Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic (sonic) logs</td>
<td>290</td>
</tr>
<tr>
<td>Activation energy</td>
<td>64</td>
</tr>
<tr>
<td>Adsorption isotherm</td>
<td>361-362</td>
</tr>
<tr>
<td>Alginite, chemistry of</td>
<td>110-111</td>
</tr>
<tr>
<td>Alluvial fans</td>
<td>14</td>
</tr>
<tr>
<td>Alluvial plains</td>
<td>14</td>
</tr>
<tr>
<td>Alteration</td>
<td>82</td>
</tr>
<tr>
<td>Anthracite coals</td>
<td>47, 79</td>
</tr>
<tr>
<td>Biogenic gas</td>
<td>159-160</td>
</tr>
<tr>
<td>Biomarkers, use of in petroleum-source correlations</td>
<td>147-149</td>
</tr>
<tr>
<td>Bitumen extraction and liquid chromatography</td>
<td>104-106</td>
</tr>
<tr>
<td>Bituminization</td>
<td>43, 44, 81, 83, 140</td>
</tr>
<tr>
<td>Bituminous coals</td>
<td>47, 79</td>
</tr>
<tr>
<td>Black Warrior basin</td>
<td>17-20</td>
</tr>
<tr>
<td>characteristics of coalbed gases in</td>
<td>179-180</td>
</tr>
<tr>
<td>coalbed methane in</td>
<td>28-31</td>
</tr>
<tr>
<td>coalbed methane production in</td>
<td>379-381</td>
</tr>
<tr>
<td>development activity in</td>
<td>379</td>
</tr>
<tr>
<td>economics of</td>
<td>381</td>
</tr>
<tr>
<td>gas production capacity in</td>
<td>380</td>
</tr>
<tr>
<td>production technology in</td>
<td>380-381</td>
</tr>
<tr>
<td>resource concentration in</td>
<td>379</td>
</tr>
<tr>
<td>Bogs</td>
<td>17-20</td>
</tr>
<tr>
<td>characteristics of</td>
<td>21</td>
</tr>
<tr>
<td>domed</td>
<td>21</td>
</tr>
<tr>
<td>See also Peat bogs, Peatlands</td>
<td></td>
</tr>
<tr>
<td>Bowen/Sydney basins (Australia), characteristics of coalbed gases in</td>
<td>172-173</td>
</tr>
<tr>
<td>Bulk chemical properties</td>
<td>140-142</td>
</tr>
<tr>
<td>Bulk pyrolysis techniques</td>
<td>135</td>
</tr>
<tr>
<td>Bulk source rock parameters, interrelationships between</td>
<td>135-136</td>
</tr>
<tr>
<td>Burial peat</td>
<td>44</td>
</tr>
<tr>
<td>Butt cleats, strike of</td>
<td>120-121</td>
</tr>
<tr>
<td>Calorific value</td>
<td>101</td>
</tr>
<tr>
<td>Carbonates</td>
<td>94</td>
</tr>
<tr>
<td>Charcoal, use of</td>
<td>1</td>
</tr>
<tr>
<td>Chemical maturity parameters</td>
<td>142</td>
</tr>
<tr>
<td>China, characteristics of coalbed gases in eastern</td>
<td>173-174</td>
</tr>
<tr>
<td>Clarodurain</td>
<td>80</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>94</td>
</tr>
<tr>
<td>Cleats</td>
<td>121-122</td>
</tr>
<tr>
<td>aperture width</td>
<td>122-123</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>butt</td>
<td>127</td>
</tr>
<tr>
<td>and coal composition</td>
<td>122</td>
</tr>
<tr>
<td>connectivity of</td>
<td>123</td>
</tr>
<tr>
<td>dip angle</td>
<td>121</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>duogenetic genesis hypotheses</td>
<td>128</td>
</tr>
<tr>
<td>endogenetic genesis hypotheses</td>
<td>125-126</td>
</tr>
<tr>
<td>exogenetic genesis hypotheses</td>
<td>126-127</td>
</tr>
<tr>
<td>face</td>
<td>122</td>
</tr>
<tr>
<td>and lithotype thickness</td>
<td>121-122</td>
</tr>
<tr>
<td>and maceral filling</td>
<td>124</td>
</tr>
<tr>
<td>origin of</td>
<td>124-128</td>
</tr>
<tr>
<td>porosity of</td>
<td>123-124</td>
</tr>
<tr>
<td>and secondary mineralization</td>
<td>124</td>
</tr>
<tr>
<td>significance of height containment by lithotype thickness</td>
<td>127</td>
</tr>
<tr>
<td>surface morphology</td>
<td>124</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>Coal</td>
