INDEX

A

Abnormal temperature with structure, 146
Acadia Parish, 667
Accumulation and discharge of oil, some physical and chemical properties of reservoir rocks bearing on, 825
Accumulation and migration of petroleum, 247
present interpretations of structural theory for oil and gas, 253
structural theory for oil and gas, 287
Accumulation and origin of oil, 309
Accumulation and structure in Michigan “basin” and its relation to Cincinnati arch, 531
Accumulation of oil, 13, 17, 53, 98, 304, 360, 552, 677
analytical application of theories, 303
anticlinal theory, 3, 4, 8, 9, 12
conditions necessary for, 6, 256
in California fields, factors governing, 735, 759
in Kevin-Sunburst dome, 706
in lenticular sands, 601
in Rocky Mountain district, 689
in shallow lagoons and bays, 459
in synclines, 18
in terrace structures, 435
problem of, 307
related to faulting, 509
related to porosity variations, 439, 505
relationship of, to structure and porosity in Lima-Indiana field, 521
time element of, 296, 301
where water absent, 729
Accumulation of oil and gas, 463
anticlinal theory, 316
essential factors in, 254
historical development of structural theory of, 1
in limestone, 365
in Montana, factors controlling, 717
in Rocky Mountain district, structural history and its relation to, 679
origin of oil and gas reservoirs of interior coal basin in relation to, 557
related to unconformities, 510
Accumulation of organic material, 28
conditions favoring, 362
Accumulation of petroleum, relations to structure, 429
Accumulation of source material, 55

1 Items referring to titles of papers are shown in italics.
main source of oil in Northern fields of Mexico, 398
Agua Nueva limestone fault breccia, 390
Alabama, 72
Alabama pool, 411
Alamitos Heights pool, 750
Alamitos zone, 218
Alaska, 30
Alberta, 158, 165, 167, 169, 347, 368, 702
high gravity of oil at Turner Valley due to thrust faulting and folding, 161
Alberta syncline, 703
Albertite, 9
Albion formation, 457
Albumen, 261
Alcohol, 38, 39, 261
Aldrich, H. R., cited, 539
Algae, 25, 42, 43, 235, 451
acid hydrolysis of, effect in formation of liquid oil, 270
Algal limestone, 366
Algal remains, 82
Aliso Canyon, 193
Allan, Thomas H., cited, 777
Allegheny County, New York, 461
Allegheny County, Pennsylvania, 465, 466, 469, 471
Allegheny formation, 453
Allen, E. T., Crenshaw, S. H., Johnson, John, and Larsen, Esper S., cited, 909
Allen County, Kansas, 400
Allen dome, 637
Alteration of anhydrite to gypsum, Grand Saline, fol. p. 642
Amarillo arch, 627
Amarillo district, 907, 608
Ambronn, Richard, cited, 997
American Petroleum Institute, 26, 450, 989
American Petroleum Institute Research, 365
American Petroleum Institute research program, 27
Amaden formation, 159, 698, 716
Anaerobes, 266
reduction of sulphates by, 918
Anaerobic bacteria, 36, 38, 46, 262, 268, 836, 875, 910, 914
effect on organic source material, 29
in oil-field waters, 836
Anaerobic bacterial activity, 462
Anaerobic conditions, 452
Anaerobic decomposition, 36, 39, 450
Anaerobic fermentation, hydrolysis of plant and animal residues in sea water by, 44
Anaerobic marine bacteria, 45
Anaerobic metabolism, 266
Anaerobic oxidation of crude petroleum, 266
Anaerobic sulphate reducing bacteria, 915
oxygen supply for, 921
Analyses of coal, 83
of Mexican limestones, 370
of waters in West Texas Permian basin, 873
United States Bureau of Mines, 149, 151
Analysis of ocean water, 957
of salt structures, 636
Spindletop crude oil, 152
Ancestral crude oils, 137, 139
Ancestral petroleum substance, 140
Ancestral Rocky Mountains, 682
Anderson, Belle, and Gahl, Rudolf, cited, 267, 915
Anderson, F. M., cited, 792
Anderson, Robert, and Arnold, Ralph, cited, 792
Anderson County, 276, 330, 400, 639, 659, 660, 669
Andrews, E. B., cited, 4, 5, 6, 12, 13, 16, 254
Androusoff, N., cited, 913
Anhydrite, 637, 639, 651
Anhydrite and sand from Hockley dome, Harris County, fol. p. 642
Antarctica, 30
Antelope Hills, 188
Anthracitization, 80, 89
Anthraxolite, 79
Anticlinal control of accumulation, 480
Anticlinal dome, elongate, 217
Ventura, 209
Anticlinal noses, accumulation of oil on, 400
Anticlinal structure a necessary condition of occurrence of oil, 8
Anticlinal theory of accumulation, 3, 4, 6, 7, 8, 9, 12, 15, 16, 20, 71, 253, 310, 403
early application, 12
opposition to, 9, 10
Anticline, asymmetrical, at Wheeler Ridge field, 203
pitching, in Kern River field, 203
Anticlines, 2, 3
closed, 20
plunging, 17
Appalachian basin, 485, 486, 499, 492, 496
Appalachian calcium chloride waters, 852
Appalachian coal basin, 537
Appalachian district, 58, 97, 342
source beds in, 58
Appalachian fields, 430
Appalachian folds, 340
INDEX

Appalachian geosyncline, 101, 102, 468, 472, 843
Appalachian oil, 102
Appalachian province, gravity of oils in, 101
Appalachian region, composition of oil-field waters of, 841
oil-field waters of, 834
Appalachian revolution, 463, 540, 547
Appalachian structural front, 539
Appalachian trough, 539
Appalachians, carbon ratios in, 85
Arbuckle group, 355
Arbuckle limestone, 293, 294, 356, 359, 410, 412, 763, 769, 856
Arbuckle Mountains, 574, 611, 615
Arbuckle-Wichita belt of mountain folding, 576
Arbuckle-Wichita system, 572
Archer County fields, 402
Archer County pools, 340, 342
Arizona, 682
Arkansas, 345, 578, 632, 666
concentration of Ordovician waters in, 277
relation between carbon ratios and oil and gas occurrence, 74
source beds in, 60
Armells field, 704
Armstrong, E. F., and Allen, J., cited, 42
Armstrong, J. M., cited, 353
Armstrong County, Pennsylvania, 478, 608
Arnold, Ralph, and Anderson, Robert, cited, 792
Arroyo Grande (Edna) field, 206, 228

Bach, cited, 36, 39, 40
Backhaus, A. A., cited, 925
Bacteria, 26, 36, 39, 40, 41, 44, 263, 302
effect on organic material, 35
fermentation of cellulose by, 38
formation of hydrocarbons by, 35
in coal, 43
in geologic formations, 43
influence on formation of oil, 32, 262
marine, 43
Bacterial action, 262, 264, 266, 462
in formation of oil, importance of, 235, 261
Bacterial decomposition, 450, 452
of cellulose, fats, and protein, 45
Bacterial origin of petroleum, 35, 43
Bacterial oxidation, 265
Bacterium aliphaticum liquifaciens, 264
Bacterium benzioli a and b, 263
Bahama Banks, 358
Bailey, J. R., and Thompson, W. C., cited, 921
Artesian field, 413
Artesian circulation, 597
Artesian flushing, 717
Ashbuner, Charles A., cited, 12, 16, 19
Ashton zones, 221
Aspen shale, 167
Asphalt, 56, 183, 207, 213, 394, 396, 397
in McKittrick field, 198
Asphalt seeps, 758
Asphaltic base, 107
Asphaltic oil, 207, 208, 209
in Los Angeles City pool, 213
Asphaltic oils, heavy, 238, 245
Asphaltic sands, 333, 334, 412
in Oklahoma City field, 295
Asphaltite, 79

Atlantic, coasts of, 30
Atlantic pool, 411
Augusta field, 319
Augusta pool, 294, 770
Austin chalk, 276, 295, 296, 378, 419
Austin chalk age of San Felipe formation, 385
Austin formation, 302
Australia, 76, 89
Avery Island, 636
Axis of structure, shifting of, 496

B

Bailey, T. L., cited, 666
Bailey (Wassam) zone, 219
Bath, H. F., cited, 908
Baker, C. L., cited, 75, 391
Baker-Glendive anticline, 945
Baku oil fields, 265
Balcones fault, 315
Balcones fault zone, 578
Baldwin Hills, 742, 749
Baldwin Hills uplift, 216
Baltic Sea, organic sediments in, 30
Banded coals, 82
Banff, 159
Bannatyne, 167
Bannatyne dome, 703
Bannatyne field, 710
INDEX

Baranik-Pikowsky, M. A., cited, 923
Barb, Clark F., cited, 448, 475
Barbat, W. F., and Galloway, John, cited, 792
Barbers Hill, 115
shallow-water anomaly, 894
shallow-water conditions associated with salt domes, 895
Barbers Hill dome, 642
Barbers Hill dome overhang, 653
Barbers Hill dome section, 663, 664
Barndale field, 191, 742, 755
Barger pool, 708
Barite, 656
Barnett, V. H., cited, 693
Bartell, F. E., and Osterhoff, H. J., cited, 288
Bartlesville, 863
Bartlesville sand, 292, 295, 305, 325, 326, 592
Bartlesville sand fields, 323
Bartlesville sand pools, 401
Bartlesville waters, Oklahoma, analyses of, 865
Barton, Cecil L., cited, 405
Barton, Donald C., cited, 110, 111, 134, 103, 237, 238, 418, 907
natural history of Gulf Coast crude oil, 109
variation in physical properties, forward, 97
Barton, Donald C., and Paxson, Roland B., cited, 668
Barton arch, 575, 760
Bartram, John G., cited, 97, 162, 349, 350, 408, 409, 687, 928, 930
oil gravities in Rocky Mountain states, 157
Bartram, John G., and Hupp, J. E., cited, 692
Base exchange, 374
Basement, movement of, 627
Basins, sedimentary, 274
structural, in California, 739
Bass, N. W., cited, 1012
Bass, N. W., and Rubey, W. W., cited, 812
Bass Island-Sylvania break, 549
Bastanchury zone, 225
Bastin, Edson S., cited, 267, 914
Bastin, Edson S., and Greer, Frank E., cited, 915
Batholiths, 165
Batson dome, 116, 661
Bauer, C. Max, cited, 778
Bauer, C. Max, and Robinson, Ernest Guy, cited, 697
Bavéé gravity, 99
Bavéé gravity of crude oil in Kentucky, 106
in New York, 103
in Ohio, 103
in Pennsylvania, 103
in Tennessee, 106
in West Virginia, 103
Bayer, A. D., Smith, N. A. C., Cooke, M. B., cited, 109
Bayard sand, 490
Beardon field, 777
Bears Den fold, 713
Bears Den nose, 703
Beartooth thrust fault, 700, 702, 723
Beaumont anticline, 298, 300, 599
Beaumont field, 298
Beautiful Mountain dome, 409, 410
Beaver County, 460, 465
Beaver Creek dome, 946
Beaver “sand,” 519
Beck, Elfred, cited, 408
Becker, Clyde M., cited, 776
Becker, George F., cited, 1013
Becking, L. B., and Tolman, C. F., cited, 450
Beckley, V. A., cited 43
Beckman, J. W., cited, 267, 920
Beckstrom, R. C. and Van Tuyll, F. M., cited, 257, 258, 462, 679
Beckwith, H. T., cited, 763, 773
Bee County, 443
Beekly, A. L., cited, 773
Beggs pool, 411
Behre, Jr., C. H., cited, 837
Behre, Jr., C. H., and Summerbell, R. K., cited, 837
Belgium, 998
Bell, Alfred H., cited, 431
origin of oil and gas reservoirs of eastern interior coal basin in relation to accumulation of oil and gas, 557
Bell zone, 226
Belle Isle, 418
Bellevue pool, 340, 341
Belridge field, 197, 746, 797
Belt, Ben C., cited, 240, 377
Belt, Ben C., and Weaver, Paul, cited, 396, 397
Bend arch, 341, 342, 577, 627
Bend limestone, 59
Benson sand, 490, 492
Benthonic forms, 361
Benton pool, 772
Bentonitic shale, 354
Benzene, 35, 39
Berea, 103
Berea-Coldwater break, 550
Berea sand, 460, 490, 492, 494, 495, 500, 501, 506, 845
Berea sand field, 465, 501
Berger, W. R., cited, 835
Berger, Walter R., and Fash, Ralph H.,
relation of water analyses to structure and porosity in West Texas Permian basin, 869

Berryessa Valley, 184
Berthoud structure, 948
Bethel dome section, 669
Bevan, Arthur, cited, 697
Beverly Hills field, 750
Beyer, W. S., cited, 1012
Beyerinck, M. W., cited, 914

Bibliography, a study of the evidences for lateral and vertical migration of oil, footnotes, 400-411, 413, 415, 418, 419
accumulation of oil and gas in limestone, footnotes 366-374
an interpretation of local structural development in Mid-Continent areas associated with deposits of petroleum, footnotes, 585, 591, 614-616, 618, 619
California oil-field waters, footnotes, 934, 956
compaction and its effect on local structure, footnotes, 811-90
compensation of oil-field waters of the Appalachian region, footnotes, 841, 844, 845, 850, 851
eastern interior coal basin, 568
gologic occurrence of oil and gas in Montana, footnotes, 697, 700, 702, 704
geologic characteristics of producing oil and gas fields in Wyoming, Colorado, and northwestern New Mexico, footnotes, 722, 723, 725, 727, 728, 730
gology of Gulf Coast salt domes, 677; footnotes, 630, 634, 635-637, 639, 646, 648, 650, 651, 654, 656-659, 675, 666, 668, 669, 676
historical development of structural theory, 21; footnotes, 9, 12, 17-19
hydrogenation and origin of oil, footnotes, 235, 237, 239, 240, 242, 243
importance of unconformities to oil production in the San Joaquin Valley, California, footnotes, 790, 792
limestone reservoir rocks in the Mexican oil fields, footnotes, 377, 380, 382, 383-386, 390, 391, 393-395
natural history of Gulf Coast crude oil, footnotes, 199-211, 220, 234, 240, 142-146, 148
oil gravities in Rocky Mountain states, footnotes, 158, 162, 163
oil-field waters, footnotes, 834, 836, 837
oil-field waters of the Gulf Coastal Plain, footnotes, 891, 893, 894
organic matter in sediments, 33; footnotes, 27, 29
origin and accumulation of oil, footnotes, 310-317, 322, 324, 326, 328-330, 332, 334
origin of petroleum, footnote, 25
origin, migration, and accumulation of petroleum and natural gas in Pennsylvania, footnotes, 448-453, 462, 465, 466, 469, 475
origin, migration, and accumulation of petroleum in limestone reservoirs in the western United States and Canada, footnotes, 348-356, 358-363
origin of the oil and gas reservoirs of the eastern interior coal basin in relation to the accumulation of oil and gas, footnotes, 568
physical properties of petroleum in California, 230; footnote, 182
porosity, permeability, compaction, footnote, 808
present status of carbon-ratio theory, 91
problems of origin, migration, and accumulation of oil, footnotes, 337-341, 345
proposed classification of oil and gas reservoirs, footnotes, 435-438, 444, 445
relation of micro-organisms to generation of petroleum, 46; footnote, 40
relation of water analyses to structure and porosity in West Texas Permian basin, 889
relation of oil and gas pools to unconformities in the Mid-Continent region, footnotes, 761-767, 769-782
relationship of accumulation of oil to structure and porosity in the Lima-Indiana field, footnotes, 521, 526
some physical and chemical properties of reservoir rocks bearing on the accumulation and discharge of oil, footnote, 826
source beds for petroleum, 64
structural history and its relation to the accumulation of oil and gas in the Rocky Mountain district, footnotes, 679, 680, 682-685, 687, 689, 692, 693
structural influence on the accumulation of petroleum in California, footnotes, 736, 746-752, 758
structural theory for oil and gas migration and accumulation, footnotes, 234, 235, 256, 278, 260-267, 269, 270, 276-
INDEX

278, 280, 281, 283, 285, 288, 295, 296

structure and accumulation in the Michigan "basin" and its relation to the Cincinnati arch, footnotes, 538–544, 546–554, 553

subsurface temperature gradients, footnotes, 991–999, 1003, 1005, 1006, 1008, 1012, 1013, 1016, 1020

subsurface water characteristics in Oklahoma and Kansas, footnotes, 856, 868

sulphate reduction in deep subsurface waters, footnotes, 908–917, 919–921, 923, 925

waters of the oil- and gas-bearing formations of the Rocky Mountains, footnotes, 928, 932, 935

Big Belt-Bridger Mountain zone, 700

Big Horn basin, 163, 169, 170, 349, 680, 687, 721, 839, 928, 929, 933, 938

low gravity of oil, 160

Big Horn dolomite, 725

Big Horn Mountains, 275

Big-Horn-Pryor-Hailstone arch, 700, 702

Big-Injun group, 507

Big Injun sand, 490, 492, 495, 501, 506, 828

Big Injun sand field, 465

Big Injun sandstone, 511

Big Lake field, 61, 360, 413, 577, 702, 716, 772

variation of temperature with structure, 903

Big Lake pool, 352, 415, 764, 881

Big lime, 372, 413, 414, 490, 494, 511, 777, 835

Big Muddy field, 730

tilt of water-oil contact at, 838

Big Six sand, 509

Big Snowy-Judith Mountain anticlinorium, 700, 704, 715

Billingsley, J. E., occurrence of oil and gas in West Virginia, eastern Ohio, and eastern Kentucky, 485

