Index

A

Absaroka Plateau, Wyoming, 144, 145
Alaska, Prudhoe Bay field, 1–2
Albuskjell field, North Sea, 164
Aldrich field, Kansas
 analogues, reasoning from, about potential for horizontal drilling, 210
 excessive well spacing, and recoverable reserves, 209–210
 infill drilling, effect of, 211
 structure of, 210
amalgamated channel deposits, 96, 97, 101, 102, 103, 130
amalgamated sheet sandstones, 96, 97, 100, 101
Amoco, 2, 50, 99
AMS, see Auxiliary Measurement Sonde
Amsden Formation, Byron field, Wyoming, 144
Anadrill, 105
Andrew field, North Sea
 breakthrough, of gas and water, relative to traverses of horizontal wells, 67, 71, 94
 breakthrough, of water, relative to shales and faults, 89–90
 compartments in reservoir, 69, 82, 83, 88–90
 coning, 67, 77, 83, 85, 87, 88, 91, 93
 cutoffs, for pay zones, 70
 date of discovery and date of development, 68
 gas-oil contact, monitoring of, 87
 gas-oil ratio, management of, 85
 gas-oil ratio, trends of, relative to production, 83
 geologic setting, 70
 horizontal wells, advantages of, in production, 67, 71, 94
 horizontal wells, development, order of, relative to reservoirs, 77
 horizontal wells, flow, contribution along wellbore, 83
 horizontal wells, lengths, perforations, standoffs, 78
 horizontal wells, number of, 70
 horizontal wells, perforations, designed to prevent breakthrough, 76
 horizontal wells, results of, 67
 horizontal wells, trajectories, 77
 lithostratigraphic units, principal, 69
 location, in North Sea, 68
 logging, program of, 77
 logging while drilling, 77
 modeling, of reservoir, 72, 73–74, 75, 76, 78, 91
 oil-water contact, monitoring of, 91
 optimization, by horizontal wells, 67
 parameters, 70
 pilot hole, 68
 production, amounts of gas, oil, and water, 79–81
 production, relative to shale barriers, channel-fill sandstones, and faults, 69
 reserves, 68, 70, 92
 reserves, effects of horizontal wells on estimates, 67–68, 79–80, 94
 reservoir, channel-fill sandstone, geometry of, 69, 89
 reservoir, depositional environment of, 75
 reservoir, driving mechanisms, 81, 93
 reservoir, modeling of and uses of, 72, 73–74, 75, 76, 78, 91
 reservoir, porosity and permeability, 70, 71
 reservoir, pressure, rate of decline, 82–83
 reservoir, uncertainties about, before development, 72
 salt dome, 69
 sand, risk of production, relative to facies, 75
 seismic surveys, 3-D, 69, 70, 92
 seismic surveys, 4-D, 92, 94
 standoff, optimal, 73, 88, 93
 structural geology of, 67, 90, 93
 submarine-fan, channel-fill sandstones, 69, 70, 75, 89
 surveillance, for management of reservoir, 78–79
 type log, 70
 water cut, trends, with time and production, 88–91
Andrew Formation, 70
Andrew Operating Alliance, 69
Appalachian Basin, 3
Arkabuck Group, Kansas, 208
ARCO, 2, 11, 12, 23, 30
ARCO Alaska, Inc., 113
Arctic National Wildlife Refuge, 114
Arecuna field, Faja region, Eastern Venezuela Basin
 amalgamated channel-fill sandstones, 130
 compartments in reservoir, 135–138
 coning, of aquifer, 127, 128, 139–140
 flooding surfaces, as basis for division of stratigraphic sequence, 129–131
 fluvial sandstones, 129–132
 horizontal wells, and production of water, summarized, 139
 horizontal wells, costs, relative to vertical wells, 128
 horizontal wells, results of, 138–140
 horizontal wells, strategy of, 138
 lignite beds, as marker beds, 129, 130
 location, in heavy-oil belt, 128
 logging while drilling, 138–140
 Merecure Formation, 127, 129
 Merecure Formation, depositional environments, 129–131
 Oficina Formation, 127, 129
 Oficina Formation, depositional environments, 131–132
 oil, production, relative to gas-oil ratio, 134–135
 original oil in place, 128, 138
 relative permeability, oil and water, and effect of water saturation, 134, 140
 reservoir, model of, effectiveness of, 138
 reservoirs, depositional environments of, general, 129
 reservoirs, drive mechanism, 133
 reservoirs, interbedding of oil- and water-saturated sandstones, 128, 137
 reservoirs, pressure compared to content of methane and heptane, 133
 seismic survey, 3-D, 128, 129, 132
 stratigraphic framework, 129
 strike-slip faulting, 133
 structure of, 132–133
 trap, and trapping mechanism, 133
 type log, 129
 water resistivities, varied, problematic in petrophysical analyses, 127, 128, 136, 140
 water saturation, sensitivity of oil production to, 134, 140

261
water saturation, variation of, and mapping of, 135–136, 140
Argentina, number of horizontal wells in, 6
Athabasca, western Canada, heavy-oil deposits, 5
Attaka field, Indonesia, 6
artic reserves
Hollow-Nikkel field, Kansas, 210
Mississippian and Ordovician rocks beneath unconformity, Kansas, 208
South Pass 62 field, Gulf of Mexico, 58
Wilmington field, California, 30
Austin Chalk
number of horizontal wells in, 3, 4
reservoir, type of, 3
pilot projects, 1, 2
trend, 3–5
"Autotrak" directional drilling tool, 77
Auxiliary Measurement Sonde, 150, 152