<td>47</td>
</tr>
<tr>
<td>anthracite</td>
<td>47</td>
</tr>
<tr>
<td>bituminous</td>
<td>47</td>
</tr>
<tr>
<td>characterization of organic matter with reference to</td>
<td>134-140</td>
</tr>
<tr>
<td>chemical composition of</td>
<td>98-103</td>
</tr>
<tr>
<td>classification of</td>
<td>43-44</td>
</tr>
<tr>
<td>constituents of</td>
<td>42</td>
</tr>
<tr>
<td>by grade</td>
<td>2, 39</td>
</tr>
<tr>
<td>by rank</td>
<td>2, 39</td>
</tr>
<tr>
<td>related to composition</td>
<td>101-103</td>
</tr>
<tr>
<td>by type</td>
<td>2, 39</td>
</tr>
<tr>
<td>components of</td>
<td>95-98</td>
</tr>
<tr>
<td>composition of</td>
<td>79-113</td>
</tr>
<tr>
<td>and hydrocarbon generation</td>
<td>103-106</td>
</tr>
<tr>
<td>composition of crude oil generated from</td>
<td>185-196</td>
</tr>
<tr>
<td>definition of</td>
<td>41</td>
</tr>
<tr>
<td>contemporary</td>
<td>2</td>
</tr>
<tr>
<td>historical</td>
<td>1-2</td>
</tr>
<tr>
<td>displacement volumes of</td>
<td>63</td>
</tr>
<tr>
<td>elemental composition of</td>
<td>100-101</td>
</tr>
<tr>
<td>evolution of as sedimentary rock</td>
<td>3971</td>
</tr>
<tr>
<td>expulsion of petroleum from</td>
<td>149-150</td>
</tr>
<tr>
<td>fracture systems in</td>
<td>120-124</td>
</tr>
<tr>
<td>gas sorption on</td>
<td>203-215</td>
</tr>
<tr>
<td>geochemical analysis of</td>
<td>103-106</td>
</tr>
<tr>
<td>and global energy budget</td>
<td>4-5</td>
</tr>
<tr>
<td>global occurrence of</td>
<td>1-9</td>
</tr>
<tr>
<td>history of utilization</td>
<td>2-3</td>
</tr>
<tr>
<td>logging tool responses in</td>
<td>295-297</td>
</tr>
<tr>
<td>measurement of gas content of</td>
<td>203-215</td>
</tr>
<tr>
<td>mechanical properties of</td>
<td>65-66</td>
</tr>
<tr>
<td>migration of oil and gas in</td>
<td>219-234</td>
</tr>
<tr>
<td>minerals in</td>
<td>219-234</td>
</tr>
<tr>
<td>black warrior basin</td>
<td>17-20</td>
</tr>
<tr>
<td>characteristics of</td>
<td>21</td>
</tr>
<tr>
<td>domed</td>
<td>21</td>
</tr>
<tr>
<td>See also Peat bogs, Peatlands</td>
<td></td>
</tr>
<tr>
<td>Bowen/Sydney basins (Australia), characteristics of coalbed gases in</td>
<td>172-173</td>
</tr>
<tr>
<td>Bulk chemical properties</td>
<td>140-142</td>
</tr>
<tr>
<td>Bulk pyrolysis techniques</td>
<td>135</td>
</tr>
<tr>
<td>Bulk source rock parameters, interrelationships between</td>
<td>135-136</td>
</tr>
<tr>
<td>Burial peat</td>
<td>44</td>
</tr>
<tr>
<td>Butt cleats, strike of</td>
<td>120-121</td>
</tr>
<tr>
<td>Calorific value</td>
<td>101</td>
</tr>
<tr>
<td>Carbonates</td>
<td>94</td>
</tr>
<tr>
<td>Charcoal, use of</td>
<td>1</td>
</tr>
<tr>
<td>Chemical maturity parameters</td>
<td>142</td>
</tr>
<tr>
<td>China, characteristics of coalbed gases in eastern</td>
<td>173-174</td>
</tr>
<tr>
<td>Clarodurain</td>
<td>80</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>94</td>
</tr>
<tr>
<td>Cleats</td>
<td>121-122</td>
</tr>
<tr>
<td>aperture width</td>
<td>122-123</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>butt</td>
<td>127</td>
</tr>
<tr>
<td>and coal composition</td>
<td>122</td>
</tr>
<tr>
<td>connectivity of</td>
<td>123</td>
</tr>
<tr>
<td>dip angle</td>
<td>121</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>duogenetic genesis hypotheses</td>
<td>128</td>
</tr>
<tr>
<td>endogenetic genesis hypotheses</td>
<td>125-126</td>
</tr>
<tr>
<td>exogenetic genesis hypotheses</td>
<td>126-127</td>
</tr>
<tr>
