Acoustic (sonic) logs, 290
 responses in coals, 295
Activation energy, 64
Adsorption isotherm, 361-362
Alginite, chemistry of, 110-111
Alluvial fans, 14
Alluvial plains, 14
Alteration, 82
Anthracite coals, 47, 79
Biogenic gas, 159-160
Biomarkers, use of in petroleum-source correlations, 147-149
Bitumen extraction and liquid chromatography, 104-106
Bituminization, 43, 44, 81, 83, 140
Bituminous coals, 47, 79
Black Warrior basin
 characteristics of coalbed gases in, 179-180
 coalbed methane in, 28-31
 coalbed methane production in, 379-381
 development activity in, 379
 economics of, 381
 gas production capacity in, 380
 production technology in, 380-381
 resource concentration in, 379
Bogs, 17-20
 characteristics of, 21
 domed, 21
 See also Peat bogs, Peatlands
Bowen/Sydney basins (Australia), characteristics of coalbed gases in, 172-173
Bulk chemical properties, 140-142
Bulk pyrolysis techniques, 135
Bulk source rock parameters, interrelationships between, 135-136
Burial peat, 44
Butt cleats, strike of, 120-121
Calorific value, 101
Carbonates, 94
Charcoal, use of, 1
Chemical maturity parameters, 142
China, characteristics of coalbed gases in eastern, 173-174
Clarodurain, 80
Clay minerals, 94
Cleats
 effect on of coal rank, 121-122
 aperture width, 122-123
 genetic significance of, 127
 butt. See Butt cleats
 and coal composition, 122
connectivity of, 123
dip angle, 121
tectonic significance of, 127
duogenetic genesis hypotheses, 128
endogenetic genesis hypotheses, 125-126
exogenetic genesis hypotheses, 126-127
face. See Face cleats
height of, 122
and lithotype thickness, 121-122
and maceral filling, 124
origin of, 124-128
porosity of, 123-124
and secondary mineralization, 124
significance of height containment by lithotype thickness, 127
surface morphology, 124
 genetic significance of, 127
Coal
 anthracite, 47
 bituminous, 47
characterization of organic matter with reference to, 134-140
chemical composition of, 98-103
classification of, 43-44
 constituents of, 42
 by grade, 2, 39
 by rank, 2, 39
 related to composition, 101-103
 by type, 2, 39
components of, 95-98
composition of, 79-113
 and hydrocarbon generation, 103-106
composition of crude oil generated from, 185-196
definition of, 41
 contemporary, 2
 historical, 1-2
displacement volumes of, 63
 elemental composition of, 100-101
 evolution of as sedimentary rock, 3971
expulsion of petroleum from, 149-150
fracture systems in, 120-124
gas sorption on, 203-215
tectonic significance of, 127
gas sorption on, 203-215
geochemical analysis of, 103-106
 and global energy budget, 4-5
global occurrence of, 1-9
history of utilization of, 2-3
logging tool responses in, 295-297
measurement of gas content of, 203-215
minerals in. See Minerals in coal