B
Bab field, U.A.E., 6
Baker Hughes Company, 55
Baker Hughes Intec, 77
Bakersfield Arch, California, 22
Bakken Shale, North Dakota
number of horizontal wells in, 4
reservoir, type of, 3
Bandini field, California, 28
Barber County, Kansas, 208
Barrow Arch, Alaska, 115, 116
Beartooth Mountains, Montana, Wyoming, 145
Beaumont Offshore field, California, 28
Belridge field, California, 3
Beverly Hills field, California, 28
Bighorn Basin, Wyoming, 143, 144
Bighorn Mountains, Wyoming, 144, 145
Bighorn rock-stratigraphic unit, Garland field, Wyoming, 145
Bigstring fault, Wyoming, 144
Bima field, Indonesia, 2
biostratigraphy
general, 69, 70, 77, 96
goesteering by, 168–169, 183, 184, 185, 186–188, 249–250, 260
BOAST 4, a PC-based reservoir-simulation tool, 216, 219, 220, 222
BOAST-VHS, a PC-based reservoir-simulation tool, 216, 219, 220, 222
Bolivian Coastal fields complex, Lake Maracaibo, Venezuela, 6
Bohlebaschereit, Yowlumne field, California, 13
Bouma sequences, Stevens Sandstone, Yowlumne field, California, 14, 18
BP Amoco, 96, 97
BP Exploration, 67
Brae field, North Sea, 68, 69
Breita Olinda field, California, 28
Breton Sound Block 20 field, Gulf of Mexico, 50
British Petroleum, 2
Brookeland field, Texas, Louisiana, 4
Brooks Range, Alaska, 115, 116
Buda limestone, Texas
number of horizontal wells in, 4
reservoir, type of, 3
Buffalo Fork fault, Wyoming, 144
Bureau of Economic Geology, Austin, Texas, 127, 128
Byron field, Wyoming
Amsden Formation, 144
borehole-image log interpretation, 143
compartments in reservoir, 144, 154
cumulative production, 146
eolian sandstones in, 143–149
FMS images, and interpretation of, 150, 151, 152, 154, 155–156, 157
Goose Egg Member, Phosphoria Formation, 144
horizontal wells, traverse, relative to dunes, 150, 157
horizontal wells, traverse, relative to fractures, 150–151
horizontal wells, traverse, within Tensleep Sandstone, 155
hydrodynamic trapping, 145
location and tectonic setting, 144, 145
marine sandstones, 147–148
oil, amount recoverable, 144
parasequences, described, 148–149
parasequences, log characteristics of, 149, 151, 153
parasequences, petrophysical characteristics of, 146, 149, 150, 151–153
reservoirs, drive mechanisms, 146
reservoirs, fractures in, orientations and intensity of, 151, 154, 157
reservoirs, petrophysical characteristics of, 146, 149, 150, 151–153
structure of, 145, 146
Tensleep Sandstone, core descriptions of, 147
Tensleep Sandstone, depositional environments and facies of, 144–145, 146–148
Tensleep Sandstone, lithology of, 145
trap, and trapping mechanism, 144–146
type logs, 145, 149
waterflood, 150

C
California, deepest onshore horizontal well, 11, 23
Canada
first-year average productivity of horizontal wells, 5
number of fields with horizontal wells, 2
number of horizontal wells in, 1, 2, 5
Canterbury Plain, New Zealand, as analogue of Mercure Formation, 130–131
carbonate-rock reservoirs, fractured, 3, 4
Caribbean Plate, 133
Caribbean Sea, 128
Cedar Hills field, South Dakota, 3
Central Basin Platform, West Texas, 4
Central Graben, North Sea, 173, 183
Central Kansas Uplift, 208
talk, horizontal wells in, 163–189
Chanac Formation, Yowlumne field, California, 13
channel-fill sandstones, general, 52, 54–55, 56, 58, 59, 60, 63, 64, 69, 75, 89, 96, 97, 101, 102, 103, 113, 116, 117, 119, 123, 130
channel-levee sandstones, 96, 97, 99, 100, 101, 102, 103
Charleston field, Michigan, 197–199
Cheetah minibasin, Gulf of Mexico, 51
Cherokee sandstones, Kansas, 208
Chester rock-stratigraphic unit, Kansas, 208
Cheyot Hills field, California, 28
Chevron U.S.A., Inc., 50
Chugwater rock-stratigraphic unit, Garland field, Wyoming, 145
Clair field, west of Sheridan, U.K.
biostratigraphy, and geosteering, 249–250, 260
conglomerates, 251
eolian sheet sands, 249, 251
fluvial sandstones, 249, 251
Index | 263

geosteering, high-angle wells, information for, 250
heavy-mineral analysis, and detection of faults, 255–259
heavy-mineral analysis, and geosteering, 250, 252, 255–259
heavy-mineral analysis, and LWD records, 255
heavy-mineral analysis, apatite roundness index, 252–254, 256–259
heavy-mineral analysis, apatite-tourmaline index, 252–254, 256–259
heavy-mineral analysis, application while drilling, lag time, 255
heavy-mineral analysis, case histories, 255–259
heavy-mineral analysis, contamination of samples, 257, 258, 260
heavy-mineral analysis, facies-sensitive criteria, 253
heavy-mineral analysis, garnet-zircon index, 252–254, 256–259
heavy-mineral analysis, interpretation of evidence, examples, 256–259
heavy-mineral analysis, pilot study, results of, 252–255
heavy-mineral analysis, provenance-sensitive criteria, 252
heavy-mineral analysis, rutile-zircon index, 257, 258–259
heavy-mineral analysis, success of, 259–260
heavy-mineral analysis, unstable minerals, as criterion, 252–254, 256–259
heavy-mineral analysis, unstable minerals-tourmaline index, 253–254, 256–257
informal rock-stratigraphic units, 251
lacustrine mudstones, 251
location, 250
logging while drilling, 249, 250, 255, 257
Lower Clair Group, 250
samples, collection of, mud motor compared with turbine, 260
seismic surveys, 3-D, 251
structural geology of, general, 250
Upper Clair Group, 251
Cleon 12 field, Michigan, 199–201
Cloverly rock-stratigraphic unit, Garland field, Wyoming, 145
Cod field, North Sea, 164
Cold Lake, Canada, heavy-oil deposits, 5
Colville Delta, Alaska, 116, 117
Colville Group, North Slope, Alaska, 116
Colville Trough, North Slope, Alaska, 116
compartmented reservoirs
Arecuna field, Venezuela, 135–138
Andrew field, North Sea, 69, 82, 83, 88–90
Byron field, Wyoming, 144, 154
Kansas, general, 208
Prudhoe Bay field, Alaska, 113, 115, 117, 118, 123
Ram Powell field, Gulf of Mexico, 101, 102
South Pass 62 salt-dome field, Gulf of Mexico, 51, 53, 60, 64
Uracoa field, Venezuela, 3
Welch-Bornholdt-Wherry fields, Kansas, 213
Wilmington field, California, 28–45
Yowlumne field, California, 14–18
conglomerates, 120–122, 124, 251
coning
Arbuckle Group, Kansas, 208
Andrew field, North Sea, 67, 77, 83, 85, 86, 87, 88, 91, 93
Arecuna field, Venezuela, 127, 128, 139–140
Northern Reef Trend, Michigan, 195, 197, 198, 203
Prudhoe Bay, 3, 113, 117
Copenhagen, Denmark, 174, 184
Coriolis forces, 22, 25
Corporven, S.A., 127, 128
Cowley County, Kansas, 208
“Cowley facies,” Kansas, 208
Coyote field, California, 28
crevasse-splay sandstones, 120
Cruden Bay, Scotland, 68
cyclostratigraphy, 183, 185–189
Cyrus field, North Sea, 68