Biochemical agencies, 338

Biochemical processes effective in development of petroleum, 179

Biochemical theory, 836

Biothermal limestones, 358

Biotromal limestones, 358

Bituminous "black" shales in Hamilton and Marcellus formations, 58

Bituminous limestones as source beds of petroleum and natural gas, 51

Bixby field, 435

Bixby zone, 219

Black Hills, 275, 815

Black Hills uplift, 705, 721

Black Mountain structure, 935

Black Sea, organic sediments in, 30

sulphate reducing organisms, 917

Black shales, 79

Blackleaf sandy member, 698

Blackwelder, Eliot, cited, 618, 683, 812

Blackwell pool, 294, 319, 770

Blaine, 351

Blanck, F. C., cited, 925

Blanket salt, 644

Bleeding cores, 286

Bloomfield, 172

Blossom sand, 60

Blue Ridge, 905

variations of temperature at, 996

Blum, Anthony, cited, 437

Boggy Creek, 330, 661, 669

Boggy Creek anticline, 659, 660

Boggy Creek field, 276, 579, 639, 780

Boggy Creek salt dome, 315

Boggy Creek structure, 579

Bohig head coals, 82

Bois d'Arc limestone, 356, 357

Rokorny, Th., cited, 41

Bolton Creek, 166

Book Cliffs, 334

Border field, 167, 691

Border-Red Coulee field, 710

Border-Red Coulee nose, 703

Boruff, C. S., cited, 39

Böse, Emil, and Cavins, O. A., cited, 377

Böse, Emil, Udden, J. A., and Baker, C. L., cited, 666

Boston pool, 763

Bosworth, T. O., cited, 435

Botset, H. G., Wyckoff, R. D., Muskat, M., and Reed, D. W., cited, 808

Bowden pool, 763

Bowdoin dome, 704, 714

Bowdoin structure, 939

Bowen, C. F., cited, 697

Bowes dome, 704

Bowes dome gas field, 714

Bowlegs pool, 411

Bowling Green structure, 544

Boxelder field, 704

Boyd County, 509

Brace, O. L., cited, 402

Bradford field, 13, 316, 475, 480, 481, 839, 841, 842, 844

Bradford horizon, 478

Bradford pool, 340, 851

Bradford sand, 458, 475, 476, 481, 828

adsorption by, 831

percentage of oil and water in, 285

permeability of, 829

Bradford water, 286

INDEX

Bramen pools, 770
Brauchli, R. W., cited, 355
Brazoria County, 637, 675
Brea, 209
Brea Canyon field, 229, 751
Brea Canyon-Olinda fields, 215
water analyses, 983
waters in, 984
Brea trapping, 746, 748, 753, 756
Break theory, 7
Breckenridge pool, 353
Briggs, 9
Briggs, Henry, Owen, A. L. S., and Wilson, John, cited, 998
Bristow pool, 411
Broad nose, definition, 434
Brooks, Benjamin T., cited, 144, 452
Brooks, Charles F., and Fitton, Edith M., cited, 1006
Bromine, 241
Brown, Levi S., cited, 650, 666
Brown County, Texas, 402, 602
Brown lime, 414, 415
Brown shale, 490, 494, 507
Brown zone, 218
Brucks, Ernest W., cited, 419, 781
Brunner pool, 763
Buchanan, R. E., and Fulmer, E. L., cited, 41
Buckbee zone, 226
Buda, 383, 393
Buena Vista Hills field, 200, 229, 747, 785, 802, 840, 962
Buena Vista Hills structure, 201
Bullard, Bess Mills, cited, 763, 773
Bulldridge dome, 673
Bulletin of The American Association of Petroleum Geologists, 52, 77, 110, 826
Bunn, John R., cited, 776

C

Cacalilao, 385, 389, opp. 390, 392
Cacalilao anticline, 388
Caddo district, 60, 780
Caddo field, 897
Caddo limestone, 354
Caddo Parish, 609
Cadman, W. K., cited, 323, 400
Cady, Gilbert H., cited, 500
Calcasieu Parish, 662
Calcium carbonate, deposition of, as cause of oil accumulation, 473
Caldwell County, Texas, 418, 419, 996
Calgary-Great Falls arch, 702
California, 25, 30, 57, 110, 142, 149, 155, 278, 312, 338, 340, 404, 405, 406, 431, 891, 901, 902, 904, 1006
comparison of oil fields in, 758
Buoyancy of gas and oil, 254, 256
relation to migration, 256
Burchfield syncline, 492
Burckhardt, C., cited, 380
Burbank, W. S., and Butler, B. S., cited, 538
Burbank field, 270, 278, 292, 301, 323, 439, 592, 593
geothermal variations at, 991
Burbank pool, 401, 775
Burbank sand, 401, 774
Burbank sand lens, 395
Burford, S. O., McCollum, L. F., and Cunningham, C. J., cited, 328, 354, 419
Burgess sand, 773, 774
Buried hills, 7, 410, 520, 577, 771, 862
comppation over, 820
Burning Springs, 7
Burning Springs anticline, 106
Burns dome, 319
Burton, George E., cited, 596, 597, 775, 776
Buswell, A. M., cited, 39, 925
Buswell, A. M., and Neave, S. L., cited, 917
Butler, B. S., and Burbank, W. S., cited, 538
Butler County, 317, 410, 465, 468, 469, 471, 508, 905, 996
Buttner, Hans, cited, 195, 919
Butts, Charles, Adams, George L., Stephenson, L. W., and Cooke, Wythe, cited, 666
Butyric acids, 39
By-passing, 273, 274, 306, 809, 839
Byron field, 928
Byron pool, 163, 350
gas in, 165

importance of unconformities to oil production in San Joaquin Valley, 785
Monterey shale of, 57
oil fields of, 180
oil fields of, grouping, 182
oil-field waters in, 953
oil-field waters in, characteristics of, 958
oil-field waters in, chemical analyses of, 955
petroliferous provinces and major structural features of, 740
physical properties of petroleum in, 177
source beds in, 61
structural influence on accumulation of petroleum in, 735
INDEX

topographic relief map of, fol. p. 735
California oil, 62
California State Mining Bureau Division of Oil and Gas Publications, 232
Callender zone, 217
Cambridge arch, 487
Cambro-Ordovician, 412
Cameron Parish, 659, 661
Campbell, M. R., cited, 17, 76, 81
Campus sand, 509
Canada, 5, 12, 13, 30, 76
Geological Survey of, 3
Canadian-Department of Mines, 84, 85
Canadian Survey, 6
Canaseraga member, 458
Cannel coal deposits, 271
Cannelloid coals, 82
Canyon gas field, 772
Cap rock, 151, 152, 639, 651
Cap-rock crude oil, 153
Cap-rock reservoirs, 668
Capillaries, 284
Capillarity, 255, 256, 259, 273, 284
selective, 285
Capillary action, 462
Capillary adjustments between oil and water, 284
Capillary movement of water, 181
Capillary openings, 284
Capillary water, 255, 281, 286, 294
Capitan field, 756
Caracol, 392
Carbohydrate compounds, 35
Carbohydrates, 31, 32, 37
Carbon, 129, 152
Carbon content of Miocene crude oil, 118
Carbon County, Utah, 334
Wyoming, 723
Carbon dioxide, 36, 37, 38, 39, 261, 262, 265, 266, 268, 450, 452, 695, 877
Carbon ratio, 151
critical, 245
of coals, relation of accumulation of oil and gas to, 483
Carbon-ratio differences, causes, 83
Carbon-ratio effect, 99
Carbon-ratio index, 78
Carbon-ratio law, 147, 151
Carbon-ratio maps of United States, 85
Carbon-ratio theory, 67, 71, 238, 727
component propositions, 77
objections to, 76
present status of, 69
present status of, bibliography, 91
validity of, 75
Carbon-ratio values, variation with depth, 76
Carbon-ratio variations, relation to oil occurrence, 73
Carbon ratios, 158, 572, 576
as indices of coal metamorphism, 85
in relation to oil and gas occurrence, 88
of coals, 727
of Cretaceous and Tertiary coals of United States, 87
of Paleozoic coals of United States, 86
relation to faulting, 73
relation to unconformities, 73
value of, 90
variations, 90
variations with plant substances composing coals, 82
Carbon residue, 119
Carbonaceous residues, non-volatile, 79
Carboniferous, 43, 682
Carboniferous basin of deposition, 690
Carboniferous reservoirs, 59
Carey pool, 411
Carll, J. F., cited, 11, 13
Carl, J. F., cited, 11, 13
Carlsbad formation, 350
Carlson, A. J., cited, 991, 992, 993, 994, 997
Carlson, Charles G., cited, 775
Carlton, D. P., cited, 676
Carlyle field, 567
Carman, J. Ernest, cited, 544
Carman, J. Ernest, and Stout, Wilber, cited, 430
relationship of accumulation of oil to structure and porosity in Lima-Indiana field, 521
Carolina-Texas field, 403
Carpenter, Everett, cited, 765
Carr, Raymond M., cited, 411
Carr, Raymond M., and Gish, Wesley G., cited, 770, 992
Carr City pool, 411
Carman, J. Ernest, and Stout, Wilber, cited, 430
relationship of accumulation of oil to structure and porosity in Lima-Indiana field, 521
Carolina-Texas field, 403
Carpenter, Everett, cited, 765
Carr, Raymond M., cited, 411
Carr, Raymond M., and Gish, Wesley G., cited, 770, 992
Carr City pool, 411
Carrier beds, 345, 400, 565, 687, 689
Carson County, Texas, 608
Carter County, Oklahoma, 401, 597
Cascade Range, carbon ratios in, 88
Case, L. C, cited, 835, 840
subsurface water characteristics in Oklahoma and Kansas, 855
Casing leaks, 955
Casmalia anticline, 207
Casmalia field, 207, 741, 758
Casper formation, 161
Catalysts, 80, 142, 144, 241
Catalytic agents, 56
Catalytic elements, 451
Catalyzers, 837
Cat Canyon field, 208, 741, 757, 758
Cat Creek anticline, 704
Cat Creek field, 690, 704, 715, 731, 931, 932, 935, 937, 945
Cat Creek waters, distinctive character of, 940
Classification of normal shallow waters in Gulf Coast region, 893
of oil and gas reservoirs, 433, 442
of reservoirs, significance of, to problem of oil migration, 445
Clay Creek dome, 648, 654
Clay Creek salt dome section, 649
Clear Fork, 413
Clifton, R. L., cited, 355
Clinton sand, 74, 506
Clinton sand area, 505
Closed anticlines or domes, 689
Closed reservoir, definition, 434
Cloverly formation, 167, 698, 716
in Rocky Mountain states, 168
Coahuila, 75
Coal, 45, 260
as a source of energy, 267
Coal analyses, 83
variations in, 82
Coal beds, 483
Coal metamorphism, 85
Coalinga, 743
géothermals variations at, 992
a cause of oil migration, 258
cracked by uplift, 821
differential, 522, 624
effect on cracking, 242
in folds of Mid-Continent area, 822
of beds, cause of movement of oil, 461
muds, sands, and calcareous oozes, 813
of muds or shales, function of circulating water in, 259
of sediments, 247, 305, 306, 403
of sediments, cause of oil migration, 257
of sediments, effect on movement of oil, 279
of sediments and depth of burial, relation between, 620
of shales, sandstones, and limestones, 814
process of, 812
quantitative effects of, 622
Compaction and depth, relation between, in north-central Oklahoma, 817
Compaction and its effect on local structure, 811
Composition of oil-field waters of Appalachian region, 841
of organic content of sediments, 31
of organic matter, 30
of organic matter in sedimentary rocks, 30
of sea water, 850
Compressibility, 812
Compression, 44, 255, 449
tangential, 611
Compressive strength of fine sediments, 817
Concentration, increase of, with depth, 868
of "Big lime" waters, 871
of connate water, 868
of connate water in Bradford sand, 852
of oil-sand waters, hypothesis of Mills and Wells, 851
of oil-well waters, 810
of salts in water, 834
of sea water, 286
of waters in relation to structure, 934
with depth, Oklahoma, analyses showing increase of, 867
Conditions, ideal, for origin of oil pools, 249
Conditions necessary for accumulation of oil, 6
Conejo field, 754, 756
Conemaugh formation, 453
Connate water, 142, 259, 275, 277, 286, 409, 481, 482, 834, 837, 846, 875
chemical alteration of, 850
in Dakota sandstone, 275
in Woodbine sandstone, 276
movement of, 274
concentration of, 868
Contact metamorphism, 395
Contemporaneous generation of petroleum, 679
Content of gas-oil, 121
Continental shelves, elevations and subsidences of, 56
Contours, 18
Convergence of older strata toward axis of fold, 779
Cook, C. W., cited, 284
Cook Mountain, 123
Cooke, Wythe, Adams, George I., Butts, Charles, and Stephenson, L. W., cited, 666
Cooper, C. L., and Clark, G. C, cited, 779
Copeland water, 221
Copley field, 338
Copley pool, 340, 341
Corals, 395
Corcovado, 401
Cordilleran geosyncline, 721
Corniferous horizon, 404
Corniferous limestone, 103, 490
in Kentucky, gravity of crude oil in, 106
Cornish, V., and Kendall, P. F., cited, 395
Correlation between dolomitic composition and oil production, 528
Corsicana district, 60
Corsicana formation, 421
Corsicana sand, 422, 423
Cosmos sand, 711
Cotton Valley field, 417
Country Club pool, 763
Covert-Sellers field, 317
Covert-Sellers pool, 410, 770
Coweta pool, 763
Cow Run sands, 501
Cox pool, 776
Coyote Hills field, 229
Cracking, 79, 80, 236, 239, 242, 244, 245, 261
natural, 154
of source material, rate of, 243
Craig gas field, 171
Cram, Ira H., cited, 764
Cramer, E., cited, 41
Crawford, F. M., and Gabriel, C. L., cited, 925
Crawford County, Pennsylvania, 460, 472, 473, 474
Crawford County sands, amount of oil calculated in, 596
Crazy Mountain syncline, 680, 702
Creek County, Oklahoma, 438, 704
Cretaceous, 57, 60, 110, 302, 382, 390, 391, 933
Lower, 61, 183, 354, 418, 419 unconformities in, 778
Upper, 57, 167, 172, 175, 288, 403, 409, 417, 420, 578, 688, 724, 728, 756, 893
in Wyoming, 160
Cretaceous and Tertiary coals of United States, carbon ratios of, 87
Cretaceous basis of deposition, 690
Cretaceous crude oils, 155
Cretaceous oil, 98, 140, 143, 144, 151
in California, 743
Cretaceous reservoirs, 59
Cretaceous source beds, 172
Cretaceous waters of eastern Colorado, 949
of eastern Colorado, typical, 948
of Montana, typical, 945
of northwestern Colorado, 947
of northwestern New Mexico, 951
of San Juan Basin, northwestern New Mexico, typical, 950
of Wyoming, typical, 941, 944
Crevise, 389
Crider, A. F., cited, 607, 609
Crimerville field, 401, 775
Crimerville pool, 340
Crinoidal limestone, 357
Cromwell field, 587, 589, 590, 764, 777
geothermal variations at, 992
Cromwell horizon, 863
Cromwell pool, 411
Cromwell sand, 777
Cromwell structure, 626
Cromwell waters, Oklahoma, analyses of, 864
Croiseis, Carey, cited, 74, 89
Crooked hole, 389
Crude oil, character of, 97
evolution of, 137
factors affecting character of, 141
from Eocene, 122, 123
from Miocene sands, 127
from Oligocene sand, 128, 129
from shallower Oligocene sand, 128
Gulf Coast Miocene, variation with depth, 113
Gulf Coast, variation of character with depth, 112
life cycle of, 238
methylation of, 145
natural history of Gulf Coast, 109
source beds in Gulf Coast, 136
tendency to become lighter, 139
variation of character with age, 126
variations of base, 130
Crum, H. E., and Prommel, H. W. C., cited, 658
Crum, H. E., and Prommel, H. W. C., cited, 658

Dakota basin, 275
Dakota oil formation in Rocky Mountain states, 168
Dakota oil, gravity, 168
in Rocky Mountain states, gravity of, 169
Dakota production, 167
Dakota sand, 163, 343, 409, 838
in Wyoming, 160
Dakota sands, gravity of oil, 168
Dakota sandstone, 410
at Turner Valley, 161
brackish-water origin, 275
concentration of water in, 276
Dakota water, 275, 948
Dakota and Frontier waters, northwestern Colorado, typical, 946
Dallas field, history of discovery of oil, 719
Dalton, L. V., cited, 36
Damon Mound, 116
Danbury, 115
Dane, Carle H., cited, 666
Daniels, James I., and Clark, Stuart K., cited, 775
Darby overthrust, 602
Darst Creek, Guadalupe County, Texas, water analyses at, 904
Darst Creek field, 893, 903
Darst Creek pool, 782
Darton, N. H., cited, 1013
Davenport field, 441
Davenport pool, 411, 440
Davies, H. F., structural history and its relation to accumulation of oil and gas in Rocky Mountain district, 679
Davies, Morgan J., cited, 373
Davis, W. M., cited, 358
Dawson field, 435
Dean, David, and Snow, D. R., cited, 775
Deaver pool, 411
Decker, Charles E., and Merritt, C. A., cited, 764
Decker gas field, 772
Decomposition of amino acids by microorganisms, 39
of fats, 41
of organic remains, 45
Deep waters, composition of, 833
of California, 840
of Gulf Coast, 840
Deeper drilling in West Virginia, 496
DeFord, Ronald K., cited, 725
DeFord, Ronald K., and Coffin, R. Clare, cited, 837
waters of oil- and gas-bearing formations of Rocky Mountains, 927
DeFord, Ronald K., and Wahlstrom, E. A., cited, 350, 413, 415
Deformation, local, 242
of rocks, 466
of strata, 484
of strata, reservoirs, closed by local, 443
periods of, 563
periods of, in Michigan region, 546
Deformative processes still active in Michigan basin, 547
DeGolyer, E., cited, 395, 630, 634, 635, 639, 666
Dehydrating agencies, 281
Dehydration, 25
by gas, 471
of coal, relation to carbon-ratio theory, 76
of reservoirs, 479
of sediments, 307
De Jong, L. E. Den., cited, 41
Del Rio shale, 404
Densities in basal Pennsylvanian, 621
of sediments, 621
range of, 620
Density, relation to compaction and depth, 280
of sediments, 620
Density-depth curve, 619
Deposition of organic matter in recent sediments, 27
Depositional thinning, 672
Depth, 141, 150
effect on character of crude oil, 141
effect on character of Gulf Coast crude oil, 111
of burial, 449
Depth-temperature curve, Lonetree, Ward County, North Dakota, 1004 showing possible effect of ground water, 999
Destructive distillation, 39, 269
Detmer, W., cited, 43
Detroit River-Dundee break, 550
Deussen, Alexander, cited, 134, 666
Development of petroleum, processes effective in, 179
Deviation of wells, 972
Devils Basin dome, 704, 715
Devils Basin field, 704
Devolatilization, 76
of coals, 483
Devonian, 43, 57, 58, 61, 349, 457, 494, 517, 822
in Appalachian region, 105
Upper, 490
Devonian limestone, 366, 532
Devonian producing horizons, 455
Devonian reservoirs, 58, 293
DeWalt dome, 696
Diagenesis, 20
Diastrophic epochs in California, 736
Diastrophism, 913
Diatom, 25
Diatom remains, 182
Diatomaceous shale, 62, 183, 185, 200, 201, 202, 203, 207, 211
Diatomaceous shale source beds, 194
Diatomaceous shales in Kern Front field, 204
Diatoms, 98
bacterial action, 450
Differential compaction, a cause of folding, 819
of sediments, 429
Differential pressure, 809
Differential settling of sediments, 618
Dikes, 89
Dip, initial, 625
of formations at or above top of salt and cap-rock core, 647
regional, 255, 257
Disconformities, 510, 782
Distillation, 79, 98, 450
generation of petroleum by, 552
Distillation experiments, 287
Dittmar, W., cited, 958
Dobbin, C. E., cited, 76, 158, 727
Dobbin, C. E., and Erdmann, C. E., geologic occurrence of oil and gas in Montana, 695
Dobbin, C. E., and Reeside, Jr., John B., cited, 697
Dobbin, C. E., and Thom, Jr., W. T., cited, 697
Dodd, H. V., cited, 407
Doddridge County, 492
Doddridge and Harrison counties, West Virginia, 493
Dog Lake, 115
Dolomite, 688
Dolomitic oolites, 352
Dolomitization, 359, 360, 378, 519, 528, 553, 840, 875, 876, 877
Dome at Elk Hills field, elongate, 202, 218
Dome-like anticlinal folds, 224
Domes and closed anticlines, oil accumulation on, 404
Dominguez field, 217, 742, 750
water analyses, 971
waters in, 960
Dominguez Hills field, 229
Donath, P., and Lissner, A., cited, 43
Donath, P., and Tausz, J., cited, 264, 265, 920
Donnelly pool, 411, 767
Dorsey, George Edwin, cited, 74, 322, 834
Dos Bocas-Alamo field, 377, 380
Dott, Robert H., cited, 399
Dott, Robert H., and Ginter, Roy L., cited, 277, 917
Double Mountain, 351
Double Mountain dolomite, 352
Douglas field, 693
Downwarp, 626
Drainage area, 730
Drake, Edward, 2, 3
Drake well, 2, 10, 70
Drilling fluid, loss of, 281
Drop right dome, 586
Dry Creek field, 702, 716, 936
Dry Piney, 693
Dry sand fields, 468
Dry sands, 17, 469, 845