<td>face</td>
<td>122</td>
</tr>
<tr>
<td>and lithotype thickness</td>
<td>121-122</td>
</tr>
<tr>
<td>and maceral filling</td>
<td>124</td>
</tr>
<tr>
<td>origin of</td>
<td>124-128</td>
</tr>
<tr>
<td>porosity of</td>
<td>123-124</td>
</tr>
<tr>
<td>and secondary mineralization</td>
<td>124</td>
</tr>
<tr>
<td>significance of height containment by lithotype thickness</td>
<td>127</td>
</tr>
<tr>
<td>surface morphology</td>
<td>124</td>
</tr>
<tr>
<td>genetic significance of</td>
<td>127</td>
</tr>
<tr>
<td>Coal</td>
<td>47</td>
</tr>
<tr>
<td>anthracite</td>
<td>47</td>
</tr>
<tr>
<td>bituminous</td>
<td>47</td>
</tr>
<tr>
<td>characterization of organic matter with reference to</td>
<td>134-140</td>
</tr>
<tr>
<td>chemical composition of</td>
<td>98-103</td>
</tr>
<tr>
<td>classification of</td>
<td>43-44</td>
</tr>
<tr>
<td>constituents of</td>
<td>42</td>
</tr>
<tr>
<td>by grade</td>
<td>2, 39</td>
</tr>
<tr>
<td>by rank</td>
<td>2, 39</td>
</tr>
<tr>
<td>related to composition</td>
<td>101-103</td>
</tr>
<tr>
<td>by type</td>
<td>2, 39</td>
</tr>
<tr>
<td>components of</td>
<td>95-98</td>
</tr>
<tr>
<td>composition of</td>
<td>79-113</td>
</tr>
<tr>
<td>and hydrocarbon generation</td>
<td>103-106</td>
</tr>
<tr>
<td>composition of crude oil generated from</td>
<td>185-196</td>
</tr>
<tr>
<td>definition of</td>
<td>41</td>
</tr>
<tr>
<td>contemporary</td>
<td>2</td>
</tr>
<tr>
<td>historical</td>
<td>1-2</td>
</tr>
<tr>
<td>displacement volumes of</td>
<td>63</td>
</tr>
<tr>
<td>elemental composition of</td>
<td>100-101</td>
</tr>
<tr>
<td>evolution of as sedimentary rock</td>
<td>3971</td>
</tr>
<tr>
<td>expulsion of petroleum from</td>
<td>149-150</td>
</tr>
<tr>
<td>fracture systems in</td>
<td>120-124</td>
</tr>
<tr>
<td>gas sorption on</td>
<td>203-215</td>
</tr>
<tr>
<td>geochemical analysis of</td>
<td>103-106</td>
</tr>
<tr>
<td>and global energy budget</td>
<td>4-5</td>
</tr>
<tr>
<td>global occurrence of</td>
<td>1-9</td>
</tr>
<tr>
<td>history of utilization</td>
<td>2-3</td>
</tr>
<tr>
<td>logging tool responses in</td>
<td>295-297</td>
</tr>
<tr>
<td>measurement of gas content of</td>
<td>203-215</td>
</tr>
<tr>
<td>mechanical properties of</td>
<td>65-66</td>
</tr>
<tr>
<td>migration of oil and gas in</td>
<td>219-234</td>
</tr>
<tr>
<td>minerals in</td>
<td>219-234</td>
</tr>
</tbody>
</table>
natural fractures in, 119-128. See also Cleats
organically associated elements, 95
petroleum source rock potential of, 133-151
physical and physico-chemical composition of, 79-98
rank parameters of, 43-44
significance of moisture in, 99-100
as source rock and reservoir, 40-41
structure of molecular fraction of, 52-53
use of
in East Asia, 2-3
in Europe, 2-3
in Great Britain, 2-3
in Mediterranean, 2-3
in North America, 2-3
in United States, 3
world distribution of, 5-6
world resources of. See Coal resources
Coalbed discontinuities and methane drainage, 240-241
Coalbed gas
characteristics of, 171-180
in Black Warrior basin (USA), 179-180
in Bowen/Sydney basins (Australia), 172-173
in eastern China, 173-174
in Lower Silesian basin (Poland), 174
in Piceance basin (USA), 176-179
in Powder River basin (USA), 179
in San Juan basin (USA), 174-176
in western Germany, 171-172
composition and origins of, 159-180, 163-171
generation of, 159-162
storage and migration of, 162-163
characteristics of, 171-180
See also Coalbed methane