D
Dakota rock-stratigraphic unit, Garland field, Wyoming, 145
Dan Chalk, reservoir properties, 6
Dan chalk field, North Sea
biosteering, and limitations of, 183, 184, 185, 186–188
biostatigraphic zonation, 183, 184, 186
chronostratigraphy, 186
cyclostratigraphy, and correlation of strata, 183–185, 186, 187, 188–189
fractures, classification of according to origin, importance of, 179
fractures, correlation with azimuth of well trajectory, 175–176
fractures, induced by drilling, appearance on FMI logs, and discrimination of natural fractures, 175–181
fractures, natural, discrimination of, on image logs, 176–181
fractures, open, in cores, 179, 181
fractures, strikes of; genetic relation to orientation of borehole, 176–177
horizontal wells, positions and trajectories of, on dome, 184
image logs, wells logged, 174
location, 174, 184
logging while drilling, 183, 185–189
models, for growth of fractures and sweep of water, 173
reservoir, petrophysical properties of, 6, 173, 185–186, 187, 188
slot limitations (cost), 3
structure of, 173, 174, 183, 184, 185
waterflooding, and consequent fracturing of chalk, 173, 177–181
waterflooding, general, 184
databases
commercial, 1
Yowlumne field, California, digital, petrophysical, description of, 13
delta-front facies, 116, 117
deltaic sandstones
South Pass 62 salt-dome field, 52, 54–55, 56, 58, 59, 60, 63, 64
Prudhoe Bay field, Alaska, 113, 116, 117, 119, 123
Denmark, number of horizontal wells in, 6
density imaging, 98–99, 103, 105, 106, 107, 108
design, of well path, see flexible well-path design method
Devonian reservoirs
number of horizontal wells in, 4
type of, 3
Dinwoodyo rock-stratigraphic unit, Garland field, Wyoming, 145
distributary-channel sandstones
Prudhoe Bay field, 113, 116, 117, 119, 123
South Pass 62 salt-dome field, Gulf of Mexico, 52, 54–55, 56, 58, 59, 60, 63, 64
distributary-mouth-bar sandstones, Prudhoe Bay field, 113, 116, 117, 119, 123
Dominguez field, California, 28
E
East Cameron Block 278, Gulf of Mexico, 50
Eastern Venezuela Basin, with reference to Arecuna field, 127–141
Eclipse reservoir-simulation program, 72, 74, 76
Edda field, North Sea, 164
Eileen rock-stratigraphic unit, North Slope, Alaska, 116
Ekofisk field, North Sea
casing, critical positioning of shoe, 168
compaction, of reservoir, 167
gas chimney, 167, 168
Index

264 | Index

F

Faja region, Eastern Venezuela Basin, with reference to Arecuna field, 127–141
Famosa rock-stratigraphic unit, Yowlumne Field, California, 13
first-derivative maps, for location of folds, faults, and attic reserves, 210–211, 222
Flathead rock-stratigraphic unit, Garland field, Wyoming, 145
flexible well-path design method
 backward design, for planning well, 228, 241–247, 246–248
 beds, measured thicknesses of in traverse, defined, described, 235–237
 bit deviation, as related to dip of beds, strike of beds, and “tight streaks,” 240–241
 buildup rate, as related to slide and rotary drilling, 238
 completion tools, operational limits, as related to directional-well plan, 246
 consequences of principal uncertainty factors, 228
 correlation between wells, adverse effect of deviated wells, 236–237
 cross sections, necessity of, 240
 directional survey measurements, ellipsoid of uncertainty, 229
 directional survey measurements, systematic errors in, 229
 directional surveys, consequences of too few, 238
 dogleg-severity limits, of downhole equipment, 238
 drilling, down-section and up-section, effects on estimates of thicknesses of beds, 235–237
 effect on net present value, 248
 error, in well path, normal distribution of, 230, 232, 233
 error, in well path, 2-sigma range of, 230, 232, 233
 error models, absence of uniform model, 230
 error, probable, effects of depth on absolute distance, 231
 flexible well-path plan, backward design of, 242–243
 flexible well-path plan, first paradigm shift, 242
 flexible well-path plan, iterative nature of, 242–243
 flexible well-path plan, key marker beds, and accommodation of uncertainty, 242–243
 flexible well-path plan, methods for, 241–246
 geosteering projects, changes in structural interpretation, frequency, 228
 “horizontal” well paths, line-target, types of, 243, 245–246
 magnetic monitoring, to reduce error in azimuth, 233
 measurement while drilling, general, 230, 233, 238–239
 measurement-while-drilling surveys, as compared with stationary surveys, 238–239
 models for landing wells, multiple, 232–233
 near-bit inclination sensors, 238
 neutron-density data, real-time, 232
 oversteering, consequences of, relative to completion and operation of well, 240
 pilot holes, 228, 229, 231–232, 233, 245
 resistivity data, real-time, 232
 risk, associated with uncertainty of directional survey, 229
 seismic surveys, 3-D, 234
 site-specific method for each well, need for, 228
 soft landing, based on key marker beds, described, procedure for, and contingencies in, 246–247
 steps of, 227–228
 structural geologic maps, necessity of, 240
 targets, overshooting or undershooting of, models to explain, 232
 techniques for increasing margin of success, 229
 true vertical depth, relative accuracy of static and continuous surveys, 239–240
 true-vertical-depth error, 230
 true-vertical-depth logs, merit of, for correlation, 237
 uncertainty, along-hole direction, 230
 uncertainty, cone of, along wellbore, 230
 uncertainty, effects of distance beyond landing point, 232–233
 uncertainty, geologic and directional, combined, 237
 uncertainty, geologic, components of, 234–237
 uncertainty, in borehole position, paucity of information about, 231
 uncertainty, lateral-axis, relative effects in flat-lying and dipping strata, 232–233
 uncertainty, of directional surveys, and adverse effects on interpretation of apparent dip, 232
 uncertainty, of directional surveys, relative to alteration of geologic model, 232
 uncertainty, of directional surveys, relative to trajectory, 232
 uncertainty, in directional surveys, tendency to ignore, 231
 uncertainty, in lateral axis, relative to magnetic north, 230
 uncertainty, increase with depth, 230
 uncertainty, upward axis, 230
 fluid, movement of within reservoirs, imaging of, 92
 fluvial deposits, 115, 120, 121, 129, 131, 132, 249, 251
 FMS, see Formation MicroScanner
 Formation MicroScanner Image logs, 150, 151, 152, 154, 155–156, 157, 174, 175–180
 Forties field, North Sea, 68, 69, 75, 92
 fractures
 as related to dissolution of Prairie salt beds, Saskatchewan, 213
 carbonate-rock reservoirs, Ekofisk field, 165
 carbonate-rock reservoirs, general, 3, 4, 208