Dumble, E. T., cited, 666
Dundee horizon, 552
Dundee-Traverse break, 550
Durango, 75
Dutcher horizon, 863
Dutcher sand, 323, 775
Dynamic metamorphism, 25, 80
Dynamic thrust, 73

Eads arch, 684
Eagle Ford, 30
Eagle Ford age of Agua Nueva beds, 382
Eagle Ford formation, 302
Eagle Ford horizon, 301
Eagle Ford shale, 296, 329, 332, 404
a possible source of oil for Woodbine basin, 295
Eagle sandstone, 171, 172, 698, 716
Earlsboro pool, 411
Earp pool, 766
Earth temperatures and pressures, 306
East Coyote field, 752
water analyses, 982
waters in, 982
East Coyote Hills (Anaheim Hualde) field, 224
East Hackberry, 115
East Hackberry dome, 659, 661
East Side field, 194
East-Side fields in California, 743
East Tennessee Valley area, 515
East Texas, 98, 140, 330, 571, 578
stratigraphic column in, 421
East Texas basin, 302, 333, 579
East Texas field, 276, 296, 302, 333, 403, 780
East Texas geosyncline, 339, 415
East Texas pool, 578
East Winfield pool, 775
Eastborough oil field, 773
Eastborough pool, 293
Eastern Basin area, 700, 704
Eastern Coal basin, 515, 517
Eastern fields of Montana, 717
Eastern Highland Rim, 515
Eastern Interior Coal basin, 559
origin of oil and gas reservoirs of, in relation to accumulation of oil and gas, 557
Eastman pool, 775
Eaton, J. E., cited, 748
Eby, J. B., cited, 73, 89
Economic Geology, 826
Eden shales, 519
Edge water, 229
Edge-water encroachment, 550
Edgerly, Louisiana, 897, 905
Edgerly oil field, 893

Edwards limestone, 60, 328, 329, 354, 355
418, 419, 420, 578, 893
Edwards limestone water, 903
Edwards Plateau, 572
Ehlers, cited, 533
El Abra facies, 491
El Abra limestone, 378, 379, 393, 394, 396, 397, 398
El Abra reef facies, 395
El Capitan field, 189
El Capitan pool, 190
El Dorado, Kansas, 616
El Dorado anticline, 599
El Dorado district, 596
El Dorado-Elbing-Burns district, thinning on structure in, 598
El Dorado field, 319, 339, 995
El Dorado pool, 294, 770
Elbing and Burns domes in Butler and Marion counties, Kansas, 320
Elbing field, 317, 319
Elbing pool, 294, 410, 770
Electrical conductivity measurements, 955
Elion, L., cited, 915
Elk Basin field, 698, 933, 935, 936
Elk County, 476, 478
Elk Hills, 802, 840, 962
Elk Hills field, 202, 229, 747, 840
waters in, 961, 985
Elk Hills structure, 406
Elk Hills uplift, 198
Elk Hills waters, content of, 962
Ellenburger dolomite, 333
Ellenburger limestone, 704, 705
Eller, W., cited, 43
Ellis formation, 998
Ellis sand, 707
Ellis shale, 159, 165
productive in Red Coulee field, 167
Ellis-Madison disconformable contact, 705
Elsmere field, 756
Elwood anticline, 189
Elwood dome, 756
Elwood field, 189, 742
Elwood pool, 190
Embar formation, 349, 687
in Rocky Mountain states, 163
source of Permian and Pennsylvanian
oil, 164
Embar limestone, 930
Embar waters of Wyoming, 942
Emery, W. B., cited, 309
Emery zone, 225
Emmons, W. H., cited, 254, 435
Encroachment of edge water, 809
of water, 839
of water, rate of, 837
Endothermic reactions, 244
Energy necessary for anaerobic reduction
of fatty acids, 46
Energy, source of, for micro-organisms,
37
sources of, 41
England and Wales, rivers of, 57
Engler, C., cited, 36, 72, 261, 450
English, Walter A., cited, 747, 751, 752
Entrada sandstone, 688
Enzymatic hypothesis, 44
Enzymes, 266
Eocene, 57, 111, 171, 172, 183, 188, 191,
192, 237, 403, 724, 754, 790
Eocene crude oil in Gulf Coast, 125
Eocene crudes, 131
Eocene Gulf Coast crude oil, variation of,
with depth, 120, 122
Eocene oils, 98, 137, 138, 141, 142
Eocene sands, 130
Eocene shales, 194
Epicontinental seas, 303
Erdmann, C. E., and Dobbin, C. E.,
geologic occurrence of oil and gas in
Montana, 695
Erosion, 98, 228
action of, 181
Esghen, W. K., 600, 604, 605
cited, 353
Espinosa, 115
Espinosa dome, 418
Estabrook, Edward L., cited, 722, 838,
911
Esters, 261
Estill County, 509
Etchegoin formation, 202, 406, 747, 792,
796
Etchegoin sands, 201
Eureka anticline, 191
Eureka Canyon, 191
Europe, 2
sulphate-reducing organisms, 917
Evans, E. W., cited, 7, 12, 13
Evaporation of oil-well waters, 910
of original water of sedimentation, 466
of sea water, 874
underground, 834
Evaporative effect of gas, 851
of migrating natural gas, 482
Evolution of petroleum, 227
Exothermic reactions, 244, 267
Expanding gas, evaporative effect of, 868
Expansion and contraction of oil and
water, 843
Experimental data on relation of oil and
water in small openings, 288
Eyoub, Djevad, cited, 309

F
Factors controlling oil and gas accumula-
tion in Montana, 717
Fairfax pool, 775
Fairgrounds pool, 763
Fairport pool, 777
Farnsworth, H. R., Woodring, J. R., and
Roundy, P. V., cited, 747
Fash, Ralph H., cited, 835
Fash, Ralph H., and Berger, Walter R.,
relation of water analyses to struc-
ture and porosity in West Texas
Permian basin, 809
Fat decomposition, 40
Fat, formation of, 45
Path, A. E., cited, 614, 616
Fats, 36, 38, 39, 265, 450
Fats from carbohydrates, 41
Fats and oils, 45
Fatty acids, 36, 38, 39, 45, 261, 265, 452
Fatty matters, 261
Fault, 206, 218, 219, 222, 294, 403, 411,
416, 417, 419
in East Coyote Hills (Anaheim Hualde)
field, 224
in Topila, 387
Inglewood, 216
normal, in Kern Front field, 204
Sulphur Mountain, effects in Sulphur
Mountain fields, 192
Fault planes, migration along, 60
Fault structures, 418
Fault trap, 751
Fault waters, 423
Fault zone, 723
in Wood County, Ohio, 524
Whittier, 214
Fault-zone fields of east-central and
south-central Texas, 577
Faulted and warped dome, 211
Faulted anticlinal and homoclinal folds
in Los Angeles basin, 212
Faulted anticlinal fold, 224
Faulted fields, 428
Faulted monocline, 355
Faulted overturned anticline, 348
Faulted uplift, 199
INDEX

Faulting, 228, 390, 396, 459, 659, 722, 745, 749, 759, 998
about salt structures, 674
effects on carbon ratios, 89
in Livingston County, Michigan, 548
in Mexico, 392
in post-Wilcox time, 330
in pre-Wilcox time, 330
post-Miocene, 804
Faulting and folding, Rough Creek zone of, 518
Fault-line fields, 20
Faults, 133, 295, 397, 409, 561, 739, 747
accumulation of oil and gas related to, 526
as channels, 426
associated with Mid-Continent anticlines, 613
barriers to up-dip migration, 578
effect on accumulation of oil, 257
en échelon, in central Oklahoma, 615
in Huntington Beach field, 220
in Oklahoma, 616
in relation to production, 389
major, influencing distribution of carbon-ratio values, 85
of California, age of the major, 737
Faults and folds, influences diminishing intensity of dynamic metamorphism, 73, 74
Fay, Albert H., cited, 630
Fayette formation, 403
Ferguson, John L., 608
Ferguson, R. N., and Willis, C. G., cited, 749
Ferguson, W. B., Heath, F. E., and Waters, J. A., cited, 648, 649, 654
Fermentation, 38, 39, 261
Fernando beds, 731
Fernie sandstones, 348
Fernie shale, 159
Ferris dome, 343, 344
geothermal variations at, 991
Ferris field, 688
Fettkje, Charles R., cited, 285
Fettke, Charles R., Newby, Jerry B., Torrey, Paul D., and Panity, L. S., cited, 316, 844
Field, Richard M., cited, 358
Field flooding, 274
Fields on completely sealed, closed domal structures, 229
Fifth sand, 465, 490, 492
Fifty-Foot sand, 490
Filtration, 832
Findlay area, 544
First Wall Creek sand, 838, 936
Fischer, F., and Fuchs, W., cited, 267, 920
Fischer, Franz, and Schrader, Hans, cited, 43
Fisher pool, 763
Fissures, oil accumulation in, 6
relation to accumulation, 4
Fittton, Edith M., and Brooks, Charles F., cited, 1006
Fitzgerald, P. E., and Thomas, W. A., cited, 553
Five Islands, 661
Fixed carbon, 25, 71, 81
Fixed carbon ratios of coals, 67
Flank reservoirs, 672
Flat Coulee dome, 703
Flat Coulee field, 713
Fletcher, Corbin D., cited, 780
Florence field, 317, 319
history of discovery of oil, 719
Florence pool, 410, 725, 770
Florida, 56
Florida coast, organic sediments in, 30
Florida Keys, 282
Floyd County, 506
Fluid movement, 278
in reservoir beds, 274
Flushing, 257, 315, 690, 691, 731, 938
by circulating water, 98
Foix zone, 226, 405
Folded uplift, 198
Folding, 181, 228
effects on carbon ratios, 89
essential to oil and gas accumulation, 254
Newport to Beverly line of, 748
relation to accumulation of oil, 730
Folding and faulting in California fields, 184
Folds, parallel alignment of, 547
rejuvenated, 582
Foley, L. L., cited, 309, 615, 616
Food supply (source of energy and nitrogen) for micro-organisms, 919
Foraminifera, 102
Foraminiferal beds, 201
Foraminiferal shales, 202, 203, 211, 392
in Kern Front field, 204
in Santa Maria field, 207
Foraminiferal source beds, 182
Foraminifers, leaching of tests of, 390
Forest County, 460, 461, 472, 474
Formation of petroleum from organic matter, stages in, 261
Fort Bend County, 670, 896, 996
Fort Collins field, 937, 948
Fort Stockton anticline, 881
Fort Stockton "high," 369
Foster, W. H., cited, 765
Foucou, F., cited, 9
Fourbear anticline, 163
Fourth sand, 490, 492
Fourth sand field, 465
INDEX

Fox, Leo S., cited, 745
Fox Bush pool, 775
Fox Bush sand, 774
Fractional distillation, 236, 245
Fractionation, 110
of crude oil by filtration, 148
Fractional distillation, 150
Fracture zones, 388
Fractured limestones, accumulation of oil in, 365
Fracturing, 380, 398
Francisco pool, 562
Frannie, 687
Frannie anticline, gravity of oil, 160
Frannie dome, 939
Frannie field, 928
Frannie structure, 945
Fraps, G. S., and Rather, J. B., cited, 42
Frey, Charles N., cited, 925
Frey, Charles N., cited, 925
Fried, cited, 39, 40
Freshwater, 272, 274, 275
Fresno Canyon, 193
Fresno County, 185, 186, 194, 406
Frey, Charles N., cited, 925
Friction, effect on circulation of water, 273
Gabriel, C. L., and Crawford, F. M., cited, 925
Gahl, Rudolf, and Anderson, Belle, cited, 267, 915
Gaines field, 484
Galbraith, T. J., cited, 354
Galloway, John, and Barbat, W. F., cited, 792
Galloway, W., cited, 89
Gantz sand, 490
Garber field, 319, 339, 410, 411, 770
geothermal variations at, 992
relation between density and depth of shale at, 815
Garber pool, 340
Gardner, James H., cited, 618, 624
Garland, 163, 687
Garland (Byron) anticline, gravity of oil, 160
Garland dome, 687, 725
Garland field, 928
gas in, 165
Garland pool, 350
Garrett, J. F., cited, 925
Garrucho, opp. 390
Gas, 304
below oil in same reservoir, 477
early recognition as fuel, 15
effective in causing oil to flow, 10
from vegetable source material, 484
in reservoir rock necessary to gravitational segregation of oil, 254
Frio formation, 403
Front Range, 275, 682, 683
Frontier formation, 169, 698, 716, 728
in Rocky Mountain states, 170
in Wyoming, 160
Frontier oil, gravity, 170
Frontier sands, 344, 409, 933
in important producing fields of Wyoming and Montana, 934
Frontier (Wall Creek) sandstones, 689
Frouin, A., cited, 41
Fruitvale field, 204, 205
water analyses, 965
waters in, 965
Fry sand, 402
Fuchs, W., cited, 43
Fuchs, W., and Fischer, F., cited, 267, 920
Fuller, M. L., cited, 74, 73, 89
Fuller's earth, 144
Fullmer, Ellis I., cited, 925
Fungi, 40
Fuqua, H. B., 603
cited, 600
Gas and oil, associated, 10
historical development of structural theory of accumulation of, 1
Gas energy, 810
Gas fields of Pennsylvania related to shore lines, 452
Gas formation, 462
Gas-oil, 140
in crude oil from Miocene, 128
Gas-oil contact, 145
Gas-oil content, 117
Gas-oil fraction, 123
Gas pools, occurrence of, 72
Gas production from lenses, 554
Gas seepages, 470, 648
Gasoline, 112, 116, 117, 121, 122, 139, 141, 222
in crude oil from Miocene sands, 128
Gasolines, unsaturated, 237
Gaspé, 3, 12
Gato Ridge anticline, 208
Gaultree-Boileau, M., cited, 5
Gaylord, E. G., cited, 407
Geis, W. H., cited, 728
in shale, occurrence of, 507
migration of, 479, 527
occurrence of, 75, 163, 467
occurrence in Wyoming and Colorado, 169
place of, in origin of oil, 238
productive horizons, 698 relation to structure, 16
Gas and oil, associated, 10
historical development of structural theory of accumulation of, 1
Gas energy, 810
Gas fields of Pennsylvania related to shore lines, 452
Gas formation, 462
Gas-oil, 140
in crude oil from Miocene, 128
Gas-oil contact, 145
Gas-oil content, 117
Gas-oil fraction, 123
Gas pools, occurrence of, 72
Gas production from lenses, 554
Gas seepages, 470, 648
Gasoline, 112, 116, 117, 121, 122, 139, 141, 222
in crude oil from Miocene sands, 128
Gasolines, unsaturated, 237
Gaspé, 3, 12
Gato Ridge anticline, 208
Gaultree-Boileau, M., cited, 5
Gaylord, E. G., cited, 407
Geis, W. H., cited, 728
INDEX

Generation of petroleum, relation of microorganisms to, 35
Geochemical agencies, 338
Geochemical processes effective in development of petroleum, 179
Geologic column, eastern Ohio, 502, 503
West Virginia, 488, 489
Geologic history and stratigraphy of Wyoming, Colorado, and New Mexico, 723
Geologic provinces of California, 739
Geologic structure in Mid-Continent region, relation of oil and gas accumulation to, 571
Geologic time, 314
Geology, general, of Michigan basin, 533
of Canada, 310
of Salt Dome Oil Fields, 662
Geology and chlorine content of waters at Hull field, 900
Geophysical data gathered from Mid-Continent area, 614
Geophysical processes affecting evolution of petroleum, 179, 181
Georgetown limestone, 355
Georgia, 56
Georgia, south, organic sediments in, 30
Geothermal data, value of, 987
Glauconite, 354
Glauconitic limestone, 357
Glen Rose, 479, 480
Glen Rose formation, 421
Glenn field, 435, 439
Glenn pool, 278, 323, 324, 325, 326, 401
Glenn sand, 292
Glidden pool, 763
Glucose, 37
Glycerides, 261
Glycerine, 36
Golden Lane, 377
Goldman, Marcus I., cited, 650
Goleta anticline, 189
Goleta field, 189
Goleta pool, 190
Goodrich, H. B., cited, 309
Gooose Creek, 115, 117, 119, 123, 146, 147, 148
Gooose Creek crude oils, 116, 118
Gooose Creek dome, 418
Gooose Creek field, 324, 327, 893
Gordon, Dugald, 780
Gordon sand, 490, 492
Gordon sand field, 405
Gordon Stray sand, 490, 492
Gore, R. E., cited, 544
Corham pool, 776, 777
Gose sand, 402
Gossard structure, 946
Goudkoff, Panl P., cited, 746
Grabau, A. W., and Sherzer, W. H., cited, 546, 549
Graben, 745
Grady County fields, 776
Grahamite, 79
Grain and pore size, 826
Grand Rapids-Parma break, 551
Grand Saline dome, 641, 651, 906
Grand Saline dome section, 852
Granite cores, 610
Granite ridge, 292, 317, 339, 410, 858
Granite Ridge fields, 240
Granite Ridge pools, 295
Graphite, 79
Grass Creek, 687, 936
Grass Creek field, tilt of water-oil contact at, 838
Grass Creek pool, 349
Gravitational assortment, 282
Gravitational differentiation within crude oil, 150
Gravitational distribution of gas, oil, and water, 844
Gravitational-hydraulic theory, 260
of migration of oil, 259
Gravitational separation, 8, 10
in crevice reservoir, 7
of oil, gas, and water, 7
Gravitational theory of accumulation, 254, 258, 301, 303, 304, 305
Gravitative adjustment, 375
Gravities of oil in Coalinga field, 195
in Dakota-Mowry group, 174
in Frontier formation, 174
in Jurassic beds, 173
in Mississippian beds, 172
in Pennsylvanian beds, 173
in Permian beds, 173
Gravities of oils, slight variation in Santa Fe Springs field, 227
Gravities of Tertiary and Upper Cretaceous above Frontier formation, 175
 oil, in Rocky Mountain states, 157, 172
Gravity, 144
Gravity differences with respect to age of sands, 103
Gravity fluctuations near faults, 106
Gravity in relation to depth, 501
 of crude oil, variation of Baume, with age in Pennsylvania, Ohio, West Virginia, and Tennessee, 104
 of Dakota oil, 409
Gravity of oil, 405, 532
 in Appalachian province, 101
 in Cat Canyon field, 208
 in Dominguez field, 215
 in East Coyote Hills field, 225
 in fields of Santa Maria district, 758
 in Fruitvale field, 205
 in Lompoc field, 208
 in Los Angeles County, 192
 in Montana fields, 717
 in Rosecrans field, 217
 in Santa Ana Canyon field, 224
 in Santa Fe Springs field, 226
 in Santa Maria field, 207
 in Summerland field, 209
 in Ventura County fields, 191, 192, 193
 in West Coyote Hills field, 225
variation, 98, 229
due to differences of source rocks and reservoirs, 107
 in Arroyo Grande field, 206
 in Belridge field, 197
 in Brea Canyon-Olinda fields, 215
 in Buena Vista field, 201
 in Coalinga field, 194
 in Elwood oil, 190
 in Huntington Beach field, 220
 in Inglewood field, 216
 in Kern Front field, 204
 in Long Beach field, 218
 in Lost Hills field, 197
 in Midway-Sunset field, 200
 in Montebello field, 214
 in North Belridge field, 188
 in Potrero field, 216
 in Richfield field, 224
 in Rincon field, 212
 in Seal Beach field, 219
 in Torrance field, 222
 in Venice field, 223
 in Ventura Avenue field, 210
 in Whittier field, 214
 in Wyoming and New Mexico, 724
with age, 106
with age, depth, metamorphism, and structural position, 97
 with depth, 71, 106, 185
 with depth at Spindletop, 114, 119
 with depth in California pools, 404
 with depth in Gulf Coast Miocene crude oils, 115
 with depth in Temblor sands, 187
with metamorphism, 106
Gravity relations in Kettleman Hills, 407
Gravity values, variations in, 178
Greasewood area, 950
Greasewood field, 729
Great Falls-Calgary arch, 698
Green River beds, 728
Green River sandstones, 172
Green River shales, 271
Greenbrier, 490
Greenbrier sand, 494
Greene, Frank C., cited, 763
Greenwood County, 300, 305, 400
Greer, Frank E., and Bastin, Edson S., cited, 915
Gregg County, 403
Greybull field, tilt of water-oil contact at, 838
Greybull sand in Wyoming, 160
Griffithsvilie pool, 495
Griswold, W. T., and Munn, M. J., cited, 465
Groesbeck field, 779
Ground water, effects of, on subsurface temperatures, 999
Ground waters, normal, map showing types of, Texas Gulf Coast, 892
Guadalupe County, 418, 903
Gubin, V., and Tzechomskaya, V., cited, 915
Gulf Coast, 57, 110
Gulf Coast areas, 815
Gulf Coast crude oil, 98, 144, 237, 240
evidence for indigenous character of, 134
geologic age of, 133
natural history of, 109
source beds, 136
variation of character of, with age and with depth, 125
variation of character with depth, 112
Gulf Coast crude oils, normal, 137
Gulf Coast district, 340
Gulf Coast Miocene crude oil, variation with depth, 113, 115
Gulf Coast region, 237, 631
Gulf Coast salt domes, 60, 418
geology of, 620
Gulf Coast salt structures, age of, 666
Gulf Coast structures, distribution of, 665
Gulf Coastal Plain, 577
 oil-field waters of, 891
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>source beds in,</td>
</tr>
<tr>
<td>Gulf of Mexico,</td>
</tr>
<tr>
<td>Gushers in Mexico,</td>
</tr>
</tbody>
</table>

