et al., 2006, An outcrop example of large-scale conglomeratic intrusions sourced from deep-water channel deposits, Cerro Toro Formation, Magallenes Basin, southern Chile, in A. Hurst and J. A. Cartwright, eds., 2006, Injected sand reservoirs: AAPG Memoir, in press.


Jones, G. D., A. C. Gary, B. Kohl, H. H. Roberts, and B. J. O'Neill, 2002, Using biostratigraphy to constrain the position of ancient shelf margins: foraminiferal case studies from the Neogene section, northern Gulf of Mexico, Joint Meeting of AASP-BM-SAMS: Exploration Biostratigraphy Section, University College London (abs.).


Magoon, L. B., and W. G. Dow, eds., 1994, The petroleum system—from source to trap: AAPG Memoir 60, 655 p


Monteil, E., 2002, Morphostratigraphy – a new non-taxonomic biostratigraphic technique applied to bioturbiditic deep sea reservoir, Maureen Formation, Flemming Field, UKCS, The American Association of Stratigraphic Palynologists (AASP), the British Micropalaeontological Society (BMS) and the North American Micropaleontology Section of SEPM (NAMS), University College London (abs.).


Morgan, R., 2003, Prospectivity in ultradeep water: the case for petroleum generation and migration within the

Moore, M. G., G. A. Apps, and F. J. Peel, 2001, The petroleum system of the western Atwater Foldbelt in the ultra
depth water Gulf of Mexico, in R. H. Fillon, N. C. Rosen, P. Weimer, A. Lowrie, H. W. Pettingill, R. L. Phair,
Mexico experience: Gulf Coast Section–SEPM Foundation Bob F. Perkins Twenty-first Annual Research

heterogeneity modeling of Cretaceous sand-rich turbidite reservoirs, Campos Basin, Brazil, in P. Weimer, R.
Deep-Water Reservoirs: Gulf Coast Section SEPM Foundation 20th Annual Bob F. Perkins Research Conference,
p. 587-605.

Moretti, I., S. Wu, and A. W. Bally, 1990, Computerized balanced cross-section LOCACE to reconstruct an alloch-

Morgan, R., 2003, Prospectivity in ultradeep water: the case for petroleum generation and migration within the
outer parts of the Niger Delta apron, in T. J. Arthur, D. S. MacGregor and N. R. Cameron, eds., Petroleum
geology of Africa: New themes and developing technologies. Geological Society, London, Special Publica-
tion, No. 207, p. 151–164.


Morris, P. H., S. N. J. Payne, and D. P. J. Richards, 1999, Micropaleontological biostratigraphy of the Magnús

Morris, R. C. 1971, Stratigraphy and sedimentology of the Jackfork Fork, Arkansas, AAPG Bulletin, v. 55, p. 387-
402.

Morris, W. R., and C. J. Busby-Spera, 1988, Sedimentological evolution of a submarine canyon in a forearc basin,

Morris, W. R., and C. J. Busby-Spera, 1990, A submarine fan valley levee complex in the Upper Cretaceous Rosar-

Morris, W. R., and W. R. Normark, 2000, Scaling, sedimentologic and geometric criteria for comparing modern and
Bouma, M. Styzen, and D. T. Lawrence, eds., 2000, Global deep-water reservoirs: Gulf Coast Section–

Morris, W. R., M. H. Scheihing, D. V. Wickens, and A. H. Bouma, 2000, Reservoir architecture of deepwater sand-
stones: examples from the Skoorsteenberg Formation, Tanqua Karoo Sub-basin, South Africa, in P. Weimer,
Global Deep-Water Reservoirs: Gulf Coast Section-SEPM Foundation 20th Annual Bob F. Perkins Research
Conference, p. 629-666.

Morton, C. H., 2001, 2-D and 3-D seismic interpretation of Pliocene-Pleistocene submarine fans, Alaminos and

Morton, R. A., 1993, Attributes and origins of ancient submarine slides and filled embayments: example from the

Abbotts, ed., United Kingdom oil and gas fields, 25 years’ commemorative volume: Geological Society,

Mulder, T., and J.P.M. Syvitski, 1995, Turbidity currents generated at river mouths during exceptional discharges to


Mulder, T., S. Migeon, B. Savoye, and J.M. Jouanneau, 2001a, Twentieth century floods recorded in the deep Medi-

Mulder, T., S. Migeon, B. Savoye, and J.-C. Faugeres, 2001b, Inversely graded turbidite sequences in the deep Medi-

Mulder, T., J. P. M. Syvitski, S. Migeon, J.-C. Faugeres, and B. Savoye, 2003, Marine hyperpycnal flows: Initiation,


Pauli, D., 1994, Friable submarine channel sandstones in the Jackfork Group, Lynn Mountain Syncline, Pushma-

Passey, Q. R., S. Creaney, J. B. Kulla, F. J. Moretti, and J. D. Stroud, 1990, A practical model for organic richness

Parize, et al., 2006, A methodological approach of clastic injectites from field analysis to seismic modelling: the

Payne, S.N.J., Cornick, P.A., Draper, L.F., and Nicholson, H., 2002, Mungo Field UKCS 22/20: bugs, a dose of salts, and reservoir development: The American Association of Stratigraphic Palynologists (AASP), the British Micropaleaeontological Society (BMS) and the North American Micropaleontology Section of SEPM (NAMS) joint meeting, University College London (abs.).


Sikora, P. J., Howe, R. W., Gale, A. S., and Stein, J. A., Microfossil-calibrated time scale for the Upper Cretaceous – wider utility for absolute age control in industry and academia: Joint Meeting of AASP-BMS-NAMS: Exploration Biostratigraphy Section, University College London (abs.).


Thunell, R. C., 1976, Carbonate calcium dissolution history in Late Quaternary deep-sea sediments, western Gulf of Mexico: Quaternary Research, v. 6, p. 281-297.


Vail, P. R. et al., 1977, Seismic stratigraphy and global changes in sea level, Parts 1-11: AAPG Memoir 26, p. 51-212.


Williams, G., S.N.J., Payne, and R. Anderton, 2002, Forties Field: the application of biostratigraphy to a mature field: The American Association of Stratigraphic Palynologists (AASP), the British Micropalaeontological Society (BMS) and the North American Micropaleontology Section of SEPM (NAMS) joint meeting (abs.).


Petroleum Geology of Deepwater Settings
by Paul Weimer and Roger M. Slatt, et al.

This book is intended to provide the working geologist, geophysicist, and petroleum engineer with a broad overview of the petroleum systems of deepwater settings. Deepwater depositional systems are the one type of reservoir system that cannot be easily reached, observed, and studied in the modern environment. In contrast to other siliciclastic and carbonate reservoir systems, the study of deepwater systems requires many different remote observation techniques, each of which can only provide information on one part of the entire depositional system. As a consequence, the study and understanding of deepwater depositional systems as reservoirs has lagged behind that of the other reservoir systems, whose modern processes are more easily observed and documented.

For this reason, geoscientists use an integrated approach, working in interdisciplinary teams with multiple data types. The types of data used in the study of deepwater deposits include: outcrop studies, 2D and 3D seismic-reflection data (both for shallow and deep resolution), cores, conventional and specialized log suites, biostratigraphy, and well test and production information. These data sets are routinely incorporated into computer reservoir modeling programs for production performance prediction and forecasting.

Technologies for deepwater exploration and development are improving rapidly. The intent of the book is to provide information that will be usable even as the technologies advance beyond what we present here.