geosteering, accuracy of, 168
geosteering, by 3-D seismic, biostratigraphy, and GST tool, 168, 169
geosteering, process of, described, 169
location, Norwegian sector, 164
logging while drilling, 168
redvelopment of field, results of, 168, 170–171
reservoir, chalk, structure of top, 164, 166, 169, 170
reservoir, fault systems in, 165
reservoir, fractures in, 165
reservoir, modeling of, 163, 165–167, 170
reservoir, porosity and permeability of, 165, 171
seismic surveys, 3-D, 163, 164, 165, 166, 168, 169
subsidence, of seabed, 167
turbidites, 165
waterflood, 163–164, 170
wells, planning of, 167
Eldfisk field, North Sea, 164
El Furrial/Quiriquire trend, Venezuela, location, 128
El Segundo field, California, 28
Elf Aquitaine, 2, 6, 97
Elk Basin field, Wyoming, 144
Elk Hills field, California, 22
Embla field, North Sea, 164
Emden, Germany, 164
Endicott Group, North Slope, Alaska, 116
enhanced oil recovery, 113, 115, 116, 118
eolian sandstones, 143–149, 249, 251
EOR, see enhanced oil recovery
Erico Petroleum Information, Ltd., 1
Esbjerg, Denmark, 174, 184
Etchigoin Formation, Youwlumne field, California, 14
Eugene Island Block 228, Gulf of Mexico, 50
Eugene Island Block 295 “B,” Gulf of Mexico, 50
extended-reach wells, factors that affect success of, 227
Exxon Company U.S.A., 29, 50
ExxonMobil, 96

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3830683/9781629810553_backmatter.pdf by guest
carbonate-rock reservoirs, Midale and Frobisher limestones, Saskatchewan, 213
classification according to origin, importance of, Dan field, North Sea, 179
correlation with azimuth of well trajectory, Dan field, North Sea, 175–176
first derivative of structural geologic map, for location of folds, faults, and fractured rock, 210, 211
induced by drilling, appearance on FMI logs, Dan field, North Sea, 175–181
natural, discrimination of, on image logs, Dan field, North Sea, 173, 176–181
open, in cores, Dan field, North Sea, 179, 181
second derivative of, for location of faults and fractured rock, 211
strikes of, genetic relation to orientation of borehole, Dan field, North Sea, 176–177
Freeman-Jewett Silt Member, Yowlumne Field, California, 13
Frontier rock-stratigraphic unit, Garland field, Wyoming, 145

G
Gabon, number of horizontal wells in, 6
Gallatin rock-stratigraphic unit, Garland field, Wyoming, 145
Garland field, Wyoming, 144, 145
geosteering, of high-angle wells, by analysis of heavy minerals
general, 249–259
specific, 255–259
geosteering, of horizontal wells, by biostratigraphy, 168–169, 183, 184, 185, 186–188, 249–250, 260
geosteering, of horizontal wells, by heavy-mineral analysis, 250, 252, 255–259
Ghawar field, Saudi Arabia, 6
Giddings field, Texas
location, 4
production, oil and gas, 5
Gita Formation, Widuri Field, Indonesia, 7
Grand Traverse County, Michigan, 196–197
Grass Creek field, Wyoming, 144
Greater Anaco trend, Venezuela, location, 128
Gros Ventre rock-stratigraphic unit, Garland field, Wyoming, 145
Guano field, Venezuela, location, 128
Guarico subbasin, Venezuela, location, 128
Gulf of Mexico, 1, 4, 50, 54, 95, 96
Gypsum Springs rock-stratigraphic unit, Garland field, Wyoming, 145

H
Halliburton Company, 55
Hamaca field, Venezuela
horizontal wells and thermal recovery, 6–7
reserves, 6
tar sands, 3
Hamilton Dome field, Wyoming, 144
Harvey County, Kansas, 210, 212
heavy minerals, analysis of, for geosteering, see Clair field, U.K., or geosteering
heavy-oil belt, Eastern Venezuela Basin, 3, 6–7, 127–141
Hodgeman County, Kansas, 206, 207, 208, 216–217
Hollow-Nikkel field, Kansas
attic axis, 210, 212
attic reserves, 210
structure, Simpson sand reservoir, 212
structural geologic map, first derivative of, for identification of attic axis, 212
horizontal drilling, general
benefits of, 2
distribution of, worldwide, 2
history of, 2, 50
horizontal wells, general
Canada, 1, 2
Canada, number of fields with, 2
Canada, number of wells in, 1, 2
cost, relative to vertical wells, 205, 206
distribution, worldwide, 2–3
factors that affect success of, 227
failure, principal cause of, 205, 206
general purposes of, 207
Jordan, 3
success, rule of thumb for, 206
techniques, for identification of suitable reservoirs, mature fields, 205–222
United States, 1, 2
United States, number of fields with, 2
United States, number of wells in, 1
Vietnam, 3
Huntington Beach field, California, 28
hydrodynamic trapping, 145

I
IHS Energy Group, 1–2, 6
Isla de Margarita, location, 128
Isla la Tortuga, location, 128
incised-valley sandstones, South Pass 62 field, Gulf of Mexico, 54, 55
Indonesia
Arjuna field, 2
Bima field, 2
number of horizontal wells in, 6
Inglewood field, California, 28
Ivishak Sandstone, Prudhoe Bay field, 113

K
Kansas
Arbuckle Group, coning, and fractured reservoirs, 208
attic oil, and sub unconformity reservoirs, 208
Central Kansas Uplift, 208
Cherokee sandstones, and thermal recovery, 208
compartmented reservoirs, Mississippian “Meramecian” facies, 208
“Cowley facies,” and low-permeability reservoirs, 208
evaluation of reservoirs for horizontal drilling, 205–222
horizontal wells, as of 1999, 208
Lansing–Kansas City Groups, 208
Mississippian Chester, Osage, St. Louis, and Warsaw rock-stratigraphic units, 208
producing zones and provinces where horizontal-well technology might be applied profitably, 208
shoaling carbonate rocks, Lansing–Kansas City groups, 208
volumetric calculations, as screening method for prospects, 213
Kern River Formation, Yowlumne field, California, 13
Kerr-McGee Corp., 50
Kingak Shale, North Slope, Alaska, 115, 116
Kraemer field, California, 28
Kreyenhagen Shale Member, Tejon Formation, Yowlumne field, California, 13
Kutei Basin, Indonesia, 6
L
Lagunillas field, Venezuela, 6
Lake Huron, 194
Lake Maracaibo, Venezuela, 6
Lake Michigan, 194
Landslide field, California, 19
Lansing–Kansas City Groups, 208
Las Cienegas field, California, 28
Las Mercedes field, Venezuela, location, 128
Las Mercedes trend, Venezuela, location, 128
limited-compartment reservoir, Uracoa field, Venezuela, 3
Lisburne Group, North Slope, Alaska, 116
logging while drilling (LWD)
Clair field, west of Shetland, 249, 250, 255, 257
Ekofisk field, North Sea, 168
Andrew field, North Sea, 77
Areccuna field, Venezuela, 138–140
Dan field, North Sea, 183, 185–189
Ram Powell field, Gulf of Mexico, 95, 98, 99, 103, 105, 107
Wilmington field, California, 29, 30, 33, 38, 41, 43, 45
Long Beach, city of, Department of Oil Properties, 29
Long Beach/Los Angeles Harbor, 31
Long Beach field, California, 28
Los Angeles Basin, California, oil fields, locations of, 28
Los Angeles field, California, 28
Lower Clair Group, U.K., 251
LWD, see logging while drilling