natural fractures in, 119-128. See also Cleats
nomenclature of macerals, 134
organically associated elements, 95
petroleum source rock potential of, 133-151
physical and physico-chemical composition of, 79-98
rank parameters of, 43-44
significance of moisture in, 99-100
as source rock and reservoir, 40-41
structure of molecular fraction of, 52-53
use of
in East Asia, 2-3
in Europe, 2-3
in Great Britain, 2-3
in Mediterranean, 2-3
in North America, 2-3
in United States, 3
world distribution of, 5-6
world resources of. See Coal resources
Coastal discontinuities and methane drainage, 240-241
Coastal gas
characteristics of, 171-180
in Black Warrior basin (USA), 179-180
in Bowen/Sydney basins (Australia), 172-173
in eastern China, 173-174
in Lower Silesian basin (Poland), 174
in Piceance basin (USA), 176-179
in Powder River basin (USA), 179
in San Juan basin (USA), 174-176
in western Germany, 171-172
composition and origins of, 159-180, 163-171
generation of, 159-162
storage and migration of, 162-163
characteristics of, 171-180
See also Coalbed methane
Coastal methane, 53
ancient environmental paradigms for, 22-31
applications for wireline logs, 287-301
assessing the economic feasibility of, 379-383
in Black Warrior basin, 28-31
comparison of with conventional natural gas, 384-385
computer model, 299-300
drilling techniques for, 269-284. See also Drilling for coastal methane
economic and parametric analysis of, 373-391
economics of vs. conventional natural gas, 384-387
international opportunities in, 390-392
parametric analysis of, 387-390. See also Parametric analysis of coastal methane
in Powder River basin, 22-25
production. See Coastal methane production reservoir engineering aspects of, 361-371
in San Juan basin, 25-28
wells. See Coastal methane wells
See also Coastal gas
Coastal methane production, 341-357
alternative investment analysis methods, 392
in the Black Warrior basin, 379-381
characteristics, 341-344
design of system for, 344
economies of scale for, 379
equipment, 344-352
flow measurement options, 349-350
gathering system options, 349
international, 341-342
investment and operating costs, 377-379
keys to economic, 373-379
markets for, 379
operations and reservoir management, 355-357
rates of gas flow, 374-377
requirement of low production pressure, 343-344
in the San Juan basin, 381-382
surface gas and water separators, 348-349
taxation of, 392-394
typical, 342-343
typical well configuration, 344
U.S., 341
water disposal from, 352-355. See also Water disposal workovers, 356
Coastal methane wells
completions and stimulations, 303-336
economics of spacing, 369-370
horizontal, 305-306
hydraulic fracture stimulations, 312-321. See also Hydraulic fracture stimulations
pressure interference concept in, 368-369
Coastals
depositional environments of, 13-21
stress sensitivity of permeability in, 364
See also Peatlands
Coal composition
and cleats, 122
two-component model, 41-42
Coal density, 61-62
changes in with coalification, 62
Coal-derived crude oils
aromatic compounds in, 193-194
bulk composition of, 186-191
diterpanes in, 195-196
geochemical characteristics of, 186-196
hydrocarbon distribution in, 186
occurrence of, 186
odd−even predominance, 191-192
pristane and phytane in, 192
saturated and aromatic steroids in, 194-195
sesquiterpanes in, 195-196
stable carbon isotope composition, 190-191
sulfur content of, 186-190
summary of organic geochemical characteristics of, 197
triterpanes in, 195
Coal facies, genesis of, 95-98
Coalification, 39
amounts of gases generated from coal during, 161
caused by biogenic processes, 66
causes of, 66-69
changes in characteristics of coal macerals during, 57
chemical processes of, 47-56
effects of on coal properties, 56-66
effect of shear strain on, 67-68
five major stages of, 43, 44