H

- **Haas, I. O., and Hoffmann, C. R., cited,** 997
- **Hackford, J. E., cited,** 235, 270
- **Haehn, Hugo, cited,** 41, 42
- **Hager, Dorsey, cited,** 436
- **Half Moon Bay field,** 185, 228
- **Halite,** 637
- **Hall, Ivan C., cited,** 266
- **Hall, Ivan C., cited,** 266
- **Hall, Ivan C., cited,** 266
- **Half Moon Bay field,** 185, 228
- **Hammar, Harald E., cited,** 26, 262
- **Hammar, Harald E., Trask, Parker D., and Wu, C. C., cited,** 450
- **Hammer, A. A., and Lloyd, A. M., cited,** 697
- **Hancock County,** 524, 527
- **Hankamer,** 115
- **Hanna, Marcus A., cited,** 359, 431, 651, 654, 656
- **geology of Gulf Coast salt domes,** 629
- **Hanna Basin,** 929, 938
- **Hardin County,** 661
- **Hardin field,** 702, 716
- **Harkness, K. R. B., cited,** 12
- **Harris, Gilbert D., and Veatch, A. C., cited,** 665
- **Harris County,** 637, 638, 639, 642, 650, 651, 671, 996
- **Harrison, John Vernon, cited,** 646
- **Harrison, Thomas H., cited,** 634, 635, 657, 658, 727
- **Harrison County,** 492
- **Haseman, J. D., cited,** 56, 374
- **Hauerite,** 656
- **Haverhill, Kansas,** 996, 1004
- **Haverhill pool,** 775
- **Havre field,** 704, 714
- **Hawkinsville dome,** 651, 655
- **Hawley, J. E., cited,** 270, 370
- **Hawley, J. E., and Rand, Wendell P., cited,** 440
- **Hawtow, E. M., cited,** 146, 992, 993
- **Hayes, A. O., cited,** 636
- **Haynesville field,** 417
- **Heald, K. C., cited,** 242, 270, 278, 309, 992, 997
- **subsurface temperature gradients,** 987
- **Gwynne, Charles S., cited,** 548
- **Gypsum beds of Michigan formation,** 552
- **Gypsum-anhydrite,** 151
- **Healdton field,** 239
- **geothermal variations at,** 991
- **Heat,** 247, 255, 268
- **effect on gravity of crude oil,** 157
- **the primary factor in formation of liquid oil,** 269
- **relation to generation of oil,** 36
- **Heat distillation,** 448
- **Heaton, R. L., cited,** 343, 928
- **Heavy oil,** 239
- **Hedberg, H. D., cited,** 280, 542, 619, 620, 812, 814, 815
- **Heim, Arnold, cited,** 385
- **Helium,** 451
- **Hellman productive zone,** 219
- **Hemicellulose,** 37
- **Hemphill, H. A., Sellards, E. H., and Bybee, H. P., cited,** 352
- **Hendrick field,** 372, 413
- **Hendrick pool,** 414
- **Hennen, Ray V., cited,** 373, 414, 415
- **Hennen, Ray V., and Metcalf, R. J., cited,** 413
- **Herradura-Tampuchec syncline,** 392
- **Herrick, H. T., and May, O. E., cited,** 925
- **Hertel, F. W., cited,** 145
- **Hewitt field,** 597, 775, 776
- **Hewitt profile,** 596
- **Hietus,** 298
- **Hiawatha district,** 728
- **Hidden dome,** 938
- **Hestand, T. C., cited,** 762, 763
- **High gravity ascribed to thrust faulting and close folding,** 161
- **High Island,** 115
- **“High octane number,”** 237
- **Highland Rim areas,** 518
- **Hilt, Carl, cited,** 72, 89
- **Hilt's Law,** 72, 89
- **Hind, Henry, cited,** 13
- **Hind, Henry Youle,** 9
- **Hinze, F. F., cited,** 680, 683, 730
- **Historical development of structural theory of accumulation of oil and gas,** 1
- **History of petroleum in its relation to temperature and pressure phenomena,** 244
- **Hitchcock, Charles H., cited,** 8, 13, 71
- **Hobbs field,** 413
- **Hobbs pool,** 350, 414
INDEX

Hockley dome, 637, 638, 639, 642, 650, 651, 655
Hoefer, H., cited, 13, 16
Hoffmann, C. R., and Haas, I. O., cited, 997
Hogback dome, 409
Hogback field, 936
Hogback structure, 933
Hollow pool, 766
Homer field, 340, 417
Hominy, 203
Homoclinal and faulted anticlinal folds in Los Angeles basin, 212
Homoclinal strata, 197, 198
Homoclinal structure, 200
in Summerland field, 209
Homocline in Midway-Sunset field, 199, 200, 203,
in Round Mountain and Mount Poso fields, 205
Homoclinic pools in, 228
Hoots, H. W., cited, 748
Hoover, 863
Hoover sand, Oklahoma, analyses of water from, 867
Hopkins, O. B., Powers, S., and Robinson, H. M., cited, 779
Hopper Canyon field, 756
Horse town shales, 183, 184
Hot Springs County, 724
Hovey Hills, accumulation below unconformity in, 801
Howard, W. V., cited, 249, 316, 367, 370, 373, 782
accumulation of oil and gas in limestone, 365
Howard, W. V., and Love, W. W., cited, 360, 368
Howard County, 415
Howell, J. V., cited, 310, 323
historical development of structural theory of accumulation of oil and gas, 1
Howard, W. F., cited, 348, 602
Hughes, Urban B., cited, 636
Hugoton gas field, 576
Hull dome, 673
Hull field, 899, 900
Humble, 115
Humble dome, 671
variations of temperature at, 996
Humboldt coast petroleum, 183
Humboldt district, 183

Hume, G. S., cited, 74
"Humic acid," 45
origin of, 43
Humic acids, 56
a source for oil, 374
origin of, 43
Hundred-Foot sand, 845, 846
Hunt, T. Sterry, cited, 3, 4, 6, 8, 12, 13, 16, 71, 254, 310, 850
Huntington Beach field, 220, 229, 750, 995
graphical representation of waters, 976
waters in, 974, 985
Huntington Beach Townsite area, 220
Huntington Beach Townsite pool, 221
Hunton and "Wilcox" waters in Oklahoma, analyses of, 860
Hunton arch, 576, 887
Hunton formation, 766
Hunton limestone, 203, 336, 859
Hupp, J. E., and Bartram, J. G., cited, 692
Hussey, cited, 533
Hutchinson County, 668
Hydraulic head, 256
Hydraulic theory of accumulation, 254, 256, 259, 274, 279, 301, 395, 344, 374, 410
difficulties, 306
Hydraulic water, 255
Hydrocarbons, aromatic, 184
local origin of, 834
solid, in soils, 42
Hydrocarbons and oil, origin of, 42
Hydrogen, 38, 39
supply of, 240
Hydrogen content of crude oils, increase with age, 239
Hydrogen sulphide concentration, 922
Hydrogenation, 99, 239, 241, 242, 243, 244, 245
of crude oil, 240
of unsaturated hydrocarbons, 240
Hydrogenation and origin of oil, 235
Hydrolysis, 270, 452
of plant and animal residues in sea water by anaerobic fermentation, 44
Hydrostatic head, 281, 934
Hydrostatic pressure, 833

I.
Igneous intrusion, 75
Igneous intrusions, 395
Iles, 688
Iles dome, 343, 946
Iles structure, 946
INDEX

Illing, V. C., cited, 371
Illinois, 431, 541, 567
relation between carbon ratios and oil and gas, 74
source beds in, 59
western, 561
Illinois-Indiana coal basin, 537
Impervious cover, 8
Impervious shale overlying reservoir, 10
Inanimate organic theory of sulphate reduction, 912
Incipient metamorphism, 76
Inclusions, 639, 640, 642
Indiana, 17, 521, 545
source beds in, 59
southwestern, 562
Indigenous character of normal Gulf Coast crude, evidence for, 134
Indigenous oil, 677
Indigenous origin of oil, 676
Induced porosity, 380, 382, 385, 388, 391, 396
Infiltration of surface waters, 838
Inglewood fault, 216
Inglewood field, 216, 749
water analyses, 968
waters in, 968
Injun sand, 460
Inscho pool, 763
Interference of wells, 384

International Petroleum Company, 378
Interpretation of local structural development in Mid-Continent areas associated with deposits of petroleum, 581
Intrusives, 80
Iodine, 241
Iowa, 275, 541
concentration of Ordovician waters in, 277
Irma field, 345
Irvin, Robert, and Murray, John, cited, 911
Irvine-Big Sinking oil field, 518
Irvine fault zone, 518
Irvine sand, 509
Irwin, J. S., cited, 343, 344, 409, 722
Isocarb lines, effects of thrust faults on, 89
Isocarbs, 75, 90
Iso-con map for "Mississippi lime" water, 862
Isogeothermal map of Salt Creek, Natrona County, Wyoming, 1003
Isogeothermal surfaces in relation to structure, 1004
Isopach map of Upper Cretaceous formations, 686
Issatchenko, B., cited, 914
Isthmus of Tehuantepec province, 633, 634
Isthmus of Tehuantepec structures, 648

J

Jackson, Mississippi, 520
Jackson black shale, 133, 134
Jackson County, Ohio, 505
Jackson crude oil, 111
Jackson field, 780
Jackson formation, 403
Jackson gas field, 579
Jacksonville gas field, 561
Japan, 18
Jardin, 394
Jefferson County, Pennsylvania, 478
Texas, 670
Jenney, W. P., cited, 908
Jennings dome, 667
Jensen, Joseph, cited, 839
California oil-field waters, 953
Jensen, Joseph, and Robertson, Glenn D., cited, 750
Jensen, O., cited, 40
Jessamine dome, 515, 517
Joachimstal, temperature gradients at, 997
Johnston, Jr., W. D., cited, 1010
Joint cracks, 509
Joint planes, 386, 492
Jointed limestones, 397
Joints, 207
Joints of fissures, migration via, 182
Joly, John, cited, 1005
Jones, J. W., cited, 76
Jones, J. Claude, cited, 53
Jones sand, 221
Josey pool, 411
Journal of the Franklin Institute, 826
Judith River formation, 698
Judson, Sidney A., Murphy, P. C., and Stamey, R. A., 663
Julesburg basin, 680, 683
Jurassic, 43, 61, 167, 173, 348, 380, 390, 391, 397, 408, 409, 724
in Montana, 160
in Rocky Mountain area, 165
Jurassic crude oils, 155
Jurassic oil, 161, 166
Jurassic oil and gas in Rocky Mountain states, 166
Jurassic shales, 61
INDEX

K

Kaibab limestone, 165
Kane horizon, 478
Kane sand, 476
Kankakee arch, 537, 539, 540
Kansas, 275, 276, 292, 294, 297, 298, 299, 300, 301, 317, 318, 319, 320, 323, 339, 400, 410, 574, 762, 764, 815, 862, 902, 905, 906 central and western, 576
distribution of pre-Mississippian rocks in, 321
source beds in, 59
Kansas and Oklahoma, subsurface water characteristics in, 855
Kansas pool, 293
Kansas profiles, 506
Kansas sediments, density increase with depth, 280
Karrick, Lewis C, cited, 239, 242
Kay County, 504
Keener-Big Injun sand, 494
Keener sand, 501, 506, 511, 845
Keith, Arthur, cited, 395, 540, 541
Kellum, L. B., cited, 394
Kellyville field, 435
Kelsey anticline, 332
Kelsey dome, 301, 302
Kendall, P. F., and Cornish, V., cited, 395
Kentucky, 4, 73, 103, 340, 485, 487, 499, 519
Baumé gravity of crude oil in, 106
eastern, 506
eastern, West Virginia, and eastern Ohio, occurrence of oil and gas in, 485
gallery of crude oil in Corniferous limestone in, 106
oil and gas fields, 516
oil and gas fields of eastern, 508
relation between carbon ratios and oil and gas, 74
sands of eastern, 507
source beds in, 59
western, 562
Kentucky and Tennessee, oil and gas in, 515
Kerguelen Islands, organic sediments in, 30
Kern County, 196, 197, 199, 200, 202, 204, 205, 406
Kern Front field, 204, 745, 804
Kern River field, 203, 744, 745, 803, 839, 963
water analyses, 964
waters in, 962
Kraemer, A. J., and Grandone, P., cited, 109
Krimer, cited, 261
Kramer zone, 224
Kramper, E. W., geological characteristics of producing oil and gas fields in Wyoming, Colorado, and northwestern New Mexico, 719
Kreyenhagen formation, 194, 195
Kreyenhagen shale, 183, 186, 188, 407
Kuhr, C. A. H. von Wolzogen, cited, 916

La Barge fault, 692
La Barge field, 172, 602
variations of gravity of oil, 172
La Brea Canyon, 206
Laccoliths, 721
Lactic acids, 39
Lahee, F. H., cited, 247–251, 601
carbon ratios, foreword, 67
Lahee, F. H., cited, 144, 250, 205, 206, 399, 313, 330, 332, 341, 403, 600, 616, 648, 649, 654, 779, 812
migration and accumulation of petroleum, foreword, 247
study of evidences for lateral and vertical migration of oil, 399
Lahee, F. H., and Washburne, C. W., oil-field waters, 833
Lake Barre, 115
Lake Basin field, 945
Lake Lahontan, 53
Lake Maracaibo, organic sediments in, 30
Lake Pelto, 115
Lake Superior geosyncline, 537, 554
Lake View gusher, 200
Lake Washington, 115
Lakota formation, 167
Lakota sand, 408, 409, 935
Lambert, G. S., Clapp, C. PL, and Bevan, Arthur, cited, 697
La Merced Hills, 213
Lance Creek, geothermal variations at, 991
Lance Creek pool, 343
Lander area, 687
Lane, A. C., cited, 850, 858, 997
Lane, E. C., and Smith, N. A. C., cited, 109, 129, 143
Lang, W. B., cited, 1008
Langworthy, A. A., 589, 590
cited, 587, 591, 764
Laramide deformation, 685
Laramide revolution, 682, 690, 692, 700, 721, 722
Laramie basin, 680
Laredo district, 60
pools of, 579
Larsen, Esper S., Allen, E. T., Crenshaw, S. H., and Johnson, John, cited, 909