M
Madison Group, western Canada, 5
Madison rock-stratigraphic unit, Byron field, Wyoming, 144–145
Magnez Petroleum Company, 29
Manneville Group, western Canada, 5
Manistee County, Michigan, 200
marine sandstones, 147–148
Marion County, Kansas, 208
Marlin field, Gulf of Mexico, 97
material-balance calculations
estimation of original hydrocarbons in place, 218
evaluation of geomodel, 218
identification of reservoir drive mechanism, 218
Mayfield 1A field, Michigan, 195–196
Mayfield 16 field, Michigan, 197
measurement while drilling (MWD), 28, 29, 43, 77, 103, 150, 230, 233, 238, 239
Melones field, Venezuela, 6
Minerals Management Service, 98
Michigan Basin, 4, 193–203
miscible-injectant stimulation treatment, 113, 114, 116, 118, 119, 120–123, 124
Mississippi Canyon 194 field ("Cognac"), Gulf of Mexico, 50
MIST, see miscible-injectant stimulation treatment
Mobil, 2
Montebello field, California, 28
Monterey Shale, San Joaquin Basin, California
Reef Ridge rock-stratigraphic unit of, 13
Santa Margarita rock-stratigraphic unit of, 13
Stevens Sandstone Member of, 11, 13
Moray Firth, North Sea, 68
Morrison rock-stratigraphic unit, Garland field, Wyoming, 145
Mowry rock-stratigraphic unit, Garland field, Wyoming, 145
MPR, see multiple-propagation-resistivity device
MRI, Ltd., 1
Muddy rock-stratigraphic unit, Garland field, Wyoming, 145
multiple-propagation-resistivity device, 43
MWD, see measurement while drilling

N
Nanushuk rock-stratigraphic unit, North Slope, Alaska, 116
Naval Petroleum Reserve No. 4, 114
Neptune field, Gulf of Mexico, 97
Ness County, Kansas, 208, 209, 210, 211, 214, 215, 216, 218, 219, 220
Newport field, California, 28
Niagara Reef trend, Michigan, 3, 4
Nigeria, number of horizontal wells in, 6
Nimr field, Oman, 6
Niobrara Shale, Colorado, 210–211
North Slope, Alaska, 114, 116
Northern Reef Trend, Michigan Basin
Charlton 9 field, 197–199
Cleon 12 field, 199–201
coring, 195, 197, 198, 203
cutoff quantities, reservoirs, properties of, 198, 201, 202
drive mechanisms, 195
economics, drilling, conventional as compared with horizontal, notional, 200
gravity drainage, 201
heterogeneous reservoirs, 199–201
horizontal wells, drilling of, damage to formation, 203
horizontal wells, drilling of, underbalanced, 202–203
horizontal wells, opportunities for, categories of, 196–200, 203
horizontal wells, opportunities for, categories, important attributes, 196–200
horizontal wells, optimal radius of curvature, 202
horizontal wells, results of, 193, 195–201, 203
horizontal wells, traverses of, within pinnacle reefs, 196–198, 200
hypotheses, to explain negative results, 199
lithology, transition in, basin-to-shelf, 195
Mayfield 1A field, 195–196
Mayfield 16 field, 197
Otsego Lake 35 field, 200–202
porosity, amounts and distribution, factors in, 194
reefs, basin-to-shelf, relative contents of oil and gas, 195, 198
reefs, cumulative production from, 194
reefs, number discovered, 194
Northern Silurian Niagaran Pinnacle Reef Trend, Michigan Basin, 193
Nye-Bowler lineament, Montana, 144, 145

O
Occidental Oil and Gas Corporation, 30
Oficina field, Venezuela, location, 128
Oficina sandstone, Venezuela, reservoir properties, 6–7
Oficina trend, Venezuela, location, 128
Olcece rock-stratigraphic unit, Temblor Formation, Yowlumne field, California, 13
"Old Wilmington" field, California, 27, 30
Oman, number of horizontal wells in, 6
Oppy South field, Kansas
cumulative production, 206–207
horizontal drilling, results of, 207, 208
horizontal well, traverse of, 207
structure of, 207
Oregon Basin field, Wyoming, 144
Orinoco River, Venezuela, location, 128
Index | 267

Orinoco Tar Belt, Venezuela reserves, 6
location, 128
Orkney Islands, 250
Otocal field, Venezuela, location, 128
Oxy and Oxy/CNG, 2, 97
Osage rock-stratigraphic unit, Kansas, 208
Osego County, Michigan, 198, 201
Osego Lake 35 field, Michigan, 200–202
Owl Creek fault, Wyoming, 144
Owl Creek–Bridger Mountains, Wyoming, 144, 145

P
Pacific Energy Resources, 29
paleokarsts, 3
paleotopography, Yowlumne field, California, 22
Pat field, North Sea, 164
Pearsall field, Texas, 4
Pedernales field, Venezuela, location, 128
Petróleos de Venezuela, 127, 128
Pedernales field, Wyoming, 144, 145, 146
pilot holes, 38, 56, 58, 59, 64–65, 68, 95, 97–98, 99, 102, 117, 228, 229, 231, 232, 233, 245
pinnacle reefs, Michigan Basin, 193–203
Playa Del Rey field, California, 28
Pogo Producing Company, 50
Portrero field, California, 28
Powder River Basin, Wyoming, Montana, 144
prodelta facies, 116, 117
Prudhoe Bay field, Alaska
compartments in reservoir, 113, 115, 117, 118, 123
conglomerate, open-framework, 120–122, 124
coning in Ivishak Sandstone, 113, 117
coning in Romeo rock-stratigraphic unit, 118
coning in Sadlerochit reservoir, 3
crevasse-splay sandstones, 120
delta-front facies, 116, 117
distributary-channel sandstones, 113, 116, 117, 119, 123
distributary-mouth-bar sandstones, 113, 116, 117, 119, 123
enhanced oil recovery, 115, 118
fluids, in Sadlerochit Group, general distribution of, 116
fluvial deposits, 115, 120, 121
horizontal wells, advantages of, 117
horizontal wells, general lessons learned, 117
horizontal wells, hook-shaped, 118, 119
Ivishak Sandstone, depositional environment of, 115
Ivishak Sandstone, general reference to, 113, 114, 115, 123
Ivishak Sandstone, rock-stratigraphic units within and above, 115
Kingak Shale, 115, 116
location, 114
miscible-injectant recovery, 113, 114, 116, 118, 123
miscible-injectant recovery, technique, as applied to horizontal wells, 120–123, 124
Nanushuk rock-stratigraphic unit, 116
petrophysical properties, of oil zones, 115, 116
pilot holes, 117
pilot projects, 1, 2
prodelta facies, 116, 117
production, cumulative, 114
recovery processes, 114, 116
reservoir-depletion mechanisms, 115
Romeo rock-stratigraphic unit, of Ivishak Sandstone, 115, 116, 117, 119

