Index

Acoustic (sonic) logs, 290
 responses in coals, 295
Activation energy, 64
Adsorption isotherm, 361-362
Alginite, chemistry of, 110-111
Alluvial fans, 14
Alluvial plains, 14
Alteration, 82
Anthracite coals, 47, 79

Biogenic gas, 159-160
Biomarkers, use of in petroleum-source correlations, 147-149
Bitumen extraction and liquid chromatography, 104-106
Bituminization, 43, 44, 81, 83, 140
Bituminous coals, 47, 79
Black Warrior basin
 characteristics of coalbed gases in, 179-180
 coalbed methane in, 28-31
 coalbed methane production in, 379-381
 development activity in, 379
 economics of, 381
 gas production capacity in, 380
 production technology in, 380-381
 resource concentration in, 379
Bogs, 17-20
 characteristics of, 21
 domed, 21
 See also Peat bogs, Peatlands
Bowen/Sydney basins (Australia), characteristics of coalbed gases in, 172-173
Bulk chemical properties, 140-142
Bulk pyrolysis techniques, 135
Bulk source rock parameters, interrelationships between, 135-136
Burial peat, 44
Butt cleats, strike of, 120-121
Calorific value, 101
Carbonates, 94
Charcoal, use of, 1
Chemical maturity parameters, 142
China, characteristics of coalbed gases in eastern, 173-174
Clarodurain, 80
Clay minerals, 94
Cleats
 effect on of coal rank, 121-122
 aperture width, 122-123
 genetic significance of, 127
 butt. See Butt cleats
 and coal composition, 122
connectivity of, 123
dip angle, 121
tectonic significance of, 127
duogenous genesis hypotheses, 128
endogenous genesis hypotheses, 125-126
exoegenetic genesis hypotheses, 126-127
face. See Face cleats
height of, 122
and lithotype thickness, 121-122
and maceral filling, 124
origin of, 124-128
porosity of, 123-124
and secondary mineralization, 124
significance of height containment by lithotype thickness, 127
surface morphology, 124
 genetic significance of, 127
Coal
 anthracite, 47
 bituminous, 47
 characterization of organic matter with reference to, 134-140
 chemical composition of, 98-103
 classification of, 43-44
 constituents of, 42
 by grade, 2, 39
 by rank, 2, 39
 related to composition, 101-103
 by type, 2, 39
 components of, 95-98
 composition of, 79-113
 and hydrocarbon generation, 103-106
 composition of crude oil generated from, 185-196
 definition of, 41
 contemporary, 2
 historical, 1-2
 displacement volumes of, 63
 elemental composition of, 100-101
 evolution of as sedimentary rock, 397-1
 expulsion of petroleum from, 149-150
 fracture systems in, 120-124
 gas sorption on, 203-215
 geochemical analysis of, 103-106
 and global energy budget, 4-5
 global occurrence of, 1-9
 history of utilization of, 2-3
 logging tool responses in, 295-297
 measurement of gas content of, 203-215
 mechanical properties of, 65-66
 migration of oil and gas in, 219-234
 minerals in. See Minerals in coal
natural fractures in, 119-128. See also Cleats
nomenclature of macerals, 134
organically associated elements, 95
petroleum source rock potential of, 133-151
physical and physico-chemical composition of, 79-98
rank parameters of, 43-44
significance of moisture in, 99-100
as source rock and reservoir, 40-41
structure of molecular fraction of, 52-53
use of
in East Asia, 2-3
in Europe, 2-3
in Great Britain, 2-3
in Mediterranean, 2-3
in North America, 2-3
in United States, 3
world distribution of, 5-6
world resources of. See Coal resources

Coalbed discontinuities and methane drainage, 240-241

Coalbed gas
characteristics of, 171-180
in Black Warrior basin (USA), 179-180
in Bowen/Sydney basins (Australia), 172-173
in eastern China, 173-174
in Lower Silesian basin (Poland), 174
in Piceance basin (USA), 170-179
in Powder River basin (USA), 179
in San Juan basin (USA), 174-176
in western Germany, 171-172
composition and origins of, 159-180, 163-171
generation of, 159-162
storage and migration of, 162-163
characteristics of, 171-180
See also Coalbed methane

Coalbed methane, 53
ancient environmental paradigms for, 22-31
applications for wiredline logs, 287-301
assessing the economic feasibility of, 379-383
in Black Warrior basin, 28-31
comparison of with conventional natural gas, 384-385
computer model, 299-300
drilling techniques for, 269-284. See also Drilling for coalbed methane
economic and parametric analysis of, 373-391
economics of vs. conventional natural gas, 384-387
international opportunities in, 390-392
parametric analysis of, 387-390. See also Parametric analysis of coalbed methane
in Powder River basin, 22-25
production. See Coalbed methane production
reservoir engineering aspects of, 361-371
in San Juan basin, 25-28
wells. See Coalbed methane wells
See also Coalbed gas