LaSalle anticline, 558, 560
Lateral migration, 8, 17, 223, 204, 313, 319, 330, 341, 369, 405, 560
argument against, 426
arguments for, 424
defined, 399
distance of, 567
in Kettleman Hills, 408
in shale, 295
of gas, 495
of oil, 804
restricted, 556
Lateral and vertical migration of oil, a study of evidences for, 399
Laton pool, 777
Lauer, A. W., cited, 260, 384, 394
Laurentian land mass, 537
Lawndale, 753
Lawnsdale-Hawthorne-Manhattan area, water analyses, 980
waters in, 979
Lawrence County, 460, 505
Lawrence County pools, amount of oil calculated in, 566
Laxa, O., cited, 40
Layton sand, 902
Oklahoma, analyses of water from, 866
Lebkicher, Roy, cited, 348, 683, 702
LeConte, Joseph, cited, 14
Lee, C. H., and Ellis, A. J., cited, 814
Lee, Willis T., cited, 682
Lee County oil field, 509
Lees, Charles H., cited, 994
Lens type accumulation, 306
Lenses, 509
accumulation of oil on, 400
Lensing, 745, 748
Lensing beds, 554
Lenticular bodies, 560
Lenticular dolomite, 413
Lenticular reservoirs, 301, 326
Lenticular sand pools, 340, 341
difficult to explain by gravitational assortment, 305
Lenticular sands, 203, 209, 222, 292, 301, 314, 333, 324, 429, 401, 501, 566, 729, 739, 747, 753, 783, 844, 863
in Coalinga field, 195
in Kern Front field, 204
INDEX

in Kern River field, 203
in Midway-Sunset field, 199
in Ventura Avenue field, 209
Leon pool, 203
Lesley, J. Peter, cited, 6, 9, 10, 11, 13, 16, 18
Levorsen, A. I., cited, 296, 309, 356, 431, 438, 587, 588, 591, 764, 766, 767, 772, 780
relation of oil and gas pools to unconformities in Mid-Continent region, 761
Lewis, J. V., cited, 814
Lewis overthrust, 700
Lewis pool, 776
Lewis Run, 476
Lexington dome, 515, 517
Ley, Henry A., cited, 410
Llano-Indiana district, 59, 531, 544
Llano-Indiana field, relationship of accumulation of oil to structure and porosity in, 521
structure of top of Trenton limestone in, 522
Limestone, accumulation of oil and gas in, 365
Limestone cap-rock, 643
Limestone County, Texas, 420, 601, 901
Limestone fault breccia, opp. 390
Limestone production, deep, 352
Limestone reservoir rock, 392
Limestone reservoir rocks in Mexican oil fields, 377
Limestone reservoirs in western United States and Canada, origin, migration, and accumulation of petroleum in, 347
oil formation in, 372
origin of petroleum in, 361
Limestones as source beds, 63
as source rocks, 54
Limón-Tanchicuin syncline, 392
Lincoln County, 440, 495
Lindner, Paul, cited, 41
Lindner, Paul, and Unger, T., cited, 41
Lindtrop, Norbert T., cited, 912
Link, Theodore A., cited, 700, 723
Linn County, 400
Liquid hydrocarbons, 261
Literature of American salt structures, 630
Lithification, 25
Lithology of Appalachian oil sands, 843
Little Elk-Big Elk-Shawmut uplift, 715
Little Kanawha oil region, Virginia, 5
Little Lost Soldier uplift, 343, 409
Little River pool, 411, 777
Little Rocky Mountains, 704
Little Sespe wells, 194
Llano-Burnet uplift, 572, 575, 577
Llano Mountains, 611
Lloyd, A. M., and Hammer, A. A., cited, 697
Lloyd, E. Russell, cited, 358
Lloyd zone, 755
Loading, 181
Lockett, J. R., cited, 326, 539, 544
Lockport, 115
Logan, William, cited, 3, 6, 12, 13, 71, 526
Logan, William N., Stephenson, L. W., and Waring, Gerald A., cited, 666
Logan County, 106
Logs, early, 11
Löhnis, cited, 40
Lompoc field, 208, 741, 758
Lonetree, North Dakota, method of estimation of temperature, 1007
Long Beach, isogeothermal surface at, 904
Long Beach field, 218, 229, 742, 749, 972
variation of temperature with structure, 993
water analyses, 973
waters in, 979
Long Point, variations of temperature at, 996
Long-range migration, 461
Los Angeles basin, 229, 738, 742, 748
oil fields of, 212, 749
Los Angeles City field, 213, 228
Los Angeles County, 190, 191, 192, 212, 213, 214, 215, 216, 217, 218, 405, 904
Los Angeles County fields, 191
Los Angeles field, 752
Los Gatos, 185
Lost Hills, 746
Lost Hills anticline, 196
Lost Hills field, 196, 796
Lost Hills structure, 197, 407
Lost Lake dome, 651
Lost Soldier, 687, 688
Lost Soldier district, 409
Lost Soldier dome, 103
Lost Soldier field, 169, 730, 938, 941
geochemical variations at, 991
Lost Soldier pool, 343
Lost Springs field, 772
Louderback, George D., cited, 736
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest
Macksburg 500-Foot sand, 501
Macksburg sand field, 501
Maclean, I. S., and Hoffert, D., cited, 41, 42
McCallum, H. D., cited, 782
Madill field, 778
Madison-Ellis contact, 698
Madison formation, waters of, 950
in Montana, 167
in Rocky Mountain states, oil and gas in, 159
in Wyoming, 160
Madison water, 929
Madison waters of Montana, 939, 940
of Wyoming, 942
Mahoney dome, 163, 343
Mahoney field, 685, 938
Mais, C. C., and Zimmerly, S. R., cited, 269
Main zone, 225
Major structural features of San Joaquin Valley, 787
Malagash salt deposit, 635
Maltha, 182, 196
Mansfield, G. R., cited, 723
Map and cross section of an oil field, first published, 4
Marathon district, 340
Marathon uplift, 572
Marble Falls limestone, 354
March pool, 767
Marschon, J., cited, 43
Margacic acids, 39
Maricopa diatomaceous shales, 197, 200
Maricopa Flat, 747
Maricopa shales, 183, 107, 199
Marietta area, 501, 506
Marine bacteria, 46
Marion County, Kansas, 317, 410
Markham dome, 639, 666
Lozano, Enrique Díaz, cited, 391
Lubricating distillates, 117, 118, 121, 123, 128
Lubricating fractions, 110, 140
Lucas County, 523, 527
Lucien pool, 767
Luling field, 60, 418, 781
Lyman, Benjamin Smith, cited, 18, 19
Lyon County, 400
Lyons-Quinn pool, 411
Lyttot Springs, variations of temperature at, 906
M
Marls as source rocks, 54
Marmaton shale, 295
Marsh gas, 452
Marshall, 293
Marshall-Grand Rapids break, 551
Martin, Helen M., cited, 775
Maryland, 73
Mason County, 550
Matagorda County, 639, 651, 655, 666
Matson, G. C., cited, 422
Mauch Chunk formation, 454
Maud pool, 707
Maverick Spring field, 941
Maxton sand, 495, 511
May, O. E., and Herrick, H. T., cited, 925
Mayes pool, 763
McCamey pool, 878
McClellan, Hugh W., cited, 321, 765, 769
McCollow, E. H., cited, 407, 431
structural influence on accumulation of petroleum in California, 735
McCullom, L. F., Cunningham, C. J., and Burbord, S. O., cited, 328, 354, 419
McCoy, Alex. W., cited, 53, 54, 247, 258, 260, 269, 283, 309, 311, 363, 594, 595
interpretation of local structural development in Mid-Continent areas associated with deposits of petroleum, 581
McCoy, Alex. W., and Keyte, W. Ross, cited, 313, 920
present interpretations of structural theory for oil and gas migration and accumulation, 253
McCoy, Alex. W., and Taylor, Charles H., cited, 618
McCutchin, John A., cited, 270, 992, 995, 997, 998
McCwten, G. F., 29
McFarlan, A. C, cited, 73
INDEX

relation of oil and gas pools to unconformities in, 761
Mid-Continent waters, comparison of, 835, 840
Middle Devonian unconformity in southwestern Michigan, 546
Midway field, 228, 937, 962
accumulation above unconformity in north, 800
Midway formation, 421
Midway-Buena Vista Hills and Lost Hills, sections, 798
Midway-Sunset area, 747
water analyses, 963
waters in, 962
Midway-Sunset field, 142, 143, 155, 199, 201, 799
Mid-West field, 411
Migration, 98, 203, 340, 360, 431
along faults, 60
avenues for more active, 553
causes, 256, 258
channels for upward or downward, 561
distance of, 63
downward, 370
extensive, in Ordovician horizons of Kentucky and Tennessee, precluded by low porosity of limestone, 519
from a distributed source, difficulties, 248
from deep-seated source beds, 60
lateral, 8, 17, 63, 223, 249, 250
long-distance, 101, 305, 333, 859
selective, 154
significance of classification of reservoirs to the problem of oil, 448
time of, 470
through carrier beds, 248
through fault channels, 677
upward, 368, 369, 391, 397
vertical, 57, 63, 133, 148, 185, 207, 250, 317, 368
via joints or fissures, 182
Migration of gas, 463
Migration of oil, 53, 254, 313, 335, 397
gravitational-hydraulic theory, 259
halted by traps, 445
in Appalachian province, 101
lateral and vertical, a study of evidences for, 599
limited, 310
long-distance, 313
replacement theory, 258
Migration of oil and gas, relation to buoyancy, 256
through reservoir rocks, 463
Migration of petroleum into reservoirs, 676
Migration and accumulation of petroleum, 247, 260, 342
Migration and accumulation, present interpretations of structural theory for oil and gas, 253
structural theory for oil and gas, 287
Migration, origin, and accumulation of oil, problems of, 337
of petroleum and natural gas in Pennsylvania, 447
of petroleum in limestone reservoirs in western United States and Canada, 347
Millioids, 393
Millikan, C. V., cited, 314
Millikan, C. V., and Sidwell, C. V., cited, 314
Mills, R. van A., cited, 256, 284
Mills, R. van A., and Wells, Roger C., cited, 465, 466, 467, 470, 841, 845, 850, 852, 853, 868, 910
Mills and Wells, theory of, 834
Mineral petroleum, 1
Mineralized waters, 148
Mingo County, 106
Minimum limiting closure, 730
Minnelusa formation, 161
Minor, H. E., cited, 324, 327, 651, 653, 669, 836, 893
oil-field waters of Gulf Coastal Plain, 891
Minshall, F. W., cited, 12, 13
Miocene, 61, 137, 149, 185, 186, 191, 192, 206, 214, 404, 405, 407, 737, 750, 754, 786, 790, 797
in Brea Canyon-Olinda fields, 215
in Buena Vista field, 201
in Gulf Coast region, 113, 115
in Inglewood field, 216
in Montebello field, 213
in Santa Maria field, 207
in Seal Beach field, 219
in Venice field, 223
in Ventura Avenue field, 211
in Wheeler Ridge field, 203
Miocene crude oils, 111, 112, 117, 121, 122, 154
in Gulf Coast, 125
Miocene diatomaceous shales, 177, 199
Miocene oils, 98, 116, 118, 129, 142, 152, 153
Miocene organic shales, 194, 218, 224, 225, 227
Miocene unconformities, 794
in San Joaquin basin, 864
Miocene and Oligocene crude oils, 131, 138
Miocene, Oligocene, and Eocene Gulf Coast crude oil, 130
Mirando district, 402
Misener sand, 293, 314, 767
Miser, Hugh D., cited, 779, 1016
INDEX

Mississippi, 579
Mississippi Embayment, 520
area, 515
Mississippi field, 780
“Mississippi lime,” 292, 293, 298, 301, 305, 773, 859, 862
Mississippiian, 103, 159, 172, 349, 356, 460, 490, 500, 501, 506, 517, 561, 623, 682, 725, 822
in Appalachian region, 104
unconformity at base of, 765
Mississippian limestone, 348
in Idaho, 158
in Rocky Mountain states, 158
Mississippian producing horizons, 454
Mississippian production, variation of gravity, 158
Mississippian reservoirs, 59
Mississippian-Pennsylvanian unconformity, 292
Missouri, 574
concentration of Ordovician waters in, 277
Modelo field, 756
Modelo formation, 191, 192
Moffat dome, 183
Moisture in coal, 76, 84
Moisture and volatile matter, 76
Molds, 41
Monnett, V. E., cited, 619, 812
Monocline, 196, 527
Monoclines, accumulation of oil and gas related to, 526
Monongahela formation, 453
Monroe, Watson H., cited, 781
Monroe County, Michigan, 546
Monroe field, 780
Monroe gas field, 579
Montana, 88, 158, 161, 165, 169, 172, 348, 368, 680, 690, 931, 990
geologic occurrence of oil and gas in, 695
groundwater in Madison limestone in, 160
source beds in, 61
typical Cretaceous waters of, 945
typical Madison waters of, 940
Montana plains, columnar sections of formations, showing oil and gas horizons in producing fields, 699
structural elements of, 701
structure-contour map of, 666
Montebello field, 213, 214, 751
water analyses, 985
waters in, 984
Monterey, 62, 791
Monterey diatomaceous shales, 208, 209
Monterey formation, 30
Monterey series, 183
Monterey shales, 61, 183, 206, 207, 757, 758
of California, 57
Monterey siliceous shale, 189
Moody, C. L., cited, 209, 654
Moody Gulch field, 185, 299
Moore, Prentiss D., cited, 347
Moore, R. B., and Schlundt, H., cited, 997
Moore, Raymond C., cited, 340
Moreno formation, 186
Morgan, George D., cited, 766
Morgan County, Kentucky, 509
Morrey, C. B., cited, 43
Morris field, 435
Morrison anticline, 821
Morrison formation, 165, 167
Morrison pool, 765
Morrison sand, 408
Morrow formation, 422
Moulton, G. F., cited, 74, 89
Moulton, G. F., and Knappen, R. S., cited, 697
Mounds field, 435
Mount Pleasant field, 548, 550
Mount Poso field, 205, 743
waters in, 964
Mount Solomon anticline, 207
Mountain systems of Mid-Continent region, 572
Movement of oil and gas from source bed into reservoir rock, 461
Movement of water, 280, 936
Movement of water, rate of, 274
Movements of water and oil, 228
Mowry formation, 61, 62, 344, 728
in Rocky Mountain states, 168
Mowry production, 167
Mowry shale of Wyoming, 57
Muddy, Dakota, and Lakota sandstone group, 688, 931
Muds and calcareous ooze, compressibility of, 813
Mühlberg, M., and Koenigsberger, J., cited, 911
Muir, John M., cited, 250
limestone reservoir rocks in Mexican oil fields, 377
Munn, M. J., cited, 20, 44, 254, 255, 274, 279, 410, 466, 845
Munn, M. J., and Griswold, W. T., cited, 465
Murphy, P. C., Judson, Sidney A., and Stamey, R. A., 663
Murray, A. N., cited, 366, 367, 553
Murray, John, and Irvin, Robert, cited, 911
INDEX

Muskat, M., Wyckoff, R. D., Botset, H. G., and Reed, D. W., cited, 808
Muskogon anticline, 549

Muskogon oil field, 548
Mussen, E. H., cited, 406
Mycobacteria, 253, 265

N
Nacatoch formation, 421
Nacatoch sand, 60, 417, 422, 423
Nacogdoches County, 123
Nansen, Fridtjof, cited, 997
Napa County, California, 184
Napa County oil field, 184
Naphtha, 116, 117, 122, 222
Naphthene oils, 140, 182, 186, 194, 228
light, 230
heavy, 230
Nash dome, 670
Nashville dome, 515, 518
Nemaha mountains, 292, 410, 615, 616
Nevadian orogeny, 737
New York, 2, 101, 103, 340, 460, 461, 472, 480, 844
Baumé gravity of crude oil in, 103
Newberry, J. S., cited, 71
Newcombe, R. B., cited, 430, 539, 546, 550
structure and accumulation in Michigan "basin" and its relation to Cincinnati arch, 551
Newland, D. H., cited, 548
Newport, 725
Newport to Beverly line of folding, 748
Niagara limestone, 509
Niagara-Salina break, 549
Nichols, Jr., H. Janney, cited, 378
Nickel, 241, 451
Nigger Creek field, 341, 420, 779
Nigger Creek pool, 340
Nightingale, W. T., cited, 728
Nine Mile Creek structure, 945
“99” zone, 225
Nioabra shale, 171
grid, 172
Nitrites, 28
Nitrogen, 37
in sediments, 35
Nitrogen compounds of petroleum, 921
Nitrogen content of sediments, 29
Nitrogenous compounds, 39, 31, 32, 35, 450
Nitrogenous constituents, 452
Nitrogenous material, 36
Nodular shale, 223
Nomland, J. O., cited, 792
Nonconformities, 510
Non-piercement anticlines, 644
Nordstrom zone, 226, 405
Normal coals, 82
“Normal” crude oil, 117
North Belridge, 746
North Belridge field, 188, 797
North-central fields of Montana, 712
North Dakota, 1004
North Dayton, 116
North dome, 186
North dome-Kettleman Hills field, 230
North Ellis pool, 776
North Fairport pool, 777
North Germany, 329
Northern fields, 377, 380, 397
Mexico, structural trends, 387

Neave, S. L., cited, 917

Newcombe, R. B., cited, 430, 539, 546, 550
structure and accumulation in Michigan "basin" and its relation to Cincinnati arch, 551
Newland, D. H., cited, 548
Newport, 725
Newport to Beverly line of folding, 748
Niagara limestone, 509
Niagara-Salina break, 549
Nichols, Jr., H. Janney, cited, 378
Nickel, 241, 451
Nigger Creek field, 341, 420, 779
Nigger Creek pool, 340
Nightingale, W. T., cited, 728
Nine Mile Creek structure, 945
“99” zone, 225
Nioabra shale, 171
grid, 172
Nitrites, 28
Nitrogen, 37
in sediments, 35
Nitrogen compounds of petroleum, 921
Nitrogen content of sediments, 29
Nitrogenous compounds, 39, 31, 32, 35, 450
Nitrogenous constituents, 452
Nitrogenous material, 36
Nodular shale, 223
Nomland, J. O., cited, 792
Nonconformities, 510
Non-piercement anticlines, 644
Nordstrom zone, 226, 405
Normal coals, 82
“Normal” crude oil, 117
North Belridge, 746
North Belridge field, 188, 797
North-central fields of Montana, 712
North Dakota, 1004
North Dayton, 116
North dome, 186
North dome-Kettleman Hills field, 230
North Ellis pool, 776
North Fairport pool, 777
North Germany, 329
Northern fields, 377, 380, 397
Mexico, structural trends, 387

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest on 23 July 2019
INDEX

Noses, 17
Nova Scotia, 9, 035
Nowata, 816
Nowata County, 202
Nowels, K. B., cited, 409, 410
Nuevo León, 391

Oakes ("Blossom") sand, 417
Oakhurst pool, 763
Oak Ridge-South Mountain ridge, 742
Oakridge anticline, 100, 101
Occurrence of natural gas, 478
Occurrence of oil and gas in Dakota, Cloverly, and Mowry, 168
in formations of Pennsylvanian age, 162
in Frontier, 170
in Montana, geologic, 605
in Tertiary and Upper Cretaceous, 171
in West Virginia, eastern Ohio, and eastern Kentucky, 485
on anticlinal structure, 12, 310
Occurrence of petroleum, conditions, 8
Ocean water, analysis of, 957
O'Connell zone, 226
Ohio, 2, 4, 9, 12, 17, 73, 74, 103, 106, 254, 326, 373, 439, 465, 485, 497, 498, 521, 524, 841
Baumé gravity of crude oil in, 103
eastern, 500
eastern, geologic column, 502, 503
eastern, West Virginia, and eastern Kentucky, occurrence of oil and gas in, 485
northern, 545
oil and gas fields of eastern, 504
productive anticlines, 10
Oil, abnormally heavy, 153
abnormally light, 154
accumulation of, 17
character of, in Appalachian province, 103
demand resulting from automobiles, 20
factors effecting transformation of, 141
gravities of, in Rocky Mountain states, 172
occurrence in synclines, 103
occurrence of, 79
origin and accumulation of, 300
problems of origin, migration and accumulation of, 337
production horizons, 698
Oil and gas, adjacent to unconformity at base of Chattanooga shale, 768
beneath unconformity at base of Pennsylvanian, 768
derivation of, from organic material, 51