Coalbed methane, 53
an ancient environmental paradigms for, 22-31
aplications for wireline logs, 287-301
assessing the economic feasibility of, 379-383
in Black Warrior basin, 28-31
comparison of with conventional natural gas, 384-385
computer model, 299-300
drilling techniques for, 269-284. See also Drilling for
coalbed methane
economic and parametric analysis of, 373-391
economics of vs. conventional natural gas, 384-387
international opportunities in, 390-392
parametric analysis of, 387-390. See also Parametric
analysis of coalbed methane
in Powder River basin, 22-25
production. See Coalbed methane production
reservoir engineering aspects of, 361-371
in San Juan basin, 25-28
wells. See Coalbed methane wells
See also Coalbed gas
Coalbed methane production, 341-357
alternative investment analysis methods, 392
in the Black Warrior basin, 379-381
characteristics, 341-344
design of system for, 344
economics of scale for, 379
equipment, 344-352
flow measurement options, 349-350
gathering system options, 349
international, 341-342
investment and operating costs, 377-379
keys to economic, 373-379
markets for, 379
operations and reservoir management, 355-357
rates of gas flow, 374-377
requirement of low production pressure, 343-344
in the San Juan basin, 381-382
surface gas and water separators, 348-349
taxation of, 392-394
typical, 342-343
typical well configuration, 344
U.S., 341
water disposal from, 352-355. See also Water disposal
workovers, 356
Coalbed methane wells
completions and stimulations, 303-336
economics of spacing, 369-370
horizontal, 305-306
hydraulic fracture stimulations, 312-321. See also
Hydraulic fracture stimulations
pressure interference concept in, 368-369
Coalbeds
development environments of, 13-21
stress sensitivity of permeability in, 364
See also Peatlands
Coal composition
and cleats, 122
two-component model, 41-42
Coal density, 61-62
changes in with coalification, 62
Coal-derived crude oils
aromatic compounds in, 193-194
bulk composition of, 186-191
diterpanes in, 195-196
geochemical characteristics of, 186-196
hydrocarbon distribution in, 186
ocurrence of, 186
odd-even predominance, 191-192
pristane and phytane in, 192
saturated and aromatic steroids in, 194-195
sesquiterpanes in, 195-196
stable carbon isotope composition, 190-191
sulfur content of, 186-190
summary of organic geochemical characteristics of, 197
triterpanes in, 195
Coal facies, genesis of, 95-98
Coalification, 39
amounts of gases generated from coal during, 161
caused by biogenic processes, 66
causes of, 66-69
changes in characteristics of coal macerals during, 57
chemical processes of, 47-56
effects of on coal properties, 56-66
effect of shear strain on, 67-68
five major stages of, 43, 44
formation and expulsion of molecular constituents,
53-56
in geological context, 69-71
history of in sedimentary basins, 66
impact of on methane sorption and expulsion, 63
influence of on gas transport, 64-65
influence of temperature and time on, 68-69
and moisture content, 53
overview of, 42-47
pressure and, 66-67
pyrolysis yields during, 59-60
stages of, 79, 160
Coal mines, control of methane for underground, 237-264
Coal network, 92-95
Coal porosity, 60-61
changes in with coalification, 62
Coal rank
 effect on cleat spacing, 121-122
 changes in methane accessibility as a function of, 64
 changes in reflectance with, 57-58
 compaction and, 79-80