and formation and expulsion of molecular constituents, 53-56
in geological context, 69-71
history of in sedimentary basins, 66
impact of on methane sorption and expulsion, 63
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>influence of on gas transport</td>
<td>64-65</td>
</tr>
<tr>
<td>influence of temperature and time on</td>
<td>68-69</td>
</tr>
<tr>
<td>and moisture content</td>
<td>53</td>
</tr>
<tr>
<td>overview of</td>
<td>42-47</td>
</tr>
<tr>
<td>pressure and</td>
<td>66-67</td>
</tr>
<tr>
<td>pyrolysis yields during</td>
<td>59-60</td>
</tr>
<tr>
<td>stages of</td>
<td>79, 160</td>
</tr>
<tr>
<td>Coal mines, control of methane for</td>
<td>237-264</td>
</tr>
<tr>
<td>underground</td>
<td></td>
</tr>
<tr>
<td>Coal network</td>
<td>92-95</td>
</tr>
<tr>
<td>Coal porosity</td>
<td>60-61</td>
</tr>
<tr>
<td>changes in with coalification</td>
<td>62</td>
</tr>
<tr>
<td>Coal rank</td>
<td></td>
</tr>
<tr>
<td>effect on cleat spacing</td>
<td>121-122</td>
</tr>
<tr>
<td>changes in methane accessibility as a</td>
<td>64</td>
</tr>
<tr>
<td>function of</td>
<td></td>
</tr>
<tr>
<td>changes in reflectance with</td>
<td>57-58</td>
</tr>
<tr>
<td>compaction and</td>
<td>79-80</td>
</tr>
<tr>
<td>and estimated gas generation potential</td>
<td>55</td>
</tr>
<tr>
<td>hydrocarbon generation related to</td>
<td>103-106</td>
</tr>
<tr>
<td>patterns of and significance</td>
<td>69-71</td>
</tr>
<tr>
<td>pyridine extraction as function of</td>
<td>49</td>
</tr>
<tr>
<td>regional variability in</td>
<td>69</td>
</tr>
<tr>
<td>Coal rank series</td>
<td>43-47</td>
</tr>
<tr>
<td>Coal resources, world</td>
<td>3-4</td>
</tr>
<tr>
<td>Compaction and coal rank</td>
<td>79-80</td>
</tr>
<tr>
<td>Connectivity of cleats</td>
<td>123</td>
</tr>
<tr>
<td>Conventional fuels, resources of</td>
<td>4</td>
</tr>
<tr>
<td>Conventional natural gas</td>
<td></td>
</tr>
<tr>
<td>comparison of with coalbed methane</td>
<td>384-385</td>
</tr>
<tr>
<td>economics of vs. coalbed methane</td>
<td>384-387</td>
</tr>
<tr>
<td>replacement costs for</td>
<td>384</td>
</tr>
<tr>
<td>Cracking</td>
<td>50</td>
</tr>
<tr>
<td>Cross-linked gel fracture treatments</td>
<td>314-316</td>
</tr>
<tr>
<td>Cutinite, chemistry of</td>
<td>110</td>
</tr>
<tr>
<td>Darcy flow and the cleat system</td>
<td>364</td>
</tr>
<tr>
<td>Debituminization</td>
<td>43, 44</td>
</tr>
<tr>
<td>Degradation</td>
<td>82</td>
</tr>
<tr>
<td>Dehydration</td>
<td>43, 44</td>
</tr>
<tr>
<td>Deltaic coastal plains</td>
<td>16-17</td>
</tr>
<tr>
<td>Density, coal</td>
<td>61-62</td>
</tr>
<tr>
<td>Density logs</td>
<td>290-293</td>
</tr>
<tr>
<td>responses in coals</td>
<td>295</td>
</tr>
<tr>
<td>Depolymerization</td>
<td>50</td>
</tr>
<tr>
<td>Desorption testing</td>
<td>362-363</td>
</tr>
<tr>
<td>Dewatering pumps, artificial lift</td>
<td>345-348</td>
</tr>
<tr>
<td>Diffusion</td>
<td>363-364</td>
</tr>
<tr>
<td>Dip angle of cleat surfaces</td>
<td>121</td>
</tr>
<tr>
<td>Drilling for coalbed methane</td>
<td></td>
</tr>
<tr>
<td>cased hole with hydraulic fracture</td>
<td>275-280</td>
</tr>
<tr>
<td>technique, 275-280</td>
<td></td>
</tr>
<tr>
<td>coring operations</td>
<td>270</td>
</tr>
<tr>
<td>costs of</td>
<td>282-284</td>
</tr>
<tr>
<td>drill-stem testing</td>
<td>270-271</td>
</tr>
<tr>
<td>in eastern basin coal reservoirs</td>
<td>280-282</td>
</tr>
<tr>
<td>horizontal drainhole</td>
<td>282</td>
</tr>
<tr>
<td>initial considerations</td>
<td>269-271</td>
</tr>
<tr>
<td>open-hole cavity well technique</td>
<td>274-275</td>
</tr>
<tr>
<td>cavitation procedure</td>
<td>275</td>
</tr>
<tr>
<td>drilling procedure</td>
<td>274-275</td>
</tr>
<tr>
<td>reservoir damage during</td>
<td>271</td>
</tr>
<tr>
<td>in western basin coal reservoirs</td>
<td>271-274</td>