Oil and gas-bearing horizons of Rocky Mountains, 932
Oil and gas fields in Pennsylvania, 464
in West Virginia, 491
in Wyoming, Colorado, and northwestern New Mexico, 719
of Montana, 705
Oil and Gas Journal, 74, 826
Oil and gas produced from sands at base of Pennsylvanian, stratigraphic relations of, 774
Oil and gas producing horizons of Pennsylvanian, 453
Oil and gas springs, 1, 4
Oil and hydrocarbons, origin of, 42
Oil and water, occurrence of, in permeable sand, 467
Oil and water contact, 145
Oil City field, 185
Oil Creek fields, 2, 3
Oil distributed in shales, 453
Oil-field brines compared with sea water, 957
in San Joaquin Valley, 965
Oil-field waters, 833
anaerobic bacteria in, 836
characteristics of Appalachian, 846
classification of, 954
identification of, 953
in California, 839
in California, chemical analyses of, 955
of Appalachian region, 834
of Appalachian region, composition of, 841
of Gulf Coastal Plain, 891
origin of, 850
Oil fields, relation to unconformity, 562
in broken anticlinal structures, 220
in California, 180
in California, comparison of, 758
in limestones or dolomites associated with unconformities, 317
in the United States, 119
of Pennsylvania, classification of, 465
of Woodbine sand, Texas, 329
Oilfields Service Company, 973
Oilfields Service Company method, 955
Oil formation in limestone reservoirs, 372

Nugget sand, 165
Nutting, P. G., cited, 808, 826
some physical and chemical properties of reservoir rocks bearing on accumulation and discharge of oil, 825

O historical development of structural theory of accumulation of, 1
in Kentucky and Tennessee, 515
Oil and gas-bearing horizons of Rocky Mountains, 932
Oil and gas fields in Pennsylvania, 464
in West Virginia, 491
in Wyoming, Colorado, and northwestern New Mexico, 719
of Montana, 705
Oil and Gas Journal, 74, 826
Oil and gas produced from sands at base of Pennsylvanian, stratigraphic relations of, 774
Oil and gas producing horizons of Pennsylvanian, 453
Oil and gas springs, 1, 4
Oil and hydrocarbons, origin of, 42
Oil and water, occurrence of, in permeable sand, 467
Oil and water contact, 145
Oil City field, 185
Oil Creek fields, 2, 3
Oil distributed in shales, 453
Oil-field brines compared with sea water, 957
in San Joaquin Valley, 965
Oil-field waters, 833
anaerobic bacteria in, 836
characteristics of Appalachian, 846
classification of, 954
identification of, 953
in California, 839
in California, chemical analyses of, 955
of Appalachian region, 834
of Appalachian region, composition of, 841
of Gulf Coastal Plain, 891
origin of, 850
Oil fields, relation to unconformity, 562
in broken anticlinal structures, 220
in California, 180
in California, comparison of, 758
in limestones or dolomites associated with unconformities, 317
in the United States, 119
of Pennsylvania, classification of, 465
of Woodbine sand, Texas, 329
Oilfields Service Company, 973
Oilfields Service Company method, 955
Oil formation in limestone reservoirs, 372
Oil, gas, and water, relationships between, 707
Oil generation, 98
Oil gravities in Rocky Mountain states, 157
Oil left in reservoir, 316
Oil or gas reservoir, definition, 434
Oil production, erratic, in Traverse formation, 553
in San Joaquin Valley, California, importance of unconformities to, 785
Oil saturation, degrees of, 467
Oil saturation and depth of Kane sand, 477
Oil seepages, 333
Oil shales, 53, 236, 269, 271, 290, 449, 728
yield of gasoline from, 425
Oil springs, 2
Oil-water contact, 247, 284, 467
Oil-water ratio, 466
Oil Well Water Locating Company, 973
Oil Well Water Locating Company method, 955
Oil-well waters of a Wyoming field, 911
Oil zones in Ventura pool, 210
Oils, in Appalachian province, gravity of, 101
Ojai field, 756
Okfuskee County, 438, 439
Oklahoma, 72, 119, 147, 153, 239, 275, 278, 292, 293, 294, 295, 301, 314, 315, 323, 325, 336, 340, 356, 401, 435, 439, 440, 441, 574, 584, 588, 597, 612, 762, 764, 815, 901, 992
analyses of Hunton and "Wilcox" waters in, 860
concentration of Ordovician waters in, 277
distribution of pre-Mississippian rocks in, 321
oil and gas in Ordovician system, 763
relation between compaction and depth in north-central, 817
source beds in, 59
Oklahoma and Kansas, subsurface water characteristics in, 855
Oklahoma City, 322
Oklahoma City area, circulation of water in, 278
Oklahoma City field, 319, 411, 431, 583, 584, 771
Oklahoma City pool, 294, 341, 355, 356, 359, 770
Oklahoma City structure, 583, 616
Oklahoma faults, 616
Oklahoma-Kansas district, 575
Oklahoma sediments, density increase with depth, 280
Okmulgee County, Oklahoma, 438
Olean pool, 767
Oles, L. M., and Ruedemann, Paul, cited, 778
Oligocene, 57, 123, 183, 189, 387, 754, 790
Oligocene foraminiferous shales, 185
Oligocene Gulf Coast crude oil, 121, 125
variation of, with depth, 120, 121
Oligocene oils, 98, 111, 122, 137, 141, 142, 152, 153
Oligocene organic shales, 185
Olima field, 215, 229, 751
Omeliansky, W. L., cited, 38
Ontario, 2, 5, 6, 366
western, 545
Oolitic limestone, 357
Oozes, deep sea, 30
Open reservoir, definition, 434
Openings in limestones, 365
Orange, 115, 116, 146, 147, 148
Orange County, California, 215
Orange dome, 418
Ordovician, 103, 119, 275, 298, 318, 353, 355, 410, 411, 438, 570, 725, 762, 917
waters of the, in Kansas and Oklahoma, 856
in Appalachian region, 101, 105
unconformable beneath Pennsylvanian in Oklahoma and Kansas, 769
Ordovician crude oils, 153
Ordovician intraformational limestone breccias, 282
Ordovician limestones, 532
Ordovician oil in Big Lake field, 60
Ordovician oils, 140
Ordovician producing horizon, 319
Ordovician reservoirs, 59, 293, 301
Ordovician system in Oklahoma, oil and gas in, 763
Ordovician waters, concentration of, in Iowa, Missouri, Arkansas, Nebraska, Kansas, Oklahoma, 277
in Oklahoma and Kansas, iso-con map of, 857
Oregon, carbon ratios in, 88
Organic content of recent marine sediments, 30
of sediments, 29, 30, 31
of sediments, composition of, 31
of sediments, variation with texture, 30, 291
Organic deposits probable source of oil, 25
Organic life, source of petroleum, 181
Organic material, accumulation of, 28
composition of, 30
derivation of oil and gas from, 51
Origin and accumulation of oil, 309
Origin and evolution of petroleum, 25
INDEX

Origin and hydrogenation of oil, 235
Origin, migration, and accumulation of oil, problems of, 337
of petroleum and natural gas in Pennsylvania, 447
of petroleum in limestone reservoirs in western United States and Canada, 347
Origin of oil and gas reservoirs of eastern interior coal basin in relation to accumulation of oil and gas, 557
of cap rock, 648
of folds, 749
of hydrocarbons and oil, 42
Origin of oil, 2, 3, 227, 235, 260, 307, 338
Origin of oil, bacterial, 35, 43
in central and southern Montana fields, 718
in limestone reservoirs, 361
in Mexico, 390
in Northern fields of Mexico, 397
in Southern fields of Mexico, 396
local, 247, 249, 461, 495, 566
Origin of oil and gas in Pennsylvania fields, bibliography, footnotes, 25
in sediments, bibliography, 33; footnotes, 27, 32
in sediments, nature and origin of, 33
of muds and oozes, 235
quantity deposited, 29
the source of oil, 310
variations in nature in source beds, 54
variation in richness, 311
Organic products of decomposition, 38
Organic shales, 216, 219, 223
in Buena Vista field, 201
in Santa Maria field, 207
Miocene, 224
Organic sources of oil, 183
Organic theory of origin of petroleum, 25, 261
Organisms, reef-forming, 553
Origin of salt deposits, 636

Paars, 361
Paars shallows, 362
Paint Creek uplift, 487, 509, 518
Paleozoic in Appalachian province, 101
Texas, 110
Paleozoic coals, 76
of United States, carbon ratios of, 86
Paleozoic oils, 237
of Appalachian province, 107
with paraffine base, 138
Paleozoic rocks of Wyoming, 239

Paleozoic sedimentary rocks in Michigan-Lima-Indiana districts, 535
Palmer, Chase, cited, 869
Palmer, R. H., cited, 391, 397
Palmer system, 855, 893
Pamlico Sound, organic sediments in, 30
Panhandle, 240
Panhandle of Texas, 339
Panhandle fields, 373, 777
Pánico, 392
Pánico-Cacalilao Crestal region, 381

Oxidation, 239, 690
of oil, 691
of petroleum, 263, 266, 267, 268
of petroleum by micro-organisms, 265
Oxidation and reduction of compounds, 37
Oxidation products, 38
Oxy-acids, 261
Oxygen, 37, 148
in sediments, 29, 35
Oxygen supply for anaerobic sulphate-reducing bacteria, 921
Oxygen tension of open sea water, 266
Ozark anticline, 558
Ozark dome, 541
Ozark Mountains, 611, 612, 613, 615
Ozark uplift, 574
Ozokerite, 261, 408
INDEX

Pánuco-Cacalilao structure, 384
Pánuco field, 380, 389, 390, 396
Pánuco-Sierra Tamaulipas uplift, 385
Panifyt, L. S., cited, 437
Panifyt, L. S., Newby, Jerry B., Torrey, Paul D., and Fettke, Charles R., cited, 316, 844
Papoore field, 380, 389, 390, 396
Papoose pool, 411
Paraffine, 648
Paraffine bacterium, 264
Paraffine base, 107
Paraffinc content, in Paraffines, 452
in marine muds, 42
Paraffinic crudes, light, 238
Paraffinic oils, 140, 240, light, 245
Parallel folding, 690
Parkerburg-Lorain syncline, 487
Parks, E. M., cited, 619, 911
Paso Robles formation, 406
Patton, L. T., and Sellards, E. PL, cited, 352
Paxson, Roland, B., and Barton, Donald C., cited, 668
Peabody field, 317
Peabody pool, 410, 770
Pearson, L. K., and Raper, H. S., cited, 41
Pearson pool, 772
Pecan Gap formation, 302
Pechelbronn sand, 828
Peckham, S. F., cited, 12, 13
Pecos County, 322, 606, 607
Pelagic areas, 28
Pelagic sediments, 30
Pemberton, J. R., cited, 145, 747
Pennsylvanian, 2, 3, 4, 13, 15, 17, 18, 70, 73, 106, 316, 340, 448, 460, 472, 474, 475, 478, 486, 499, 541, 544
Baume gravity of crude oil in, 103
geological survey of, 3
oil and gas producing horizons of, 453
origin, migration, and accumulation of petroleum and natural gas in, 447
permeabilities of oil and gas sands in wells, 476
Second Geological Survey of, 9, 11, 14, 18
source of oil in, 449
structural axes in, 464
Pennsylvania fields, local origin for oil and gas in, 461
low-temperature origin of petroleum and natural gas in, 450
Pennsylvania Survey, First, 77
Pennsylvanian, 57, 58, 61, 110, 159, 173, 203, 208, 319, 349, 353, 356, 401, 411, 500, 517, 561, 660, 682, 716, 822, 852
in Appalachian region, 101, 104
in Rocky Mountain states, character of oil, 161
in Wyoming, 160
observed densities for basal, 620
Pennsylvanian crudes, 237, 240
Pennsylvanian-Mississippian unconformity, 292
Pennsylvanian oil in Rocky Mountain states, gravity, 165
in Wyoming, gravity, 162, 163
Pennsylvania possible source formations, 294
Pennsylvania producing horizons, 453
Pennsylvania production in Rocky Mountain states, 162
Pennsylvania sands, 301
Pennsylvania sediments, basal, 620
Pennsylvania shales, 59, 294
Pennsylvania source beds, 61
Pennsylvania waters, 863
Pepperberg, Leon J., cited, 420, 421, 779
Permeabilities of oil and gas sands in wells in Pennsylvania, 476
Permeability, 807, 808, 828
definition of, 475
of sand, reduction in, 481
of sands, 461
of sands of Pennsylvania, 448
reduction of, 482
Permeability variations related to shore lines, 472
Permian, 43, 110, 173, 350, 353, 411, 413, 576, 822
in Wyoming, 160
West Texas-New Mexico, 322
Permian basin, 352, 577, 870
in northwester Texas, abnormally low temperatures in, 1008
of West Texas, 339
Permian “Big lime,” 351, 869
Permian limestone, 352, 577
Permian limestones and calcareous shales of Embar formation, probable source of oil in Tensleep sand, 161
Permian marine beds in Rocky Mountain states, 162
Permian oil in Rocky Mountain states, gravity and character, 104
in Utah, 165
Permian oil and gas in Rocky Mountain states, 164
Permian reservoirs, 59, 60
Permo-Triassic formations, 61
Perry, Eugene S., cited, 697, 991
Pershing field, 592, 595, 619
Pershing structure, 616
Persia, 646
Peru, Chicama valley, 89
Petit Anse, 636
Petrolia pool, 340
Petroleum accumulation, relations of, to structure, 429
Petroleum, bacterial origin of, 35, 43
current ideas regarding source beds for, 51
formation of, from organic substances, 44
in California, physical properties of, 177
migration and accumulation of, 247
organic origin of, 260
origin of, 32
principles of the evolution of, 179
processes effective in development of, 179
relation of micro-organisms to generation of, 35
source materials, 179
Petroleum genesis, relation to pressure phenomena, 236
sequence of events in, 239
Petroleum reservoirs associated with salt structures of Gulf Coast, 668
Petroleum tar, 206
Petroliferous provinces, 334
Petroliferous provinces and major structural features of California, 740
Pettit pool, 763
Pettus area, 443
Philosophical Society of Glasgow, 70
Phinney, A. J., cited, 17
Phosphates, 28
Physical characteristics of oil and water in contact, 282
Physical properties of petroleum in California, 177
Physical properties, variation in, 97
Phytoplankton, 28
Phytosterol, 452
Piceance Creek structure, 728
Pico anticline, 191
Pico Canyon field, 191, 756
Pico formation, 405
Piercement anticlines and domes, 646
Piercement salt-anticlines, 644
Pierre, 276
Pierre shale, 288
Pilot Butte field, 937
Pine Island district, 607
Pine Island field, 609
Pine Mountain dome, 163
Pirtle, George W., cited, 538, 542
Pitching anticles and domes, 646
Pore space, 51, 285
development of, 52
Pores, continuity of, 827
of oil sands, 827
of producing limestones, 827
Porges, Nandor, cited, 41
Porosity, 79, 280, 398, 420, 487, 532, 807, 808, 813
causes of, 250
differences of, 256
in limestones, 357, 386, 412, 519
in Permian "Big lime," 876
local, caused by solution, 553
of sandstones, 75
Plastic materials, defined, 613
Plata River, 57
Platt, Franklin, cited, 11, 71
Playa del Rey field, 405, 742, 753
water analyses, 979
waters in, 979
Pliocene, 149, 188, 197, 199, 202, 203, 205, 206, 211, 224, 227, 341, 404, 405, 406, 737, 750, 755, 756, 757, 791, 797, 804
in Buena Vista field, 201
in Coalinga field, 195
in Dominguez pool, 217
in Huntington Beach field, 221
In Inglewood field, 216
in Long Beach field, 218
In McKittrick field, 197
in Midway-Sunset field, 199
in Montebello field, 214
in Potrero field, 216
in Rincon field, 211
in Seal Beach field, 219
in Summerland field, 209
in Torrance field, 222
in Venice field, 223
in Whittier field, 214
Pliocene crude oils, 139
Pliocene lenticular sands, 225
Pliocene marine sands, 746
Pliocene strata productive in McKittrick field, 108
Pliocene unconformities, 794
in San Joaquin basin, 804
Plummer, F. B., and Sargent, E. C., cited, 276, 375, 999
Plunging anticline, 716
Pocono formation, 454, 457
Pohl, E. R., cited, 533, 547
Poison Spider field, 911
Polymerization, 143, 144, 452
Ponca field, 775
Pondera field, 601, 710
gravity of oil, 160
Pondera terrace, 703
Popoff, cited, 39
Porcupine dome, 715
Pore space, 51, 285
development of, 52
Pores, continuity of, 827
of oil sands, 827
of producing limestones, 827
Porges, Nandor, cited, 41
Porosity, 79, 280, 398, 420, 487, 532, 807, 808, 813
causes of, 250
differences of, 256
in limestones, 357, 386, 412, 519
in Permian "Big lime," 876
local, caused by solution, 553
of sandstones, 75
INDEX

permeability, compaction, 807
relation of producing territory to, 528
relation to oil migration, 249
reservoirs closed by change of, 444
variation of, 526
Porosity and structure in West Texas Permian basin, relation of water analyses to, 869
relationship of accumulation of oil to, in Lima-Indiana field, 521
Porosity decrease a factor inhibiting oil and gas production, 79
Porosity-depth curve, 620
Porosity variations, accumulation related to, 505
Porous bed overlain by an impervious one, essential to oil and gas accumulation, 254
Porous sandy limestone, 688
Port Barre, 637
Port Barre dome section, 675
Port Neches, 115
Portage formation, 457
Portland formation, 380, 381
Post-Eocene, 237
Potassium salts, 639
Poth, E. J., cited, 921
Potrero area, 750
Potrero del Llano well, 380
Potrero field, water analyses, 960
waters in, 969
Pottawatomie County, 438
Potter County, 460, 477, 478
Potter County, 454
Powder River basin, 680, 705, 929, 930
Powell, 144, 276, 320
Powell field, 423, 779, 1006
rise in temperature with approach to fault at, 999
Powell pool, 405, 404, 881
Powell-Mexia fault fields, 893
water analyses, 901
Powell-Mexia fields, 140
Powers, Sidney, v, 25, 383, 431, 618, 666, 775, 776, 812
Powers, S., Robinson, H. M., and Hopkins, O. B., cited, 779
Pratt, Wallace E., cited, 99, 145
hydrogenation and origin of oil, 235
Precipitation of organic colloidal material, 57
of salts from sea water, 874
of salts in reservoir sand, 462
Pre-Jurassic crude oils, 155
Pre-Jurassic Wyoming crude oil, 144
Pre-Mississippian rocks, distribution of, in Kansas and Oklahoma, 321
Pre-Pennsylvanian deformation in Appalachian region, 843
Present status of carbon-ratio theory, 69
Pressure, 43, 149, 150, 243, 244, 247, 268
effect on gravity of crude oil, 157
effect on replacement process, 289
effects of, 98
relation to generation of oil, 36
Pressure flood, 809
Pressures, 141, 245
Pressures, effect of, 270
in relation to occurrence of oil and gas, 81
increase of, with consolidation, 242
influence on hydrogenation, 241
Price, Paul, cited, 539
Primary alkalinity, 893
Primary porosity in limestone, 366
Pritchard dome, 703
Pritchard nose, 713
Processes in natural history of petroleum, 179
Producing fields, columnar sections of formations in Montana plains, showing oil and gas horizons in producing fields, 609
in Wyoming, Colorado, and New Mexico, characteristics of, 729
Producing horizons in Rocky Mountain district, 687, 726
in Rocky Mountain district, character of, 688
of Wyoming, Colorado, and New Mexico, 725
Producing sands of California, 739
Production found on flanks, 388
from Kevin-Sunburst field, 709
in Long Beach field, 749
of California fields, 759
of oil and gas, 1859-1910, chart, 14
on anticlinal structures, 388
relation to faulting, 527
Productive and non-productive structures, comparison between, 732
Productive areas comparable to drainage patterns, 553
Productive structures, types of, 571
Progressive growth, 301
of anticlines, 600
Prommel, H. W. C., and Crum, H. E., cited, 658
Propane, 147
Properties of reservoir rocks bearing on accumulation and discharge of oil, some physical and chemical, 825
Proration, 809
Proteins, 37, 39, 450
Proto-petroleum, 261
Prue, Calvin, and Cleveland waters, Oklahoma, analyses of, 805
Prue sand, 413, 440, 441
Pueblo, 275
Puente, 219