 and estimated gas generation potential, 55
 hydrocarbon generation related to, 103-106
 patterns of and significance, 69-71
 pyridine extraction as function of, 49
 regional variability in, 69
Coal rank series, 43-47
Coal resources, world, 3-4
Compaction and coal rank, 79-80
Connectivity of cleats, 123
Conventional fuels, resources of, 4
Conventional natural gas
 comparison of with coalbed methane, 384-385
 economics of vs. coalbed methane, 384-387
 replacement costs for, 384
Cracking, 50
Cross-linked gel fracture treatments, 314-316
Cutinite, chemistry of, 110
Darcy flow and the cleat system, 364
Debituminization, 43, 44
Degradation, 82
Dehydration, 43, 44
Deltaic coastal plains, 16-17
Density, coal, 61-62
Density logs, 290-293
 responses in coals, 295
Depolymerization, 50
Desorption testing, field, 362-363
Dewatering pumps, artificial lift, 345-348
Diffusion, 363-364
Dip angle of cleat surfaces, 121
Drilling for coalbed methane
 cased hole with hydraulic fracture technique, 275-280
 coring operations, 270
 costs of, 282-284
 drill-stem testing, 270-271
 in eastern basin coal reservoirs, 280-282
 horizontal drainhole, 282
 initial considerations, 269-271
 open-hole cavity well technique, 274-275
 cavitation procedure, 275
 drilling procedure, 274-275
 reservoir damage during, 271
 in western basin coal reservoirs, 271-274
Duroclayrain, 80
Electric submersible pumps, 348
Elemental analysis, 134-135
Evaporation as means of water disposal, 354
Exinite, 81
Face cleats, 120
 strike of, 120-121
Fens, string, 21
Flow measurement options, 349-350
 gas measurement systems, 350
 measuring production by zone, 350
 water measurement systems, 349-350
Foam fracture treatments, 316
Fracture analysis, and methane drainage, 241-242
Fracture geometry and height growth, 321-323
Fracture modeling and design, 327-335
 and minifrac analysis, 330-332
 and optimization, 332-333
 and stress profiles and fracture height, 327-330
Fracture systems in coal, 120-124
Fracture treatments
 cross-linked gel, 314-316
 foam, 316
 high-pressure, modeling of, 335
 interpretation of, 321-327
 sandless, 318-320
 water, 316-318
 modeling of, 334-335
Fracturing of multiple seams, 313
Fracturing pressures, 323-324
Fusinite, chemistry of, 111-112
Gamma ray logs, 288-290
 responses in coals, 295
Gas
 biogenic, 159-160
 mechanisms for primary migration of, 149-150
 migration of, 232-234
 in coals, 219-234
 residual, 64
 sorbed. See Sorbed gas, Sorption
 thermogenic, 159-160
 See also Coalbed gas, Coalbed methane
Gas composition, 350-351
Gas-gathering systems
 design considerations, 349
 types of, 349
Gas lift, 347-348
Gas measurement systems, 350
Gas reservoirs, multiple, and methane drainage, 241
Gas-source correlations, 147
Gas transport, influence of coalification on, 64-65
Gas treating and compression, 350-352
 compression equipment, 352
 compressor operation, 352
 dehydration, 351-352
 gas composition, 350-351
Gathering system options, 349
 gas-gathering design considerations, 349
 types of gas-gathering systems, 349
 water-gathering lines, 349
Index

Gelification, 46, 81, 82
Geochemical gelification, 47
Germany, characteristics of coalbed gases in western, 171-172
Global energy budget, and coal, 4-5
Graphite, 79
Graphitization, 43, 44

Hardgrove Grindability Index, 65, 66, 101
High-pressure fracturing treatments, modeling of, 335
Horizontal coalbed methane wells, 305-306
