INTRODUCTION .. 1
WHY SEM ANALYSIS? 1
FORMAT ... 1
SAMPLE PREPARATION 3
HOW THE SEM WORKS 3
THE SEM MICROGRAPH 3
ELEMENTAL ANALYSIS BY SEM 4
EDX ANALYSIS OF MINERALS 5

SILICATES .. 9
Silica ... 9
Quartz ... 9
Cristobalite (Opal-CT) 14
Opal (Opal-A) 20
Feldspars .. 22
Potassium Feldspar 22
Resorbed Potassium Feldspar 26
Plagioclase Feldspar with K-Feldspar Overgrowths 28
Resorbed Plagioclase Feldspar 36
Clays ... 38
Chlorite ... 38
Illite .. 50
Kaolinite .. 60
Halloysite 70
Smectite .. 72
Nontronite 84
Hectorite 86
Illite-smectite 88
Corrensite 92
Glaucnite 94
Rectorite 96
Palygorskite 98
Vermiculite 100
Zeolites .. 101
Analcime .. 101
Chabazite 106
Clinoptilolite 113
Etonite .. 118
Heulandite 124
Laumontite 126
Mordenite 128
Phillipsite 132
Thomsonite 134
Yugawaralite 136
Micas ... 138
Biotite .. 138
Muscovite 142
Phlogopite 144

Amphiboles 145
Hornblende 145
Actinolite .. 146
Riebeckite 147
Pyroxenes 148
Augite ... 148
Hypersthene 149
Others .. 150
Talc .. 150
Chrysotile 151
Sphene .. 152
CARBONATES 154
Calcite .. 154
Dolomite .. 160
Ferroan Dolomite/Akerite 168
Siderite ... 170
Chalk .. 174
PHOSPHATES 176
Apatite .. 176
Collophane 178
Florencite 180
HALIDES ... 182
Halite .. 182
SULFIDES 189
Pyrite .. 189
Sphalerite 202
SULFATES 204
Gypsum .. 204
Anhydrite 206
Copiapite .. 212
Melanterite 214
Barite .. 216
OXIDES .. 219
Hematite and Goethite 219
Rutile .. 222
Magnetite 224
Ilmenite ... 225
MISCELLANEOUS 226
Wood ... 226
ENERGY TABLE OF CHARACTERISTIC X-RAY
TRANSITIONS 228
GLOSSARY 230
REFERENCES 232
Publisher’s Note:

The American Association of Petroleum Geologists gratefully acknowledges the management and personnel of Chevron Oil Field Research Company, for their contribution of this manual to the profession. This comparative atlas was developed to assist geologists working for Chevron in their everyday work of examining sedimentary minerals in exploration and reservoir development. It was given to AAPG for publication so that others could share in its usefulness.

The use of scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray has greatly increased over the past few years as the equipment is now available at more levels within industry and academia. Certainly geologists are able to have their samples sent away to a service lab for analysis. In this spirit, we’ve published this book to assist the generation of geologists still in school to be exposed to these uses; and we’ve published this book to assist the generation of geologists at work in industry to become acquainted with this valuable tool for exploration and development.

AAPG Publications
Tulsa, Oklahoma
Acknowledgments

This book is a slightly modified version of a research report compiled at Chevron Oil Field Research Company, La Habra, California. I would like to express my appreciation to the management of Chevron Oil Field Research Company, in particular J.R. Baroffio, F.L. Campbell, and L.C. Bonham for their encouragement and permission to publish this atlas. Special thanks to R.L. Burtner who suggested I compile this atlas and to R.L. Burtner and M.N. Bass for their many hours of careful review which greatly improved the final text. I would also like to thank my other colleagues at Chevron who reviewed this atlas and provided helpful suggestions during various phases of this project: H.M. Beck, A.B. Carpenter, E.W. Christensen, J.R. Frank, E.L. King, D.R. Kosiur, A. Levison, C.A. Meyer, D.W. Richards, G.W. Smith, M.A. Warner, and B.J. Welton.

Special thanks to J.M. Peterson (Keplinger and Associates) who reviewed the text and S.S. Ali (Gulf) who reviewed the bibliography for the AAPG. R.C. Surdam (University of Wyoming) and R.A. Sheppard (USGS) kindly provided formation and age information on the zeolite samples.

Finally, I am grateful to the many people who helped in preparation of the atlas, in particular, N.E. Breen, J.A.B. Quinn, V.E. Welsh, T.N. Bube, D.K. Kitazumi, J.C. Keeser, C.F. Everett, S.K. Elmassian (cover illustration), and V.K. Salvi of Chevron, and to the staff of the AAPG, in particular E.A. Beaumont and R.L. Hart, for their patience in the midst of many revisions and without whose help this atlas would not have been possible.

J.E. Welton
Chevron Oil Field Research Company
La Habra, California