Q
QFT, see quantitative fluorescence technique
quantitative fluorescence technique, for evaluation of pay zones, 95, 99, 106–107
Quiriquire field, Venezuela, location, 128

R
Rabi-Kounga field, Gabon, 6
Ram Powell field, Gulf of Mexico
amalgamated channel sandstones, 96, 97, 101, 102, 103
amalgamated sheet sandstones, 96, 97, 100, 101
canal-leeve sandstones, 96, 97, 99, 100, 101, 102, 103
compartments in reservoir, 101, 102
density imaging, for estimation of dip, 98–99, 103, 105, 106, 107, 108
density imaging, to locate nonporous calcite-cemented sandstone, 105–106, 107, 108
dipmeter, for comparison of records to density images, 105, 106
horizontal wells, drilling and completion, methods of, 98
horizontal wells, placement of, relative to strike, 99–100
horizontal wells, placement of, to drain oil rim, 99–100
horizontal wells, savings, relative to vertical wells, 99
horizontal wells, results of, 100, 101, 102, 103, 104, 108
horizontal wells, trajectories of, relative to gas cap, 103, 104
horizontal wells, trajectories of, relative to oil column and water column, 99, 102–103
horizontal wells, trajectories of, relative to stratigraphy, 98, 100, 101, 102, 103
horizontal wells, trajectories of, relative to structure of reservoirs, 95, 99, 100, 104
location, in Gulf of Mexico, 96
logging while drilling, 95, 98, 99, 103, 105, 107
modeling of reservoir, 99
pilot wells, 95, 97–98, 99, 102
quantitative fluorescence technique (QFT), 106–108
reservoirs, designations of and depositional environments of, 96, 99, 101, 102

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3830683/9781629810553_backmatter.pdf by guest
reservoirs, petrophysical properties of, 99, 101, 102
reservoirs, structural geology of, 100, 102, 104
salt dome, association with, 96
submarine canyon, deposition in, 96
tension-leg platform development, 95
trap, description of, 96
turbidite sandstones, 95, 99
type log, 97
Viosca Knoll 8 Block Unit, 96
Red River Formation, North Dakota
number of horizontal wells in, 4
reservoir, type of, 3
Reef Ridge Formation rock-stratigraphic unit, of Monterey Shale, Yowlumne field, California, 13
reefs, horizontal wells in, 193–203
Repetto Formation, Wilmington field, California, 30–31, 35–41
reservoir simulation, modeling of fluid flow, and prediction of performance of horizontal wells, 219–222
Rice County, Kansas, 206, 207, 209, 210, 211, 212, 213, 214
Richfield field, California, 28
river-mouth-bar sandstones, South Pass 62 field, Gulf of Mexico, 55
Rosecrans field, California, 28
Rosopo Mare field, Italy
production from, 6
pilot project, 1, 2
Round Mountain Silt Member, Temblor Formation, Yowlumne field, California, 13
Russia, number of horizontal wells in, 6

S

sabkha deposits, 148
Sadlerochit sandstone, Prudhoe Bay field
coking of gas and water in, 3
number of horizontal wells in, 4
trap in Prudhoe Bay field, 116
Sag River rock-stratigraphic unit, North Slope, Alaska, 116
Sagavanirktok Formation, North Slope, Alaska, 115, 116
Satavanirktok River, analogue, Victor rock-stratigraphic unit, Prudhoe Bay field, 121
salt domes
Ram Powell field, associated with, 96
South Pass 62 salt-dome field, 49–65
Zechstein salt dome, Andrew field, North Sea, 69
Salt Lake field, California, 28
salt-withdrawal minibasins, Gulf of Mexico, 96
San Andreas Fault, California, 22, 23
San Andres Formation, Texas
number of horizontal wells in, 4
reservoir, type of, 3
San Joaquin Basin, California, 11, 12, 19, 25
San Joaquin Formation, Yowlumne field, California, 13
San Vicente field, California, 28
sanding up, of wells, 58, 60, 64
Santiago field, California, 28
Santa Fe Springs field, California, 28
Santa Margarita rock-stratigraphic unit, of Monterey Shale, Yowlumne field, California, 13
Santa Rosa field, Venezuela, location, 128
Santos Shale Member of Vaqueros Formation, Yowlumne field, California, 13
Saskatchewan
field with most horizontal wells, 4
fractured rock, as related to dissolution of Prairie salt beds, 213
fractured rock, in Midale and Frobisher limestones, 213
Saudi Arabia
number of horizontal wells in, 6
policy on release of well records, 1
Sawtelle field, California, 28
Schaben field, Kansas
aquifer-driven reservoir, poor sweep efficiency, and unswept reserves, 209, 218
material-balance calculations, and correlation with fluid-production history, 218–219
microporosity in reservoir, distribution of, and water-free production, 214–216
nuclear magnetic resonance, and measurement of macroporosity and effective pay, 215–216
petrophysical analyses, as screen for prospective sites for horizontal wells, 214–216
reservoir, general lithology, 219
reservoir simulation, modeling of fluid flow and reserves, and prediction for horizontal well, 219–222
Super-Pickett crossplot, effectiveness of, 214–215
Schlumberger, 150, 168
Seal Beach field, California, 28
second-derivative maps, for location of faults and fractured rock, 211
seismic surveys, 3-D, 14, 30, 50, 51, 69, 70, 92, 128, 129, 132, 163, 164, 165, 166, 168, 169, 234, 251
seismic surveys, 4-D, 92, 94
Serrania del Interior, Venezuela, 128
Sheep Mountain anticline, Wyoming, 145
Shell Exploration & Production Company, 50, 54, 96
Shell Western E&P, Inc., 193
Shetland Islands, U.K., 249, 250
shoreface sandstones, South Pass 62 field, Gulf of Mexico 52, 54–55, 56–58, 61
Shubik rock-stratigraphic unit, North Slope, Alaska, 115, 116
source rocks
Bakken Shale, North Dakota, 3
Monterey Shale, 11, 13, 14
slot limitations
Dan field, Denmark, offshore, 3
South American Plate, 133
South Marsh Island 239, Gulf of Mexico, 50
South Pass 62 salt-dome field
attic reserves, 58
compartments in reservoir, 51, 53, 60, 64
distributary-channel sandstones, and productivity of horizontal wells in, 52, 54–55, 56, 58, 59, 60, 63, 64
history of development, 50, 52
horizontal wells, and attic reserves, 58
horizontal wells, effectiveness within multiple fault blocks, 58–60, 62, 63
horizontal wells, failure of, 56, 58
horizontal wells, relative success of, with reference to depositional environments of sandstones, 64
horizontal wells, results of, 50, 54–62, 64
horizontal wells, results of, relative to complexity of structural geology, 64
horizontal wells, results of, relative to depletion, state of, 64
horizontal wells, results of, relative to lengths of traverse, 64
horizontal wells, results of, relative to use of pilot holes, 64–65
horizontal wells, sanding up of, 58, 60, 62, 64
horizontal wells, slim-hole sidetracks, 50, 52, 54, 55
horizontal wells, strategy for drilling, 54
horizontal wells, results of, 50, 55–56, 58
horizontal wells, results of, relative to complexity of structural geology, 64
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3830683/9781629810553_backmatter.pdf by guest
horizontal wells, results of, relative to depletion, state of, 64
horizontal wells, results of, relative to lengths of traverse, 64
horizontal wells, results of, relative to use of pilot holes, 64–65
horizontal wells, trajectories of, within reservoirs, 57, 58, 59, 62, 63
incised-valley sandstones, and productivity of horizontal well in, 54, 55
location of, 49, 51
pilot holes, 56, 58, 59, 64–65
production, cumulative, 50
production, daily, relative to effects of horizontal wells, 52
reservoirs, depositional environments of, 49, 52–55
reservoirs, drive mechanisms, 54–55
reservoirs, number and complexity of, 49, 52
river-mouth-bar sandstones, 55
salt-dome entrapment, general, 49–65
sanding up, of wells, 58, 60, 62, 64
seismic surveys, 3-D, 50, 51
shoreface sandstones, and productivity of horizontal wells in, 52, 54, 55, 56–58, 61
structural geology of, 49, 51–53, 57, 59, 62, 63
traps in, 51–53
turbidite sandstones, and productivity of horizontal wells in, 49, 52
type logs, 56, 59, 61, 64
South Viking Graben, North Sea, 68
Southern Bighorn Mountains, Wyoming, 144
Southern Reef Trend, Michigan Basin, 194
Spirit field, Gulf of Mexico, 97
Stavanger, Norway, 164
steamflooding
Wilmington field, California, 27, 30, 31–32, 35, 37, 38–41
Stevens County, Kansas, 208
Stevens Sandstone, California
architecture, components of, Yowlumne field, 13–14
Elk Hills field, 22–23
relation to Monterey Shale source rock, Yowlumne field, 11, 13, 14
reservoir, compartmentation of, Yowlumne field, 14–18
reservoir, modeling of, Yowlumne field, 23, 25
reservoir, rock properties and statistics of, Yowlumne field, 14
reservoir, waterflood of, Yowlumne field, 11, 12, 23
turbidite sandstone, 4, 11–12, 14–18, 19–23
St. Fergus, Scotland, 68
St. Louis rock-stratigraphic unit, Kansas, 208
submarine canyons, 96
submarine fans
Andrew field, North Sea, 70
Wilmington field, California, 30
Yowlumne field, California, 11–12, 14–18, 19–23
Sundance rock-stratigraphic unit, Garland field, Wyoming, 145
Super-Pickett crossplot, for petrophysical analysis, variables included and results of, 214–215, 222