</tr>
<tr>
<td>Duroclatrain</td>
<td>80</td>
</tr>
<tr>
<td>Electric submersible pumps</td>
<td>348</td>
</tr>
<tr>
<td>Elemental analysis</td>
<td>134-135</td>
</tr>
<tr>
<td>Evaporation as means of water disposal</td>
<td>354</td>
</tr>
<tr>
<td>Exinite</td>
<td>81</td>
</tr>
<tr>
<td>Face cleats</td>
<td>120</td>
</tr>
<tr>
<td>strike of</td>
<td>120-121</td>
</tr>
<tr>
<td>Fens, string</td>
<td>21</td>
</tr>
<tr>
<td>Flow measurement options</td>
<td>349-350</td>
</tr>
<tr>
<td>gas measurement systems</td>
<td>350</td>
</tr>
<tr>
<td>measuring production by zone</td>
<td>350</td>
</tr>
<tr>
<td>water measurement systems</td>
<td>349-350</td>
</tr>
<tr>
<td>Foam fracture treatments</td>
<td>316</td>
</tr>
<tr>
<td>Fracture analysis, and methane drainage</td>
<td>241-242</td>
</tr>
<tr>
<td>Fracture geometry and height growth</td>
<td>321-323</td>
</tr>
<tr>
<td>Fracture modeling and design</td>
<td>327-335</td>
</tr>
<tr>
<td>and minifract analysis</td>
<td>330-332</td>
</tr>
<tr>
<td>and optimization</td>
<td>332-333</td>
</tr>
<tr>
<td>and stress profiles and fracture height</td>
<td>327-330</td>
</tr>
<tr>
<td>Fracture systems in coal</td>
<td>120-124</td>
</tr>
<tr>
<td>Fracture treatments</td>
<td></td>
</tr>
<tr>
<td>cross-linked gel, 314-316</td>
<td></td>
</tr>
<tr>
<td>foam, 316</td>
<td></td>
</tr>
<tr>
<td>high-pressure, modeling of, 335</td>
<td></td>
</tr>
<tr>
<td>interpretation of, 321-327</td>
<td></td>
</tr>
<tr>
<td>sandless, 318-320</td>
<td></td>
</tr>
<tr>
<td>water, 316-318</td>
<td></td>
</tr>
<tr>
<td>modeling of, 334-335</td>
<td></td>
</tr>
<tr>
<td>Fracturing of multiple seams</td>
<td>313</td>
</tr>
<tr>
<td>Fracturing pressures, 323-324</td>
<td></td>
</tr>
<tr>
<td>Fusinite, chemistry of, 111-112</td>
<td></td>
</tr>
<tr>
<td>Gamma ray logs</td>
<td>288-290</td>
</tr>
<tr>
<td>responses in coals</td>
<td>295</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>biogenic, 159-160</td>
<td></td>
</tr>
<tr>
<td>mechanisms for primary migration of,</td>
<td>149-150</td>
</tr>
<tr>
<td>migration of, 232-234</td>
<td></td>
</tr>
<tr>
<td>in coals, 219-234</td>
<td></td>
</tr>
<tr>
<td>residual, 64</td>
<td></td>
</tr>
<tr>
<td>sorbed. See Sorbed gas, Sorption</td>
<td></td>
</tr>
<tr>
<td>thermogenic, 159-160</td>
<td></td>
</tr>
<tr>
<td>See also Coalbed gas, Coalbed methane</td>
<td></td>
</tr>
<tr>
<td>Gas composition</td>
<td>350-351</td>
</tr>
<tr>
<td>Gas-gathering systems</td>
<td></td>
</tr>
<tr>
<td>design considerations, 349</td>
<td></td>
</tr>
<tr>
<td>types of, 349</td>
<td></td>
</tr>
<tr>
<td>Gas lift</td>
<td>347-348</td>
</tr>
<tr>
<td>Gas measurement systems</td>
<td>350</td>
</tr>
<tr>
<td>Gas reservoirs, multiple, and methane</td>
<td>241</td>
</tr>
<tr>
<td>drainage</td>
<td></td>
</tr>
<tr>
<td>Gas-source correlations</td>
<td>147</td>
</tr>
<tr>
<td>Gas transport, influence of coalification</td>
<td>64-65</td>
</tr>
<tr>
<td>on, 64-65</td>
<td></td>
</tr>
<tr>
<td>Gas treating and compression</td>
<td>350-352</td>
</tr>
<tr>
<td>compression equipment</td>
<td>352</td>
</tr>
<tr>
<td>compressor operation</td>
<td>352</td>
</tr>
<tr>
<td>dehydration, 351-352</td>
<td></td>
</tr>
<tr>
<td>gas composition, 350-351</td>
<td></td>
</tr>
<tr>
<td>Gathering system options</td>
<td>349</td>
</tr>
<tr>
<td>gas-gathering design considerations</td>
<td>349</td>
</tr>
<tr>
<td>types of gas-gathering systems, 349</td>
<td></td>
</tr>
<tr>
<td>water-gathering lines, 349</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3837506/9781629811048_backmatter.pdf by guest on 07 December 2018
Gelification, 46, 81, 82
Geochemical gelification, 47
Germany, characteristics of coalbed gases in western, 171-172
Global energy budget, and coal, 4-5
Graphite, 79
Graphitization, 43, 44