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest
Puente fault, 752
Puente field, 215, 742
Puente formation, 215
Puente organic shales, 216, 218, 222, 223
Puente sands, 213
Puente shales, 183, 214, 221

Puente fault, 752
Puente field, 215, 742
Puente formation, 215
Puente organic shales, 216, 218, 222, 223
Puente sands, 213
Puente shales, 183, 214, 221

Pumpkin Center field, 435
Punjab oil lands, 18
Puente organic shales, 216, 218, 222, 223
Puente sands, 213
Puente shales, 183, 214, 221

Quadrant formation, 159, 698

Radial faulting associated with salt domes, 646
Radial faulting associated with salt domes, 646
Radioactive elements, 451
Radioactivity, 997
Radler, Dollie, cited, 764, 766
Radisson, cited, 38, 261
Rae, C. C., cited, 43, 56
Ragland sand, 509
Rahm, Otto, cited, 40, 41
Rainbow Bend field, 323
Rainbow Bend pool, 775
Rainbow Bend sand, 774
Rancho La Brea deposits, 213
Rancidity, 40
Randall, Wendell P., and Hawley, J. E., cited, 449
Rangely dome, 343
Rangely oil field, 162
Rangely structure, 929
Ranger district, 59
Rate of flow, 809
Raton-Brindisi basin, 680
Rattlesnake, 601
Rattlesnake dome, 409
Rattlesnake field, 724
gravity of oil, 163
Rattlesnake structure, 933
Rawlins fault, 723
Raymond pool, 769
Recrystallization, 79, 519
Recrystallization, 79, 519
Recurrence deposition, 520
Recurrence fold, 313
Recurrence folding, 690, 770
Recurrence movement, 296, 307, 583
Recurrence structural growth, 305
Recurrence structural movement, 298, 306
Recurrence structure, 303
R-beds, 57
Red Coulee field, 167
Red Desert basin, 343
Red River arch, 627
Red River district, 612
Red Sea, 30
Redman, H. E., and Ruedemann, Paul, cited, 762, 763
Reduction in volume through compaction, 241

INDEX

Pumpkin Center field, 435
Punjab oil lands, 18
Puente organic shales, 216, 218, 222, 223
Puente sands, 213
Puente shales, 183, 214, 221

of sulphates by anaerobes, 918

of sulphates in deep subsurface waters, 836

Redwood, E. Boverton, cited, 436

Regional metamorphism, 151, 167
Regional sinking, 626
Regional strike, 257
Regional structure in Wyoming, Colorado, and New Mexico, 720
Regional subsidence, 627
Reiter Foster pool, 767
Relation of micro-organisms to generation of petroleum, 35

Relationship between unconformities and petroleum, 783
Relationship of accumulation of oil to structure and porosity in Lima-Indiana field, 521

Remote source, 834
Renault, B., cited, 43
Renick, B. Coleman, cited, 911
Replacement experiments, 287
summary, 290
Replacement of oil by water, 286, 288
Replacement theory, 260, 301
of accumulation, 306, 307
of oil and gas migration, 258, 259
Reservoir, definition, 434
Reservoir beds, size of openings in, 273
Reservoir pressure, 706
Reservoir pressures, 314
Reservoir rock, 18
movement of oil and gas from source
bed into, 461
proximity of source material to, 296
Reservoir rocks, limestone, in Mexican oil
fields, 377
relation of source beds to, 291
some physical and chemical properties
of, bearing on accumulation and dis­
charge of oil, 825
suitable, relation of oil and gas fields to
occurrence of, 453
Reservoir waters, 275
Reservoirs, classification of Eastern In­
terior, 563
classification of oil and gas, 433, 442
closed by change of porosity, 444
closed by local deformation of strata,
443
Residuum, 118, 122, 123, 129, 140
Rettger, R. E., and Collingwood, D. M.,
cited, 444
Rich, John L., cited, 243, 248, 256, 309,
310, 345, 371, 400, 410, 560, 679,
689
problems of origin, migration, and ac­
cumulation of oil, 337
Richfield field, 224, 752
water analyses, 983
waters in, 982
Richland field, 779, 780, 781
Richland Parish, 781
Richmond, 276
Rigid bodies, defined, 613
Rim synclines, 646, 657, 661
Rincon, 755
Rincon field, 211
Ringer, M., cited, 39
Ringling anticline, 702
Rio Blanco County, 728, 929
Ripley, 203
Ripley field, 435
Kitz oil field, 773
Koanoke, 115
Robb, and Taylor, cited, 9
Roberson field, 771, 776
Robertson, Glenn D., and Jensen, Joseph,
cited, 750
Robinson, Ernest Guy, and Bauer, C.
Max, cited, 607
Robinson, H. M., Powers, S., and
Hopkins, O. B., cited, 779
Robinson, W. L., cited, 538, 542
Robinson syncline, 492
Rock Creek field, 936
Rock pressures, 732
Rock River pool, 343
Rocky Mountain coals, 76
Rocky Mountain district, 340, 686
oil and gas fields in, 681
structural history and its relation to ac­
cumulation of oil and gas in, 679
Rocky Mountain fields, source beds in, 61
Rocky Mountain Front zone, 700
Rocky Mountain pools, 342
Rocky Mountain province, 97, 931
Rocky Mountain region, 88, 839
inapplicability of carbon ratios to, 76
principal folding of, 722
Rocky Mountain states, Mississippian
limestone in, 158
oil gravities in, 157
Rocky mountain system, 574
Rocky Mountains, 57, 611
carbon ratios in, 85
chemical characteristics of waters of
oil- and gas-bearing formations of,
938
oil- and gas-bearing horizons of, 932
waters of oil- and gas-bearing formations
of, 927
Rogers, G. S., cited, 142, 143, 145, 148,
155, 840, 855, 891, 910, 954
Rogers, Henry D., cited, 3, 4, 12, 13, 70,
71, 70, 77, 81, 310
Rogers, W. B., 2
Romanes, James, cited, 329
Romine, Thomas B., cited, 348, 692, 697
Rose Hill, carbon ratio variations, 90
Rosecrans field, 217
water analyses, 970
waters in, 969, 985
Roth, Robert, cited, 771, 776
Rough Creek “fault,” 502
Rough Creek uplift, 517
Rough Creek zone of faulting and folding,
518
Roumanian salt domes, 133
Round Mountain, water analysis, 964
Round Mountain field, 205, 743
waters in, 963
Roundy, P. V., Farnsworth, H. R., and
Woodring, J. R., cited, 747
Rouseville field, 473
Rubey, W. W., cited, 619, 622, 811, 812,
815, 816
Rubey, W. W., and Bass, N. W., cited,
812
Rubner, Max, cited, 40
Ruedemann, Paul, and Oles, L. M., cited,
778
Ruedemann, Paul, and Redmond, H. E.,
cited, 762, 763
Rundle limestone, 158, 348
Rusk County, 403
Russell, W. L., cited, 74, 75, 89, 448, 450,
597, 814
Russia, New Grosny field in, 912
INDEX

S

Sabine uplift, 276, 302, 332, 344, 403, 575, 579
fields on and near, 578
St. Clair, Stuart, oil and gas in Kentucky and Tennessee, 515
St. Clair County, Michigan, 8
St. Clair fault, 510
St. Landry Parish, 637, 675
St. Louis pool, 356, 411, 766
St. Mary's-Sistersville area, 490
St. Peter sandstone, 314, 506, 507, 511
Sale, J. W., and Skinner, W. W., cited, 266
Salinas, 392
Salinas shales, 183
Saline domes, 26
increase with depth, 142
variation of, in water, in relation to structure, 408
Salt, t., 247
from Hockley dome, fol. p. 642
origin of, 648
Salt and gypsum in eastern Utah, 683
in northwestern Colorado, 683
Salt-anhydrite contact, Hockley dome, fol. p. 642
Salt anticline and salt dome provinces of North America, 634
Salt cores, shapes of, 639
Salt Creek, 687, 688, 689, 929, 936, 945, 999
Salt Creek field, 275, 408, 720, 933, 934, 935, 936, 937, 941
Salt Creek field, history of discovery of oil, 719
Salt Creek field, Wyoming, temperatures of sands, 1002
Salt Creek structure, 839
Salt dome, faulted, 579
Salt-dome fields, 329
of Gulf Coast, 60
Salt-dome region, 431
Salt domes, geology of Gulf Coast, 629
Salt Flat, 328
Salt Flat field, 419
Salt Flat pool, 354
Salt flowage, inception of, 657
Salt intrusion, time of, 667
Salt Lake field, 213, 752
Salt Marsh Canyon, 193
Salt movement, 330
Salt sand field, 465
Salt sands, 292, 501, 506, 507, 511
Salt springs, 2
Salt structure cycle, 656
modifying factors, 657
Salt structure province of Texas-Louisiana-ana-Arkansas, 632
Salt structures, American, geological distribution of, 630
American, literature of, 630
analysis of, 636
association with a series of parallel anticlines, 657
mature American, 658
of Gulf Coast, petroleum reservoirs associated with, 668
of Gulf Coastal province, sections, 640, 641
old age American, 661
rejuvenation of, 667
youthful American, 658
"Salt up," 479
Salt Valley anticline, 645
Salt water, association of, with oil fields, 142
evaporated by gas, 470
Salt-water line in Lima-Indiana field, 527
Salt wells, 2
Sampling of coal, 83
San Andreas fault, 736, 787, 804
San Cayetano fault, 194
San Emigdio Mountains, 203
San Felipe, 304
San Felipe formation, 382, 385, 388, opp. 390, 396
San Felipe limestone, 378, 390
San Felipe sediments, 383
San Felipe shales, 386
San Joaquin Basin, 790, 804
San Joaquin Valley, 183, 203, 228, 229, 738, 740, 743, 787, 839, 891, 954,
California, importance of unconformities to oil production in, 785
history, 785
map of southern end of, 789
oil-well waters of, 910
productive formations of, 786
San Joaquin Valley fields, 194, 744
San Juan basin, 172, 680, 683, 684, 732
northwestern New Mexico, typical Cretaceous waters of, 950
San Juan structural basin, 409, 932, 933
San Luis Obiapo County, 206
San Luis Obispo Valley, 741
San Mateo County, 185
San Miguelito oil, 212
San Sebastian, 397
Sand lenses, 20, 601, 729
Sand lensing, 510
Sandoval field, 567
Sands, J. M., cited, 593, 775
Sandstones as source beds, 63
most common reservoirs, 10
Sandusky County, 527
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest on 23 July 2019
INDEX

Sandy shale, 688
Sanford, Samuel, cited, 894
Sangre de Cristo Range, 682, 683
Santa Ana Canyon (Yorba) field, 224
Santa Ana Mountains, 212, 214
Santa Barbara coast fields, 756
Santa Barbara County, 189, 207
Santa Barbara Mesa, 756
Santa Clara County, 185, 206, 207, 208, 209
Santa Clara Valley area, 190
Santa Clara Valley pools, 192
Santa Cruz Mountains, 185
Santa Fe Springs field, 226, 229, 312, 742, 752
water analyses, 981
winters in, 980, 985
Santa Fe Springs pool, 404
Santa Lucia Range, 741
Santa Margarita shale, 183
Santa Maria basin, 740, 741
Santa Maria district, 349, 738, 756
Santa Maria field, 207, 338, 744, 757, 758
Santa Monica Mountains, 185
Santa Paula Canyon, 193
Santa Paula field, 756
Santa Paula Ridge, 193
Santa Ynez Mountains, 741
Saponification of glycerides, 261
Saratoga dome, 661
Sargent, E. C., and Plummer, F. B., cited, 276, 315, 999
Sargent field, 206, 228
Sata, A., cited, 41
Saturation, essential to oil and gas accumulation, 254
in reservoir zones, 281
of crude oils, increase with age, 239
Scalez zone, 406
Scarb field, 192
Scary field, 405
Schistosity, 640
Schlumberger, C. and M., and Leonardon, E. G., cited, 956
Schlumberger method, for locating water, 956
Schlundt, H., and Moore, R. B., cited, 997
Schneider, G. W., cited, 782
Schneider, P. F., cited, 548
Schreiber, Karl, cited, 40
Schreiner, O., and Shorey, E. C., cited, 42
Segregation by gravity, 282
of oil and gas, lack of, 467
of oil and water, factors determining, 846
Sellards, E. H., cited, 340, 782
Sellards, E. H., Bybee, H. P., and Hemp-hill, H. A., cited, 352
Seliver, G., cited, 41
Sellars pool, 769
Selk, C. L., and Bose, Emil, cited, 378
Seminole district, 356, 587, 588, 764
Seminole field, 314
Seminole pool, 411, 766
Seminole uplift, 293
Seneca oil, 2
uses, 1
Serpentine, 578
Serpentine fields, 60, 240
Sespe Canyon, 193
Sespe field, 193, 756
Sespe formation, 189, 191, 754, 756
Sespe sands, 190, 191
Seyler, Felix Hoppe, cited, 38
Shackelford County, 605
Shale cover, 732
Shale Hills anticline, 188
Shale oil pools, 727
Shale probably most common source rock, 54
Shales as source beds of petroleum and natural gas, 51, 58, 63
1062
INDEX

Sea level, changes in, relation to source material, 513
Seacliff field, 742
Seal Beach field, 218
water analyses, 974
winters in, 973
Seal Beach pool, 750
Sealing beds overlying reservoir, 10
Seeley pool, 411, 766
Second Wall Creek sand, 838, 936
Secondary porosity in limestone, 367
Secondary salinity, 893
Sedgwick County, Kansas, 299
Sedimentary basin, 304
Sedimentary basins, relation of, to commercial deposits of petroleum, 260
Sediments, changes during burial of, 32
composition of organic content of, 31
of San Joaquin basin, 787
organic content of, 29, 30, 31
transportation of organic content of, 29
Seeley pool, 182, 183, 198, 206, 208, 214, 412, 755, 756, 785
Segregation by gravity, 282
of oil and gas, lack of, 467
of oil and water, factors determining, 846
Seliber, G., cited, 41
Sellars, H. L., cited, 340, 782
Sellards, E. H., Bybee, H. P., and Hemp-hill, H. A., cited, 352
Selover zone, 219
Seminole County, 438, 588, 589, 590
Seminole district, 356, 587, 588, 764
Sespe field, 314
Sespe pool, 411, 766
Sespe uplift, 293
Seneca oil, 2
uses, 1
Serpentine, 578
Serpentine fields, 60, 240
Sespe Canyon, 193
Sespe field, 193, 756
Sespe formation, 189, 191, 754, 756
Sespe sands, 190, 191
Seyler, Felix Hoppe, cited, 38
Shackelford County, 605
Shale cover, 732
Shale Hills anticline, 188
Shale oil pools, 727
Shale probably most common source rock, 54
Shales as source beds of petroleum and natural gas, 51, 58, 63
Shales, sandstones, and limestones, compaction of, 814

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest on 23 July 2019
INDEX

Shallow water analyses, 896
Shallow water anomaly, Barbers Hill, Chambers County, Texas, 894
DeWalt, Ft. Bend County, Texas, 898
Stratton ridge, Brazoria County, Texas, 896
Shallow-water conditions associated with salt domes, Barbers Hill, Chambers County, Texas, 895
Shaly sand, 688
Singham field, 473
Shamburg field, 473
Shamrock dome, 585
Shannon sandstone, 171, 172
Shaw, E. Wesley, cited, 410, 813
Shearing of rocks, 449
Shearing pressures, 449
Sheffield horizon, 478
Sherrill, R. E., and Nevin, C. M., cited, 372, 373, 413, 414
Smith County, 403, 673
Smith-Ellis field, 402, 600, 602
Smith-Ellis pool, 340
Smith, N. A. C., and Lane, E. C., cited, 109, 120, 143
Smith, N. A. C., Cooke, M. B., Baver, A. D., cited, 109
Smith, R. H., Ackers, A. L., and DeChicchis, R., cited, 372, 373, 413, 414
Smithwick, 59
Snider, L. C., cited, 26
Snow, D. R., cited, 401
Snow, D. R., and Dean, David, cited, 775
Soap Creek field, 702, 716
Soda ash, 316
Soda lakes of West Siberia, 915
Söhngen, N. L., cited, 40, 41, 263, 266, 919
Soil micro-organisms, 265
Soils, hydrocarbons in, 35
Solitario uplift, 572
Solomon Hills, 758
Solute concentration of subsurface waters, 923
Solution effected by circulating meteoric waters, 519
Solution in bioherms, 359
of gas in oil, 181
of limestone, 412
Soup bowl basin, 362
Source, disseminated, 310
indigenous, 519
local, 204, 206, 468
of carbon and energy, 268
of energy, 263, 266, 392
of Jurassic sediments, 165
Source of oil in Belridge field, 197
in Elk Hills field, 202
in Kern River field, 204
in Lost Hills field, 197
in McKittrick field, 199
in Mexico, 390
in Oklahoma City field, 412
local, 372, 459, 460
of Granite Ridge pools, 295
widespread, 304
Source of oil and gas, 519
Index