T

Tahoe field, Gulf of Mexico, 97
Tanana River, Alaska, as analogue of Oficina Formation, Venezuela, 131, 132
tar sands, Hamaca field, Venezuela, 3
“Teal Prospect” (Eugene Island 338), Gulf of Mexico, 50
Teeside, U.K., 164
Tejon Formation, Yowlumne field, California
Famosa rock-stratigraphic unit of, 13
Kreyenhagen Shale Member of, 13
Temblador trend, Venezuela, location, 128
Temblor Formation, Yowlumne field, California
Freeman-Jewett Silt Member of, 13
Olcose rock-stratigraphic unit of, 13
Round Mountain Silt Member of, 13
Tensleep-Amaden rock-stratigraphic unit, Garland field, Wyoming, 145
Tensleep fault, Wyoming, 144
Tensleep Sandstone, Byron field, Wyoming, 143–159
Texaco U.S.A., 50, 95
thermal recovery, Belridge field, California, 3
Thermopolis anticline, Wyoming, 145
THUMS’ Long Beach Unit, Wilmington field, California, 27
THUMS Long Beach Company, 29
Tidelands Oil Production Company, 27, 29, 30
tight-gas formations, 3
Tobago, location, 128
Torok rock-stratigraphic unit, North Slope, Alaska, 116
Torrance field, California, 28
Trinidad, location, 128
Tulare Formation, California
general location, 4
reservoir, type of, 3
Yowlumne field, 13
Tumey Formation, Yowlumne field, California, 13
turbidite sandstones
Andrew Formation, Andrew field, North Sea, 69, 70, 75, 89
Ekofisk field, North Sea, chalk reservoir, 165
Ram Powell field, Gulf of Mexico, 95, 99
Repetto Formation, Wilmington field, California, 27–28, 30
South Pass 62 salt-dome field, 49, 52
Stevens Sandstone, Yowlumne field, California, and submarine fan, 4, 11–12, 14–18, 19–23, 25
Stevens Sandstone, Yowlumne field, California, oil in marginal parts of, 12
Yowlumne field, California, 11–12, 14–18, 19–23, 25

U

U.A.E., see United Arab Emirates
Union Pacific Resources, 2
United Arab Emirates, number of horizontal wells in, 6
United Kingdom, number of horizontal wells in, 6
United States
number of fields with horizontal wells, 2
number of horizontal wells in, 2
Upper Clair Group, U.K., 251
Uracoa field, Venezuela, 3
U.S. Department of Energy, 32, 216

V

Våle Formation, North Sea, 168
Vaqueros Formation, Yowlumne field, California
Santos Shale Member of, 13
Vedder rock-stratigraphic unit of, 13
Venezuela
fields with horizontally drilled wells, 6
number of horizontal wells in, 6
Viosca Knoll, Gulf of Mexico 96, 97
Virgo (Elf) field, Gulf of Mexico, 96, 97