Hardgrove Grindability Index, 65, 66, 101
High-pressure fracturing treatments, modeling of, 335
Horizontal coalbed methane wells, 305-306
Humification, 45, 81, 82, 83
Huminite, 81
Huminite/vitrinite group, 83-84
Hydraulic fracture stimulations, 312-316
cross-linked gel fracture treatments, 314-316
foam fracture treatments, 316
fracturing of multiple seams, 313
gel damage to coal, 313-314
water fracture treatments, 316-318
Hydraulic fracture treatments
gas production comparisons, 320-321
sandless fracture treatments, 318-320
Hydrocarbon generation, related to coal composition and rank, 103-106
Hydrocarbon potential, related to maceral association, 112

Induced gamma ray spectrometry logs, 293-295
responses in coals, 297
Inertinite, 81
Inertinite group, 91-92
Injection wells for water disposal, 353-354

Kerogens
classification of, 137
comparison of types, 135
Kinetic modeling, 144-147

Langmuir isotherm, 204-205
Lignite, 79
Liptinite, 81
Liptinite group, 84-91
Liquid chromatography, bitumen extraction and, 104-106
Lithotypes, 80-81
Lithotype thickness, effect on cleat spacing, 121-122
Logging options for uncased and cased wells, 300
Logging tools
basic principles of, 287-295
responses in coals, 295-297
Logs
acoustic (sonic), 290
density, 290-293
gamma ray, 288-290
induced gamma ray spectrometry, 293-295
information available from, 297-299
natural gamma ray spectrometry, 293
neutron, 290
resistivity, 287-288
Lower Silesian basin (Poland), characteristics of coalbed gases in, 174