Humification, 45, 81, 82, 83
Huminite, 81
Huminite/vitrinite group, 83-84
Hydraulic fracture stimulations, 312-321
cross-linked gel fracture treatments, 314-316
foam fracture treatments, 316
fracturing of multiple seams, 313
gel damage to coal, 313-314
water fracture treatments, 316-318
Hydraulic fracture treatments
gas production comparisons, 320-321
sandless fracture treatments, 318-320
Hydrocarbon generation, related to coal composition and rank, 103-106
Hydrocarbon potential, related to maceral association, 112

Induced gamma ray spectrometry logs, 293-295
responses in coals, 297
Inertinite, 81
Inertinite group, 91-92
Injection wells for water disposal, 353-354

Kerogens
classification of, 137
comparison of types, 135
Kinetic modeling, 144-147

Langmuir isotherm, 204-205
Lignite, 79
Liptinite, 81
Liptinite group, 84-91
Liquid chromatography, bitumen extraction and, 104-106
Lithotypes, 80-81
Lithotype thickness, effect on cleat spacing, 121-122
Logging options for uncased and cased wells, 300
Logging tools
basic principles of, 287-295
responses in coals, 295-297
Logs
acoustic (sonic), 290
density, 290-293
gamma ray, 288-290
induced gamma ray spectrometry, 293-295
information available from, 297-299
natural gamma ray spectrometry, 293
neutron, 290
resistivity, 287-288
Lower Silesian basin (Poland), characteristics of coalbed gases in, 174

Macerals, 81-92, 134
analyses of, 81
appearance of via optical microscopy, 56-57
changes in during coalification, 57
characterization of, 83-91
classification of groups, 82
cleats and filling of, 124
homogenization of, 81-83
primary, 83
relation between association and hydrocarbon potential, 112
secondary, 83
structure, genesis, and source rock potential of, 106-112
at various rank stages, 92
Mass balance approach
to petroleum migration, 230-232
to petroleum potential, 142-144
Maturation, 39
of organic matter, 140-142
Measurement of sorbed gas
direct methods, 209-213
comparison of conventional desorption methods, 211-212
conventional desorption methods, 209-212
curve fit method, 210-211
and desorbed gas composition, 212
and desorption rate, 211
other methods for gas content determination, 212
pressure core desorption, 213
Smith and Williams method, 210
USBM direct method, 210
indirect methods, 213-215
and gas-in-place, 214-215
Kim’s approach, 213-214
sorption isotherms and bulk density logs, 214
Mechanical properties of coal, 65-66
Metanthracite coal, 79
Methane
coalbed. See Coalbed methane
control of for underground coal mines, 237-264
drainage. See Methane drainage
Methane drainage
establishing geologic framework for site, 240-242
establishing need for, 238-240
history of, 237-238
planning
and coalbed discontinuities, 240-241
and fracture analysis, 241-242
general mapping requirements, 240
and multiple gas reservoirs, 241
surface, 252-264
directionally drilled holes, 259-260
longwall gob gas vent holes, 260-264
stimulated vertical wells in virgin coalbeds, 253-259
technology, 242-264
underground, 243-252
cross-measure boreholes, 250-251
horizontal boreholes (water infusion), 249-250
horizontal boreholes from shaft bottoms, 247-249
horizontal boreholes drilled to other horizons, 251-252
horizontal holes in mine, 243-247
vertical holes into mine roof, 250
Microhardness, 65
Microlithotype analysis, 81
Microlithotypes, 92-95
Migration
 of gas, 232-234
 of oil and gas in coals, 219-234