W

Walker rock-stratigraphic unit, Yowlumne field, California, 13
Warsaw rock-stratigraphic unit, Kansas, 208
waterflooding
Dan field, North Sea, 173, 177–181, 184
Ekofisk field, North Sea, 163–164, 170
Ivishak Sandstone, Prudhoe Bay field, Alaska, 114, 116, 119
Stevens Sandstone, Yowlumne field, California, 11, 12, 23
Tensleep Sandstone, Byron field, Wyoming, 150
Weyburn-Estevan field, Saskatchewan, 3, 4, 5
Wilmington field, California, 29, 30, 38–41
Yowlumne field, California, 11, 12, 23
Welch-Bornholdt-Wherry fields, Kansas areal extent, and average number of wells per section, 213 compartments in reservoir, 213 cumulative lease production, and significant reserves, 209–210 cumulative production, 206 cumulative production, per quarter section, 212 cutoff, of effective pay height, 212 initial production, 209–210 leases, analysis of, for potential of horizontal wells, 209–214 solution-gas drive, 213 oil in place, initial and remaining, mapping of, 206–207, 213 production data, as screen for prospective sites for horizontal wells, 209–213 recovery efficiency, 213–214 solution-gas drive, 213 structural geologic map, first derivative of, for location of folds, faults, and fractured rock, 210, 211 structural geologic map, second derivative of, for location of faults and fractured rock, 211 trap, stratigraphic, subcrop beneath unconformity, 211 volumetric calculations, as screen for prospective sites for horizontal wells, 213 well-path design, see flexible well-path design method wellbore image logs, 173, 175–181 West Ekofisk field, North Sea, 164 West Java Sea, 7 Weyburn-Estevan field, Saskatchewan production, horizontal wells compared with vertical wells, 5 reservoir, 5 waterflood, 3, 4, 5 Whittier field, California, 28 Widuri field, West Java Sea, Indonesia, 7 Wieland field, Kansas pay zone, thickness of, 216 volumetric calculations, as screen for site for horizontal well, 216–217 Wieland West field, Kansas pay zone, thickness of, 216 horizontal well, traverse of, and results of, 217 volumetric calculations, as screen for site for horizontal well, 216–217 William River, Canada, as analogue of Oficina Formation, Venezuela, 132 Williston Basin, 4, 213 Wilmington field, California attic reserves, 30 case histories, 30–45 compaction of reservoir and subsidence, 33 compartments in reservoir, 28–45 cumulative production, 27, 28 fault blocks in, 28–45 faults, as permeability barriers, 31 geosteering and logging, 29, 30, 33, 43 history of, 30 horizontal wells, general effects of production, 29–30 horizontal wells, technical and economic results of, 35, 38–39 logging while drilling, 29, 30, 33, 38, 41, 43, 45 Long Beach Unit, 28–30 modeling, of original oil saturation, 41 modeling, of structural geology and stratigraphy, 30, 33, 35–39, 41–45 modeling, practical effect of, 45–46 original oil in place, 27 pilot holes, 38 Repetto Formation, 30–31, 35–41 reservoirs, bedding of, and variation of permeability, 28 reservoirs, depositional environments of, 28 reservoirs, structural geology of, 35–37, 39–44 reservoirs, zonation of, 32–33, 35 seismic surveys, 3-D, 30 steamflooding in, 27, 30, 31–32, 35, 37, 38–41 stratigraphic sequence of reservoir, delineation of, 28, 32, 33, 35 submarine fans, 30 subsidence, at surface, 33–35 Tar zone, 30–40 THUMS Long Beach Company, 29 trap, general description of, 28 turbidite sandstones, 27–28, 30 type logs, 33, 38 Upper Terminal zone, 35, 41–45 waterflooding in, 29, 30, 38–41 Wilmington Town Lot Unit, 29 Yowlumne Sandstone, Yowlumne field, California reservoir, lithic and petrophysical properties of, 14, 18–21 wellsteering and logging, 29, 30, 33, 43 history of, 30 horizontal wells, general effects of production, 29–30 horizontal wells, technical and economic results of, 35, 38–39 logging while drilling, 29, 30, 33, 38, 41, 43, 45 Long Beach Unit, 28–30 modeling, of original oil saturation, 41 modeling, of structural geology and stratigraphy, 30, 33, 35–39, 41–45 modeling, practical effect of, 45–46 original oil in place, 27 pilot holes, 38 Repetto Formation, 30–31, 35–41 reservoirs, bedding of, and variation of permeability, 28 reservoirs, depositional environments of, 28 reservoirs, structural geology of, 35–37, 39–44 reservoirs, zonation of, 32–33, 35 seismic surveys, 3-D, 30 steamflooding in, 27, 30, 31–32, 35, 37, 38–41 stratigraphic sequence of reservoir, delineation of, 28, 32, 33, 35 submarine fans, 30 subsidence, at surface, 33–35 Tar zone, 30–40 THUMS Long Beach Company, 29 trap, general description of, 28 turbidite sandstones, 27–28, 30 type logs, 33, 38 Upper Terminal zone, 35, 41–45 waterflooding in, 29, 30, 38–41 Wilmington Town Lot Unit, 29 Yowlumne Sandstone, Yowlumne field, California reservoir, lithic and petrophysical properties of, 14, 18–21

Y

Yates Formation, Texas, 3 Yellowstone Plateau, Wyoming, 144 Yorba Linda field, California, 28 Yowlumne field, California compartments in reservoir, 14–18 cumulative production, 11, 12–13 decline, rate of, 13 paleotopography, 22 reservoir, lithic and petrophysical properties of, 14, 18–21 reservoir, modeling of, 11, 12, 13, 23, 25 reservoir, structure of, 12, 14, 15, 16, 22 seismic surveys, 3-D, 14 stratigraphic sequence in, 13, 14 submarine fans, 11–12, 14–16, 19–23 turbidite sandstones, 11–12, 14–18, 19–23, 25 type log, 14 waterflooding in, 11, 12, 23 Yowlumne Sandstone, Yowlumne field, California reservoir, lithic and petrophysical properties of, 14, 18–21

Z

Zakum field, U.A.E., 6 Zechstein salt dome, Andrew field, 69
Horizontal Wells: Focus on the Reservoir

Horizontal Wells: Focus on the Reservoir, edited by Timothy R. Carr, Erik P. Mason, and Charles T. Feazel, provides an overview of the new technical approaches required for best use of horizontal and extended-reach technology in different reservoir situations. The volume, AAPP Methods in Exploration Series No. 14, is a selection from more than 50 papers presented at an AAPP/SPWLA Hedberg Research Symposium, "International Horizontal and Extended Reach Well Symposium: Focus on the Reservoir," held in The Woodlands, Texas, on October 10–14, 1999. The 16 chapters describe horizontal and extended-reach wells and drilling programs in a variety of geologic settings all over the world.

The book discusses the evolution of technical knowledge required from geoscientists, engineers, and managers to develop a detailed and integrated approach to the design and execution of a horizontal well.

Through 2001, more than 34,777 horizontal wells had been drilled in 72 countries spanning the globe. Today, horizontal and extended-reach wells are used to overcome various challenges imposed by reservoir geometry, fluid characteristics, economic conditions, or environmental constraints, including:

- coning (gas or water)
- waterflood conformance
- improved recovery from thin beds
- economic and technical limitations (e.g., offshore limitations on the number of slots)
- environmental restrictions
- heterogeneous reservoirs (e.g., fractured or restricted flow units)
- recovery from tar sands

AAPG's Horizontal Wells highlights the changes in our understanding of petroleum reservoirs and the type of knowledge required to move beyond the limitations of vertical wells to a horizontal perspective.