Macerals, 81-92, 134
analyses of, 81
appearance of via optical microscopy, 56-57
changes in during coalification, 57
characterization of, 83-91
classification of groups, 82
cleats and filling of, 124
homogenization of, 81-83
primary, 83
relation between association and hydrocarbon potential, 112
secondary, 83
structure, genesis, and source rock potential of, 106-112
at various rank stages, 92
Mass balance approach
to petroleum migration, 230-232
to petroleum potential, 142-144
Maturation, 39
of organic matter, 140-142
Measurement of sorbed gas
direct methods, 209-213
comparison of conventional desorption methods, 211-212
conventional desorption methods, 209-212
curve fit method, 210-211
and desorbed gas composition, 212
and desorption rate, 211
other methods for gas content determination, 212
pressure core desorption, 213
Smith and Williams method, 210
USBM direct method, 210
indirect methods, 213-215
and gas-in-place, 214-215
Kim’s approach, 213-214
sorption isotherms and bulk density logs, 214
Mechanical properties of coal, 65-66
Metanthracite coal, 79
Methane
coalbed. See Coalbed methane
control of for underground coal mines, 237-264
drainage. See Methane drainage
Methane drainage
establishing geologic framework for site, 240-242
establishing need for, 238-240
history of, 237-238
planning
and coalbed discontinuities, 240-241
and fracture analysis, 241-242
general mapping requirements, 240
and multiple gas reservoirs, 241
surface, 252-264
directionally drilled holes, 259-260
longwall gob gas vent holes, 260-264
stimulated vertical wells in virgin coalbeds, 253-259
technology, 242-264
underground, 243-252
cross-measure boreholes, 250-251
horizontal boreholes (water infusion), 249-250
horizontal boreholes from shaft bottoms, 247-249
horizontal boreholes drilled to other horizons, 251-252
horizontal holes in mine, 243-247
vertical holes into mine roof, 250
Index 399

Microhardness, 65
Microlithotype analysis, 81
Microlithotypes, 92-95

Migration
of gas, 232-234
of oil and gas in coals, 219-234
physical conditions of, 221-223
potential mechanisms as avenues, 223-225

Mineral-bituminous groundmass, 92
Mineral energy resources, 3
Mineral matter, 92-95

Minerals in coal
accessory, 94
carbonates, 94
clay, 94
oxides, 94
sulfides and sulfates, 94

Minifrac analysis, 330-332
Moisture content and coalification, 53

Molecular fraction of coal
composition of, 53
compositional evolution of, 54
hydrocarbons in, 53
structure of, 52-53

Multiple gas reservoirs, and methane drainage, 241
Multiple seams, fracturing of, 313

Natural gamma ray spectrometry logs, 293
responses in coals, 295-297
Neutron logs, 290
responses in coals, 295

Nondeltaic coastal plains, 17

Oil
mechanisms for primary migration of, 149-150
migration of in coals, 219-234
Oil-source correlations, 147-149

Openhole cavity completions, 306-312
cavity geomechanics, 309
cavity size, 308-309
cavity technique, 307-308
costs of, 308
extent of collapse and failure zone, 310
model for anisotropic stresses, 310
permeability enhancement, 310
production differences between openhole cavity
completion and gel-fracture stimulations, 310-311
reservoir stimulation, 311-312

Organic matter
characterization of with reference to coal, 134-140
composition of crude oils generated from coaly, 185-196
maturation of, 140-142

Organic metamorphism, 39

Organic petrography, 134-135
Oxides, 94

Parametric analysis of coalbed methane, 387-390
developmental strategies, 388
flow capacity, 387-388
resource concentration, 387
well spacing and stimulation, 390

Peat, 79
burial, 44
surface, 44

Peat bogs
cold climate, 20
temperate climate, 19
tropical, 19
See also Bogs, Peatlands

Peatification, 43, 44, 46

Peatlands
and alluvial fans, 14
and alluvial plains, 14
characteristics of, 21
and deltalic coastal plains, 16-17
drainage systems of, 13-14
fens, swamps, and marshes, 20-21
and nondeltaic coastal plains, 17
See also Bogs, Coalbeds, Peat bogs

Peatland systems, 17-21
and bogs, 17-20

Peat mire, 79
minerotrophic, 79
ombrotrophic, 79
rheotrophic, 79

Peat-to-lignite transition, 46-47

Permeability
determination of by well testing, 364-367
stress sensitivity of in coalbeds, 364

Petrographic characterization, new concepts of, 136
Petrographic properties, 140-142
Petrography, organic, 134-135