 physical conditions of, 221-223
 potential mechanisms as avenues, 223-225
Mineral-bituminous groundmass, 92
Mineral energy resources, 3
Mineral matter, 92-95
Minerals in coal
 accessory, 94
 carbonates, 94
 clay, 94
 oxides, 94
 sulfides and sulfates, 94
Minifrac analysis, 330-332
Moisture content and coalification, 53
Molecular fraction of coal
 composition of, 53
 compositional evolution of, 54
 hydrocarbons in, 53
 structure of, 52-53
Multiple gas reservoirs, and methane drainage, 241
Multiple seams, fracturing of, 313
Natural gamma ray spectrometry logs, 293
 responses in coals, 295-297
Neutron logs, 290
 responses in coals, 295
Nondeltaic coastal plains, 17
Oil
 mechanisms for primary migration of, 149-150
 migration of in coals, 219-234
Oil-source correlations, 147-149
Openhole cavity completions, 306-312
 cavity geomechanics, 309
 cavity size, 308-309
 cavity technique, 307-308
 costs of, 308
 extent of collapse and failure zone, 310
 model for anisotropic stresses, 310
 permeability enhancement, 310
 production differences between openhole cavity completion and gel-fracture stimulations, 310-311
 reservoir stimulation, 311-312
Organic matter
 characterization of with reference to coal, 134-140
 composition of crude oils generated from coaly, 185-196
 maturation of, 140-142
Organic metamorphism, 39
Organic petrography, 134-135
Oxides, 94
Parametric analysis of coalbed methane, 387-390
 developmental strategies, 388
 flow capacity, 387-388
 resource concentration, 387
 well spacing and stimulation, 390
Peat, 79
 burial, 44
 surface, 44
Peat bogs
 cold climate, 20
 temperate climate, 19
 tropical, 19
 See also Bogs, Peatlands
Peatification, 43, 44, 46
Peatlands
 and alluvial fans, 14
 and alluvial plains, 14
 characteristics of, 21
 and deltaic coastal plains, 16-17
 drainage systems of, 13-14
 fens, swamps, and marshes, 20-21
 and nondeltaic coastal plains, 17
 See also Bogs, Coalbeds, Peat bogs
Peatland systems, 17-21
 and bogs, 17-20
Peat mire, 79
 minerotrophic, 79
 ombrotrophic, 79
 rheotrophic, 79
Peat-to-lignite transition, 46-47
Permeability
 determination of by well testing, 364-367
 stress sensitivity of in coalbeds, 364
Petrographic characterization, new concepts of, 136
Petrographic properties, 140-142
Petrography, organic, 134-135
Petroleum expulsion
 empirical hydrocarbon thresholds for, 150
 from coal and terrigenous sediments, 149-150
Petroleum generation, timing of, 144-146
Petroleum migration
 geochemical and microscopic effects of, 225-230
 mass balance approaches, 230-232
Petroleum potential
 high resolution pyrolysis evaluation of, 136-140
 mass balance approach to, 142-144
Physical sorption, 203-204
Piceance basin (USA), characteristics of coalbed gases in, 176-179
Polymerization, 50
Poroelastic effects, 326
Porosity
 of cleats, 123-124
 coal, 60-61
Powder River basin
 characteristics of coalbed gases in, 179
 coalbed methane in, 22-25
Pressure, and coalification, 66-67
Pressure interference concept in coalbed methane wells, 368-369
Progressing cavity pumps, 347
Proppant-induced pressure effects, 326-327
Proximate analysis, 59, 98-100
Pump failure, reducing, 356
Pumps
 progressing cavity, 347
 sucker-rod, 345-347
Pyrolysis, high-resolution, and evaluation of petroleum potential, 136-140
Pyrolysis yields during coalification, 59-60
Reflectance, changes in with rank, 57-58
Reservoir stimulation, 311-312