Coalbed methane production, 341-357
alternative investment analysis methods, 392
in the Black Warrior basin, 379-381
characteristics, 341-344
design of system for, 344
economies of scale for, 379
equipment, 344-352
flow measurement options, 349-350
gathering system options, 349
international, 341-342
investment and operating costs, 377-379
keys to economic, 373-379
markets for, 379
operations and reservoir management, 355-357
rates of gas flow, 374-377
requirement of low production pressure, 343-344
in the San Juan basin, 381-382
surface gas and water separators, 348-349
taxation of, 392-394
typical, 342-343
typical well configuration, 344
U.S., 341
water disposal from, 352-355. See also Water disposal workovers, 356
Coalbed methane wells
completions and stimulations, 303-336
economics of spacing, 369-370
horizontal, 305-306
hydraulic fracture stimulations, 312-321. See also Hydraulic fracture stimulations
pressure interference concept in, 368-369
Coalbeds
depositional environments of, 13-21
stress sensitivity of permeability in, 364
See also Peatlands
Coal composition
and cleats, 122
two-component model, 41-42
Coal density, 61-62
changes in with coalification, 62
Coal-derived crude oils
aromatic compounds in, 193-194
bulk composition of, 186-191
diterpanes in, 195-196
geochemical characteristics of, 186-196
hydrocarbon distribution in, 186
occurrence of, 186
odd-even predominance, 191-192
pristane and phytane in, 192
saturated and aromatic steroids in, 194-195
esesquiterpanes in, 195-196
stable carbon isotope composition, 190-191
sulfur content of, 186-190
summary of organic geochemical characteristics of, 197
triterpanes in, 195
Coal facies, genesis of, 95-98
Coalification, 39
amounts of gases generated from coal during, 161
caused by biogenic processes, 66
causes of, 66-69
changes in characteristics of coal macerals during, 57
chemical processes of, 47-56
effects of on coal properties, 56-66
effect of shear strain on, 67-68
five major stages of, 43, 44
and formation and expulsion of molecular constituents, 53-56
in geological context, 69-71
history of in sedimentary basins, 66
impact of on methane sorption and expulsion, 63

Electric submersible pumps, 348
Elemental analysis, 134-135
Evaporation as means of water disposal, 354
Exinite, 81

Face cleats, 120
strike of, 120-121
Fens, string, 21
Flow measurement options, 349-350
gas measurement systems, 350
measuring production by zone, 350
water measurement systems, 349-350
Foam fracture treatments, 316
Fracture analysis, and methane drainage, 241-242
Fracture geometry and height growth, 321-323
Fracture modeling and design, 327-335
and minifrac analysis, 330-332
and optimization, 332-333
and stress profiles and fracture height, 327-330
Fracture systems in coal, 120-124
Fracture treatments
cross-linked gel, 314-316
foam, 316
high-pressure, modeling of, 335
interpretation of, 321-327
sandless, 318-320
water, 316-318
modeling of, 334-335
Fracturing of multiple seams, 313
Fracturing pressures, 323-324
Fusinite, chemistry of, 111-112

Gamma ray logs, 288-290
responses in coals, 295
Gas
biogenic, 159-160
mechanisms for primary migration of, 149-150
migration of, 232-234
in coals, 219-234
residual, 64
sorbed. See Sorbed gas, Sorption
thermogenic, 159-160
See also Coalbed gas, Coalbed methane
Gas composition, 350-351
Gas-gathering systems
design considerations, 349
types of, 349
Gas lift, 347-348
Gas measurement systems, 350
Gas reservoirs, multiple, and methane drainage, 241
Gas-source correlations, 147
Gas transport, influence of coalification on, 64-65
Gas treating and compression, 350-352
compression equipment, 352
compressor operation, 352
dehydration, 351-352
gas composition, 350-351
Gathering system options, 349
gas-gathering design considerations, 349
types of gas-gathering systems, 349
water-gathering lines, 349

Duroclayrin, 80
Gelification, 46, 81, 82
Geochemical gelification, 47
Germany, characteristics of coalbed gases in western, 171-172
Global energy budget, and coal, 4-5
Graphite, 79
Graphitization, 43, 44

Hardgrove Grindability Index, 65, 66, 101
High-pressure fracturing treatments, modeling of, 335
Horizontal coalbed methane wells, 305-306
Humification, 45, 81, 82, 83
Huminite, 81
Huminite/vitrinite group, 83-84
Hydraulic fracture stimulations, 312-321
cross-linked gel fracture treatments, 314-316
foam fracture treatments, 316
fracturing of multiple seams, 313
gel damage to coal, 313-314
water fracture treatments, 316-318
Hydraulic fracture treatments
gas production comparisons, 320-321
sandless fracture treatments, 318-320
Hydrocarbon generation, related to coal composition and rank, 103-106
Hydrocarbon potential, related to maceral association, 112