Petroleum expulsion
empirical hydrocarbon thresholds for, 150
from coal and terrigenous sediments, 149-150

Petroleum generation, timing of, 144-146

Petroleum migration
geochemical and microscopic effects of, 225-230
mass balance approaches, 230-232

Petroleum potential
high resolution pyrolysis evaluation of, 136-140
mass balance approach to, 142-144

Physical sorption, 203-204

Piceance basin (USA), characteristics of coalbed gases in, 176-179

Polymerization, 50

Poroelastic effects, 326

Porosity
of cleats, 123-124
crude oil, 60-61

Powder River basin
characteristics of coalbed gases in, 179
crude oil, 22-25

Pressure, and coalification, 66-67
Pressure interference concept in coalbed methane wells, 368-369

Progressing cavity pumps, 347

Proppant-induced pressure effects, 326-327

Proximate analysis, 59, 98-100

Pump failure, reducing, 356

Pumps
progressing cavity, 347
sucker-rod, 345-347

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3837506/9781629811048_backmatter.pdf by guest on 07 December 2018
Pyrolysis, high-resolution, and evaluation of petroleum potential, 136-140
Pyrolysis yields during coalification, 59-60
Reflectance, changes in with rank, 57-58
Reservoir stimulation, 311-312
Residual gas, 64
Resinite, chemistry of, 109-110
Resistivity logs, 287-288
responses in coals, 295
Reverse osmosis for water disposal, 354
Rock-Eval pyrolysis, 59-60, 103-104, 135
Rod failure, reducing, 357
Sandless fracture treatments, 318-320
San Juan basin
characteristics of coalbed gases in, 174-176
colbad methane in, 25-28
colbad methane production in, 381-382
development activity in, 381
economics of, 382
gas production capacity of, 381
production technology in, 381-382
resource concentration in, 381
Semi-anthracite coat, 79
Shear strain, effect of on coalification, 67-68
Solid material production problems, reducing, 357
Sorbate accessibility, 60-65
Sorbed gas
behavior of, 203-209
measuring. See measurement of sorbed gas
See also Sorption
Sorption
with coal rank, 206
of different pure gases, 207
effect of mineral matter on, 205
effect of moisture on, 205-206
isotherms. See Sorption isotherms
measurement of, 208-209
and particle size, 208
and sorbed phase volume, 208-209
techniques, 208
multicomponent gas, 207
and petrology, 206-207
physical, 203-204
relation of pressure and temperature to, 205
Sorption isotherms, 204-205
Langmuir, 204-205
models, 204
uses, 204
Sporinite, chemistry of, 111
Stress profiles and fracture height, 327-330
Stress sensitivity of permeability in coalbeds, 364
String fens, 21
Subbituminous A, 79
Subbituminous B, 79
Subbituminous C, 79
Sucker-rod pumps, 343-347
Sulfides, 94
Sulfates, 94
Surface area measurements, 62-63
Surface gas and water separators, 348-349
in Black Warrior basin, 348
in San Juan basin, 348-349
Surface morphology, of cleats, 124
Surface peat, 44
Surface water disposal, 353
Terrigenous sediments
biomarkers related to, 147-149
expulsion of petroleum from, 149-150
T-fractures, 325-326
Thermogenic gas, 159-160
Two-component model of coal composition, 41-42
Ultimate analysis, 100-101
Vitrinite, 81
chemistry of, 107-109
Vitrinite reflectance
and chemical parameters, 101
modeling, 146-147
suppression of, 58-59
Vitrinization, 43, 82
Volatile matter, 100
Water disposal, 352-355
combined processes, 354
injection wells, 353-354
reverse osmosis/evaporation, 354
surface, 353
water treatment options, 352-353
Water fracture treatments, 316-318
modeling of, 334-335
Water-gathering lines, 349
Water measurement systems, 349-350
Water treatment options, 352-353
Workovers, 356
preproduction, 356
recompletion, 356
reducing need for, 356-357
remedial production, 356