Residual gas, 64
Resinite, chemistry of, 109-110
Resistance logs, 287-288
responses in coals, 295
Reverse osmosis for water disposal, 354
Rock-Eval pyrolysis, 59-60, 103-104, 135
Rod failure, reducing, 357
Sandless fracture treatments, 318-320
San Juan basin
 characteristics of coalbed gases in, 174-176
cracked methane in, 25-28
cracked methane production in, 381-382
development activity in, 381
economics of, 382
gas production capacity of, 381
production technology in, 381-382
resource concentration in, 381
Semi-anthracite coat, 79
Shear strain, effect of on coalification, 67-68
Solid material production problems, reducing, 357
Sorbate accessibility, 60-65
Sorbed gas
 behavior of, 203-209
 measuring. See measurement of sorbed gas
 See also Sorption
Sorption
 with coal rank, 206
 of different pure gases, 207
effect of mineral matter on, 205
effect of moisture on, 205-206
isotherms. See Sorption isotherms
measurement of, 208-209
 and particle size, 208
 and sorbed phase volume, 208-209
 techniques, 208
multicomponent gas, 207
and petrology, 206-207
physical, 203-204
relation of pressure and temperature to, 205
Sorption isotherms, 204-205
Langmuir, 204-205
models, 204
uses, 204
Sporinite, chemistry of, 111
Stress profiles and fracture height, 327-330
Stress sensitivity of permeability in coalbeds, 364
String fens, 21
Subbituminous A, 79
Subbituminous B, 79
Subbituminous C, 79
Sucker-rod pumps, 345-347
Sulfides, 94
Sulfates, 94
Surface area measurements, 62-63
Surface gas and water separators, 348-349
 in Black Warrior basin, 348
 in San Juan basin, 348-349
Surface morphology, of cleats, 124
Surface peat, 44
Surface water disposal, 353
Semi-anthracite coat, 79
Sorption
 with coal rank, 206
 of different pure gases, 207
effect of mineral matter on, 205
effect of moisture on, 205-206
isotherms. See Sorption isotherms
measurement of, 208-209
 and particle size, 208
 and sorbed phase volume, 208-209
 techniques, 208
multicomponent gas, 207
and petrology, 206-207
physical, 203-204
relation of pressure and temperature to, 205
Sorption isotherms, 204-205
Langmuir, 204-205
models, 204
uses, 204
Sporinite, chemistry of, 111
Stress profiles and fracture height, 327-330
Stress sensitivity of permeability in coalbeds, 364
String fens, 21
Subbituminous A, 79
Subbituminous B, 79
Subbituminous C, 79
Sucker-rod pumps, 345-347
Sulfides, 94
Sulfates, 94
Surface area measurements, 62-63
Surface gas and water separators, 348-349
 in Black Warrior basin, 348
 in San Juan basin, 348-349
Surface morphology, of cleats, 124
Surface peat, 44
Surface water disposal, 353
Terrigenous sediments
 biomarkers related to, 147-149
 expulsion of petroleum from, 149-150
T-fractures, 325-326
Thermogenic gas, 159-160
Two-component model of coal composition, 41-42
Ultimate analysis, 100-101
Vitrinite, 81
 chemistry of, 107-109
Vitrinite reflectance
 and chemical parameters, 101
 modeling, 146-147
suppression of, 58-59
Vitrinization, 41, 82
Volatile matter, 100
Water disposal, 352-355
 combined processes, 354
 injection wells, 353-354
 reverse osmosis/evaporation, 354
 surface, 353
 water treatment options, 352-353
Water fracture treatments, 316-318
 modeling of, 334-335
Water-gathering lines, 349
Water measurement systems, 349-350
Water treatment options, 352-353
Workovers, 356
 preproduction, 356
 recompletion, 356
 reducing need for, 356-357
 remedial production, 356