Induced gamma ray spectrometry logs, 293-295
responses in coals, 297
Inertinite, 81
Inertinite group, 91-92
Injection wells for water disposal, 353-354

Kerogens
classification of, 137
comparison of types, 135
Kinetic modeling, 144-147

Langmuir isotherm, 204-205
Lignite, 79
Liptinite, 81
Liptinite group, 84-91
Liquid chromatography, bitumen extraction and, 104-106
Lithotypes, 80-81
Lithotype thickness, effect on cleat spacing, 121-122
Logging options for uncased and cased wells, 300
Logging tools
basic principles of, 287-295
responses in coals, 295-297
Logs
acoustic (sonic), 290
density, 290-293
gamma ray, 288-290
induced gamma ray spectrometry, 293-295
information available from, 297-299
natural gamma ray spectrometry, 293
neutron, 290
resistivity, 287-288
Lower Silesian basin (Poland), characteristics of coalbed gases in, 174
Macerals, 81-92, 134
analyses of, 81
appearance of via optical microscopy, 56-57
changes in during coalification, 57
characterization of, 83-91
classification of groups, 82
cleats and filling of, 124
homogenization of, 81-83
primary, 83
relation between association and hydrocarbon potential, 112
secondary, 83
structure, genesis, and source rock potential of, 106-112
at various rank stages, 92
Mass balance approach
to petroleum migration, 230-232
to petroleum potential, 142-144
Maturation, 39
of organic matter, 140-142
Measurement of sorbed gas
direct methods, 209-213
comparison of conventional desorption methods, 211-212
conventional desorption methods, 209-212
curve fit method, 210-211
and desorbed gas composition, 212
and desorption rate, 211
other methods for gas content determination, 212
pressure core desorption, 213
Smith and Williams method, 210
USBM direct method, 210
indirect methods, 213-215
and gas-in-place, 214-215
Kim’s approach, 213-214
sorption isotherms and bulk density logs, 214
Mechanical properties of coal, 65-66
Metanthergite coal, 79
Methane
coalbed. See Coalbed methane
control of for underground coal mines, 237-264
drainage. See Methane drainage
Methane drainage
establishing geologic framework for site, 240-242
establishing need for, 238-240
history of, 237-238
planning
and coalbed discontinuities, 240-241
and fracture analysis, 241-242
general mapping requirements, 240
and multiple gas reservoirs, 241
surface, 252-264
directionally drilled holes, 259-260
longwall gob gas vent holes, 260-264
stimulated vertical wells in virgin coalbeds, 253-259
technology, 242-264
underground, 243-252
cross-measure boreholes, 250-251
horizontal boreholes (water infusion), 249-250
horizontal boreholes from shaft bottoms, 247-249
horizontal boreholes drilled to other horizons, 251-252
horizontal holes in mine, 243-247
vertical holes into mine roof, 250
Index 399

Microhardness, 65
Microlithotype analysis, 81
Microlithotypes, 92-95
Migration
 of gas, 232-234
 of oil and gas in coals, 219-234
 physical conditions of, 221-223
 potential mechanisms as avenues, 223-225
Mineral-bituminous groundmass, 92
Mineral energy resources, 3
Mineral matter, 92-95
Minerals in coal
 accessory, 94
 carbonates, 94
 clay, 94
 oxides, 94
 sulfides and sulfates, 94
Minifrac analysis, 330-332
Moisture content and coalification, 53
Molecular fraction of coal
 composition of, 53
 compositional evolution of, 54
 hydrocarbons in, 53
 structure of, 52-53
Multiple gas reservoirs, and methane drainage, 241
Multiple seams, fracturing of, 313
Natural gamma ray spectrometry logs, 293
 responses in coals, 295-297
Neutron logs, 290
 responses in coals, 295
Nondeltaic coastal plains, 17
Oil
 mechanisms for primary migration of, 149-150
 migration of in coals, 219-234
Oil-source correlations, 147-149
Openhole cavity completions, 306-312
 cavity geomechanics, 309
 cavity size, 308-309
 cavity technique, 307-308
 costs of, 308
 extent of collapse and failure zone, 310
 model for anisotropic stresses, 310
 permeability enhancement, 310
 production differences between openhole cavity completion and gel-fracture stimulations, 310-311
 reservoir stimulation, 311-312
Organic matter
 characterization of with reference to coal, 134-140
 composition of crude oils generated from coaly, 185-196
 maturation of, 140-142
Organic metamorphism, 39
Organic petrography, 134-135
Oxides, 94

Peat, 79
 burial, 44
 surface, 44
Peat bogs
 cold climate, 20
 temperate climate, 19
 tropical, 19
See also Bogs, Peatlands
Peatification, 43, 44, 46
Peatlands
 and alluvial fans, 14
 and alluvial plains, 14
 characteristics of, 21
 and deltaic coastal plains, 16-17
 drainage systems of, 13-14
 fens, swamps, and marshes, 20-21
 and nondeltaic coastal plains, 17
See also Bogs, Coalbeds, Peat bogs
Peatland systems, 17-21
 and bogs, 17-20
Peat mire, 79
 minerotrophic, 79
 ombrotrophic, 79
 rheotrophic, 79
Peat-to-lignite transition, 46-47
Permeability
 determination of by well testing, 364-367
 stress sensitivity of in coalbeds, 364
Petrographic characterization, new concepts of, 136
Petrographic properties, 140-142
Petrography, organic, 134-135
Petroleum expulsion
 empirical hydrocarbon thresholds for, 150
 from coal and terrigenous sediments, 149-150
Petroleum generation, timing of, 144-146
Petroleum migration
 geochemical and microscopic effects of, 225-230
 mass balance approaches, 230-232
Petroleum potential
 high resolution pyrolysis evaluation of, 136-140
 mass balance approach to, 142-144
Physical sorption, 203-204
Piceance basin (USA), characteristics of coalbed gases in, 176-179
Polymerization, 50
Poroelastic effects, 326
Porosity
 of cleats, 123-124
 coal, 60-61
Powder River basin
 characteristics of coalbed gases in, 179
 coalbed methane in, 22-25
Pressure, and coalification, 66-67
Pressure interference concept in coalbed methane wells, 368-369
Progressing cavity pumps, 347
Proppant-induced pressure effects, 326-327
Proximate analysis, 59, 98-100
Pump failure, reducing, 356
Pumps
 progressing cavity, 347
 sucker-rod, 345-347

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3837506/9781629811048_backmatter.pdf by guest on 17 July 2019
Pyrolysis, high-resolution, and evaluation of petroleum potential, 136-140
Pyrolysis yields during coalification, 59-60
Reflectance, changes in with rank, 57-58
Reservoir stimulation, 311-312
Residual gas, 64
Resinite, chemistry of, 109-110
Resistivity logs, 287-288
responses in coals, 295
Reverse osmosis for water disposal, 354
Rock-Eval pyrolysis, 59-60, 103-104, 135
Rod failure, reducing, 357
Sandless fracture treatments, 318-320
San Juan basin
characteristics of coalbed gases in, 174-176
coalbed methane in, 25-28
coalbed methane production in, 381-382
development activity in, 381
economics of, 382
gas production capacity of, 381
production technology in, 381-382
resource concentration in, 381
Semi-anthracite coat, 79
Shear strain, effect of on coalification, 67-68
Solid material production problems, reducing, 357
Sorbate accessibility, 60-65
Sorbed gas
behavior of, 203-209
measuring. See measurement of sorbed gas
See also Sorption
Sorption
with coal rank, 206
of different pure gases, 207
effect of mineral matter on, 205
effect of moisture on, 205-206
isotherms. See Sorption isotherms
measurement of, 208-209
and particle size, 208
and sorbed phase volume, 208-209
techniques, 208
multicomponent gas, 207
and petrology, 206-207
physical, 203-204
relation of pressure and temperature to, 205
Sorption isotherms, 204-205
Langmuir, 204-205
models, 204
uses, 204
Sporinite, chemistry of, 111
Stress profiles and fracture height, 327-330
Stress sensitivity of permeability in coalbeds, 364
String fens, 21
Subbituminous A, 79
Subbituminous B, 79
Subbituminous C, 79
Sucker-rod pumps, 345-347
Sulfides, 94
Sulfates, 94
Surface area measurements, 62-63
Surface gas and water separators, 348-349
in Black Warrior basin, 348
in San Juan basin, 348-349
Surface morphology, of cleats, 124
Surface peat, 44
Surface water disposal, 353
Terrigenous sediments
biomarkers related to, 147-149
expulsion of petroleum from, 149-150
T-fractures, 325-326
Thermogenic gas, 159-160
Two-component model of coal composition, 41-42
Ultimate analysis, 100-101
Vitrinite, 81
chemistry of, 107-109
Vitrinite reflectance
and chemical parameters, 101
modeling, 146-147
suppression of, 58-59
Vitrinization, 45, 82
Volatile matter, 100
Water disposal, 352-355
combined processes, 354
injection wells, 353-354
reverse osmosis/evaporation, 354
surface, 353
water treatment options, 352-353
Water fracture treatments, 316-318
modeling of, 334-335
Water-gathering lines, 349
Water measurement systems, 349-350
Water treatment options, 352-353
Workovers, 356
preproduction, 356
recompletion, 356
reducing need for, 356-357
remedial production, 356

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3837506/9781629811048_backmatter.pdf by guest on 17 July 2019