Source of oxygen, 266
Source of petroleum in reservoirs, 676
Source bed, relationship of reservoir to, 204
Source beds, 6, 28, 247, 271, 295, 307, 332, 402, 404, 529, 567
character of, 471
containing animal organisms, 182
containing plant remains, 182
for petroleum, current ideas regarding, 51
generally fossiliferous, 62
hypotheses concerning, 271
in oil fields of United States, 58
of Gulf Coast crude oil, 136
of Kreyenhagen formation, 194
of oil, 717
relation of oil and gas fields to the occurrence of, 458
relation to reservoir rocks, 291
Source formations of crude oil in Gulf Coast, 136
Source material, 99, 110, 161, 398
affected by changes in sea level, 513
of petroleum, 148
proximity of, to reservoir rock, 296
Source materials, 182, 484
favorable for generation of natural gas, 460
Source rocks, 25, 26, 134, 338, 368, 426, 565, 727
Sources of oil, 182, 292, 311, 396, 440, 451, 567
South arch, 702
South Dakota, 275, 276
South Fairport pool, 776, 777
South Liberty-Dayton, 123, 124, 144
South Moline pool, 203
South Mountain field, 190, 742, 755
South Ponca, 203, 821
Southeastern Illinois oil field, 559, 560, 564
statistics, 565
Southern fields, 377, 398
of Mexico, 393
of Montana, 716
Southern Ute structure, 933
Speckley horizon, 478
sand, 476
Spellacy anticline, 200
Sphalerite, 656
Spindletop, 111, 112, 115, 118, 121, 126, 128, 132, 144, 145, 146, 147, 148, 151, 153, 166
analyses, 116
variation of A.P.I. gravity with depth, 114, 119
Spindletop crude oil, analysis, 152
Spindletop crude oils, 153
Spindletop dome, 670
Spindletop Miocene crude oil, variation with depth, 113
Spooner, W. C., cited, 300, 417, 666
Spring Valley field, 169, 691
Squaw sand, 460, 494, 501, 506
Squeezing of sediments, relation to accumulation, 305
Stabler, Herman, cited, 869, 935, 941
Stadnikoff, G., cited, 43, 44
Stainer, X., cited, 998
Stamey, R. A., Judson, Sidney A., and Murphy, P. C., 663
Stappenbeck, Richard, cited, 89
Starch, 37
Starks, 115
Static pressure, 809
Stauffer, Clinton R., cited, 366
Stebinger, Eugene, cited, 697
Steele formation, 171
Steele shale, 172
Stephens County, 604
Stephenson, C. D., cited, 774
Stephenson, Lloyd W., cited, 331, 382, 665, 666, 779
Stephenson, Lloyd W., Adams, George I., Butts, Charles, and Cooke, Wythe, cited, 666
Stephenson, Lloyd W., Logan, William N., and Waring, Gerald A., cited, 666
Stevenson, J. J., cited, 12
Stevenson, Marj., cited, 39, 41
Storm, L. W., cited, 659
Storm, Willis, 602
cited, 73, 600
Störmer, K., cited, 41
Stone, R. W., cited, 18
Stony Creek field, carbon ratio variations, 90
Stout, Wilber, and Carman, J. Ernest, cited, 430
relationship of accumulation of oil to structure and porosity in Lima-Indiana field, 521
Stratigraphic column in East Texas, 421
Stratigraphic intervals, shortened, 296
Stratigraphic occurrence of oil and gas in Rocky Mountain region, 726
Stratigraphic position, influence on oil-bearing reservoir, 291
Stratigraphic relations of oil and gas produced from sands at base of Pennsylvanian, 774
Stratigraphy, 665
of Appalachian region, 842
of California, 737
Stratton ridge, Brazoria County, Texas, shallow-water anomaly at, 896
Strawn formation, 402
Stress, defined, 613
Strong, M. W., cited, 997
Stroud field, 764
Stroud pool, 411
Structural axes in Pennsylvania, 464
Structural basins of Wyoming, 927
Structural contour map, regional subsurface, of southern peninsula of Michigan, 543
Structural development in Mid-Continent areas associated with deposits of petroleum, interpretation of local, 581
Structural elements of Montana plains, 701
Structural features in Mid-Continent oil fields, origin of local, 581
major, in Montana, 700
Structural genesis, 610
classified methods of, 611
Structural geology, 665
Structural history of Rocky Mountain district, 680
Structural influence on accumulation of petroleum in California, 735
Structural pinching on salt structures, 674
Structural relief, amount of, resulting from differential compaction, 819
of oil-producing part of structure, 527
of pool, 426
Structural terraces, accumulation of oil on, 400
Structural theory, 20, 253
early advocates of, 13
for oil and gas migration and accumulation, 287
for oil and gas migration and accumulation, present interpretations of, 253
of accumulation of oil and gas, historical development of, 1
Structural traps, 256
Structure, compaction and its effect on local, 811
of California, 735
of California fields, 759
of top of Trenton limestone in Lima-Indiana field, 522
of Typical American Oil Fields, 52, 57, 110, 337, 383, 400, 423, 438, 443, 445, 523, 582
regional, of Michigan basin, 533
relation of oil pools to, 255
relation of producing territory to, 526
relation of regional, to oil and gas accumulation in Appalachian region, 843
relations of petroleum accumulation to, 429
Structure and accumulation in Michigan "basin" and its relation to Cincinnati arch, 531
Structure and porosity in West Texas Permian basin, relation of water analyses to, 860
relationship of accumulation of oil to, in Lima-Indiana field, 521
Structure contour map, first published, 19
of Montana plains, 696
of oil field, first, 18
Structure map of Ordovician producing horizon of pools in Butler and Marion counties, Kansas, 378
Structures, types of productive, 571
wide variations in California oil fields, 228
Stuart, Murray, cited, 74
Subsurface temperature gradients, 908
water characteristics in Oklahoma and Kansas, 855
waters, deep, sulphate reduction in, 907
solute concentration of, 923
Subsidence, 625
Sulphate reduction by bacteria, 913
in deep subsurface waters, 907
inanimate organic theory of, 912
Sulphate-reducing bacteria, 876, 878
Sulphate-reducing organisms, 917
Sulphates, 143
reduction of, 875
reduction of, by anaerobes, 918
reduction of, during anaerobiosis, 267
reduction of, in deep subsurface waters, 836
Sulphides of iron, genesis, 909
Sulphur, 37, 103, 123, 129, 142, 148, 152, 222, 223, 241, 301, 643
effect on character of crude oil, 143
in Fruitvale field, 205
variation of, 131
Sulphur compounds, 239
Sulphur content, 118
in sediments, 35
Sulphur dome section, 662
Sulphur Mountain fault, 190
effects in Sulphur Mountain fields, 192
Sulphur Mountain fault belt, effect on gravity of oil, 193
Sulphur Mountain fault fields, 192
Sulphur water, 373
action of, 108
Suman, John R., cited, 669
Summerbell, R. K., and Behre, Jr., C. H., cited, 837
Summerland field, 209, 228, 742, 756
Sunburst sand, 705, 932
Sunburst zone, 711
Sunbury shales, 460
Sundance, 932
Sundance formation, 688
in Wyoming, 165
Sundance sand, 408, 409, 838, 930, 935
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sundance waters of Wyoming, typical</td>
<td>941, 943</td>
</tr>
<tr>
<td>Sunset field</td>
<td>703</td>
</tr>
<tr>
<td>Sunset-Midway oil field, oil-well waters of</td>
<td>910</td>
</tr>
<tr>
<td>Surface effects</td>
<td>830</td>
</tr>
<tr>
<td>Surface tension</td>
<td>279, 283, 284 of fluids, 278</td>
</tr>
<tr>
<td>Super-cap-rock reservoirs</td>
<td>669</td>
</tr>
<tr>
<td>Swastika sand</td>
<td>402</td>
</tr>
<tr>
<td>Sweetgrass arch, 61, 692, 698, 700, 702, 703</td>
<td></td>
</tr>
<tr>
<td>Sweetgrass arch fields, 705</td>
<td></td>
</tr>
<tr>
<td>Sweet Lake, 115</td>
<td></td>
</tr>
<tr>
<td>Sweetwater-Ferris Mountain uplift, 343</td>
<td></td>
</tr>
<tr>
<td>Sylvan shale</td>
<td>393</td>
</tr>
<tr>
<td>Synclinal areas, oil accumulation related to</td>
<td>392</td>
</tr>
<tr>
<td>Synclinal occurrence of oil, 468</td>
<td></td>
</tr>
<tr>
<td>Synclinal oil and gas accumulations, 470</td>
<td></td>
</tr>
<tr>
<td>Synclinal production, 552</td>
<td></td>
</tr>
<tr>
<td>Synclines, 206, 478 accumulation in, 18</td>
<td></td>
</tr>
<tr>
<td>circulation of water in, 278</td>
<td></td>
</tr>
<tr>
<td>Table Mesa dome, 409</td>
<td></td>
</tr>
<tr>
<td>Table Mesa structure, 933</td>
<td></td>
</tr>
<tr>
<td>Taff, Joseph A., 98, 145, 756</td>
<td></td>
</tr>
<tr>
<td>physical properties of petroleum in California</td>
<td>177</td>
</tr>
<tr>
<td>Taff, J. A., and Reed, W. J., cited, 778</td>
<td></td>
</tr>
<tr>
<td>Talequal axis, 627</td>
<td></td>
</tr>
<tr>
<td>Tamasopo limestone, 377, 378, 394</td>
<td></td>
</tr>
<tr>
<td>Tamaulipas, 75</td>
<td></td>
</tr>
<tr>
<td>Tamaulipas facies, 391</td>
<td></td>
</tr>
<tr>
<td>Tamaulipas formation, 383, 386</td>
<td></td>
</tr>
<tr>
<td>Tamaulipas limestone, 375, 379, 382, 390, 397</td>
<td></td>
</tr>
<tr>
<td>Tampico Embayment, 378</td>
<td></td>
</tr>
<tr>
<td>Tampico oil, source of, 391</td>
<td></td>
</tr>
<tr>
<td>Tangential faulting associated with salt domes</td>
<td>646</td>
</tr>
<tr>
<td>Taniul phase, 393</td>
<td></td>
</tr>
<tr>
<td>Tanner, F. W., cited, 41</td>
<td></td>
</tr>
<tr>
<td>Tapo Canyon field, 191</td>
<td></td>
</tr>
<tr>
<td>Tar, 182, 214</td>
<td></td>
</tr>
<tr>
<td>in McKittrick field, 198</td>
<td></td>
</tr>
<tr>
<td>Tar-base oil, 196, 248</td>
<td></td>
</tr>
<tr>
<td>Tar Creek-Four Forks area, 193</td>
<td></td>
</tr>
<tr>
<td>Tar sands, 207, 746</td>
<td></td>
</tr>
<tr>
<td>Tar zone, 221</td>
<td></td>
</tr>
<tr>
<td>in Huntington Beach field, 220</td>
<td></td>
</tr>
<tr>
<td>Tarr, R. S., cited, 74</td>
<td></td>
</tr>
<tr>
<td>Taussin, V. O., cited, 41, 265, 266</td>
<td></td>
</tr>
<tr>
<td>Tausz, J., cited, 263, 266</td>
<td></td>
</tr>
<tr>
<td>Tausz, J., and Donath, P., cited, 264, 265, 266</td>
<td></td>
</tr>
<tr>
<td>Tausz, J., and Peter, M., cited, 41</td>
<td></td>
</tr>
<tr>
<td>Taylor, Charles H., and McCoy, Alex. W., cited, 618</td>
<td></td>
</tr>
<tr>
<td>Taylor, F. W., cited, 636</td>
<td></td>
</tr>
<tr>
<td>Taylor, M., cited, 631</td>
<td></td>
</tr>
<tr>
<td>Taylor, McKenzie, cited, 39, 374</td>
<td></td>
</tr>
<tr>
<td>Taylor and Robb, cited, 9</td>
<td></td>
</tr>
<tr>
<td>Teapot dome, 839</td>
<td></td>
</tr>
<tr>
<td>Teas, L. P., cited, 619, 637, 812</td>
<td></td>
</tr>
<tr>
<td>Tectonic movements, time of, 698</td>
<td></td>
</tr>
<tr>
<td>Tecter trend, 323</td>
<td></td>
</tr>
<tr>
<td>Tehuacana fault zone, 420</td>
<td></td>
</tr>
<tr>
<td>Tejon, 188</td>
<td></td>
</tr>
<tr>
<td>Temblor, 739</td>
<td></td>
</tr>
<tr>
<td>Temblor formation, 188, 407, 790, 796</td>
<td></td>
</tr>
<tr>
<td>Temblor reservoir sands, 186, 188, 828</td>
<td></td>
</tr>
<tr>
<td>Temblor sands, 186, 188, 828</td>
<td></td>
</tr>
<tr>
<td>Temblor shales, 205, 206</td>
<td></td>
</tr>
<tr>
<td>Temesca! field, 756</td>
<td></td>
</tr>
<tr>
<td>Temperature, 43, 146, 147, 149, 150, 181, 228, 243, 244, 283</td>
<td></td>
</tr>
<tr>
<td>effect on origin of oil, 235</td>
<td></td>
</tr>
<tr>
<td>effect on replacement process, 289</td>
<td></td>
</tr>
<tr>
<td>effects of, 98</td>
<td></td>
</tr>
<tr>
<td>for production of hydrocarbons, 26</td>
<td></td>
</tr>
<tr>
<td>high, characteristic of young sediments, 244</td>
<td></td>
</tr>
<tr>
<td>in First Wall Creek sand, relation of, to depth in Salt Creek wells, 1001 increase with depth, uplifting, folding, and faulting, 98 of sands, Salt Creek, Wyoming, 1000 of water in reservoir beds, 278, 279 regional variation of, between Wewoka and Oklahoma City, Oklahoma, 985 relations of, to geologic structure, 989 rising, effect on cracking, 242 Temperature gradients, 146, 989 causes of variations of, 996 subsurface, 987 table of, 1005, 1009 Temperature tolerance of bacteria, 922 Temperature variations, causes of, 1004 relation to water movements, 278 Temperatures, 245, 278 effect on bacterial activity, 262 for hydrogenation, 241 in oil fields, 270 in relation to occurrence of oil and gas, 81 in shallow young rocks, 242 of oil deposits, 269 theory of variations due to circulation of ground water, 278</td>
<td></td>
</tr>
</tbody>
</table>
variation of, over salt domes, 996
Tennessee, 101, 103, 518, 519
Baumé gravity of crude oil in, 106
Tennessee and Kentucky, oil and gas in, 515
Tennessee Embayment area, 518
Tennessee oil and gas fields, 516
Tennessee Valley, 518
Tensleep formation, 519
Tensleep sand, 828, 832, 929, 935
gravity, 163
in Rocky Mountain states, 161
Permian limestones and calcareous shales of Embark formation, probable source of oil in, 161
surface action, 830
Tensleep sandstone, 349, 687
in Rocky Mountain states, 161
Tensleep waters of Wyoming, 941, 942
Terrace, 209
Terrace, “arrested dip,” 17
Terrace, definition, 434
Terrace accumulation, 17, 436
Terrace accumulations, absence of, 437
Terrace production, 435
Terraces, accumulation of oil and gas related to, 326
domes or anticlines, poor alignment of local, 612
Terracing, 496
Terroine, E. F., cited, 42
Tertiary, 175, 302, 737
in California, 178
Tertiary oil and gas in Rocky Mountain states, 171
Tertiary oils with heavy naphthene base, 138
Tertiary unconformities, 782
Terzaghi, Charles, 813, 814, 818
fault-zone fields of east-central and south-central, 577
northeast, 331
oil fields of Woodbine sand, 329
Paleozoic, 110
source beds in, 59
Texas Gulf Coast, map showing types of normal ground waters, 802
Texas-Louisiana-Arkansas, 110
Texas Panhandle, 574
Texas Panhandle producing district, 778
Texas Permian basin, 338
Texas profiles, 600
Texon zone, 413, 415
Texture of reservoir strata, 181
Thayer, L. A., cited, 39
Thayer, Lewis, cited, 450, 451, 452
Thermopolis, geothermal variations at, 992
Thermopolis shales, 344
Thickening of Devonian shales, 496
Thiel, George A., cited, 915
Thinning in Woodbine, Eagle Ford and Austin formations, 302
Thinning of beds, 363
against salt-cap-rock, 646
on crest of structure, 582, 617
on crests of anticlines, 616, 625
on structure, 416
on structure in Eldorado-Elbing-Burns district, 598
over fold, 583
Third sand field, 465
Third Venango sand, 846
Thirty-Five anticline, 200
Thirty-Foot sand, 490
Thom, Jr., W. T., cited, 76, 99, 339, 430, 1003
present status of carbon-ratio theory, 69
Thom, Jr., W. T., and Dobbin, C. E., cited, 697
Thomas, C. R., cited, 317, 319, 320, 369, 770
Thomas, W. A., cited, 550, 551
Thomas, W. A., and Fitzgerald, P. E., cited, 553
Thomas field, 592, 594, 623
Thomas pool, 770
Thomas profile, 624
Thompson, 115
Thompson, A. B., cited, 74, 435
Thompson, A. B., and Daly, Marcel, cited, 44
Thompson, W. C., and Bailey, J. R., cited, 921
Thornburg dome, 343
Thornton, H., cited, 41
Threefork shale, 698
Thrust faults, 572
relation of isocarbs to, 89
Thrust plane, 747
Thwaites, F. T., cited, 540
Tiger Flats field, 435
Timber Canyon field, 193, 756
Time, 43, 141
effect on accumulation, 301
effect on character of crude oil, 111, 141
effect on metamorphism, 25
effect on migration, 426
effects of, 98, 302
of accumulation of oil and gas, 247, 484, 689
of generation of oil, 680
relation to generation of oil, 36, 269
 relation to oil migration, 431
Tioga County, 460, 484
Tiona horizon, 478
Titusville, 2
Tocito, 410
Tocito dome, 409
Tocito sand, 933
Tocito structure, 691
Tolman, C. F., and Becking, L. B., cited, 450
Tomlinson, C. W., cited, 309, 431, 776
relation of oil and gas accumulation to geologic structure in Mid-Continent region, 571
Tonkawa, 821
directional variations at, 991
Tonkawa field, 270, 770
Tonkawa pool, 294
Tonkawa sand, Oklahoma, analyses of water from, 866
Topatopa anticline, 194
Topola, 385
Topola field, 384
Topographic expression of salt structures, 647
Topographic relief map of California, fol. p. 735
Torrance, geothermal variations at, 991
Torrance field, 222, 753
water analyses, 978
waters in, 977
Torrey, Paul D., cited, 67, 430, 841, 851
composition of oil-field waters of Appalachian region, 841
origin, migration, and accumulation of petroleum and natural gas in Pennsylvanian, 447
Torrey, Paul D., Newby, Jerry B., Fettke, Charles R., and Panity, L. S., cited, 316, 844
Torrey Canyon field, 191, 755
torsional stress, 614
Tow Creek field, 171
Tow Creek structure, 946
Trager, E. A., cited, 386, 392, 393, 397
Transformation of oil, factors effecting, 141
Transportation of organic content of sediments, 20
Trap, controlling, in California fields, 759
Trask, Parker, D., cited, 26, 32, 262, 271, 272, 201, 309, 311, 312, 313, 322, 361, 374, 461, 462, 566, 567, 819
deposition of organic matter in recent sediments, 27
Trask, Parker D., and Wu, C. C., cited, 42, 338, 374, 451
Trask, Parker D., Hammar, Harald E., and Wu, C. C., cited, 450
Traverse formation, erratic oil production in, 553
Traverse horizon, 552
Trenton, 103
Trenton fields, 17
Trenton limestone, 18, 59, 103, 106, 494, 506, 519, 525
in Lima-Indiana field, structure of top of, 522
Trenton reservoirs, 373
Triassic, 159
Triassic-Jurassic, 144
Tri-County oil field, 562
Trinidad asphalt, 832
Trinity formation, 419, 421
Trowbridge, A. C., cited, 666
Truncated type of field, 295
Truncation, 295, 298, 783
on crest of folds, 294
Tunitas Valley, 185
Turkey Mountain pool, 763
Turkey Mountain sand, 762
Turner Valley, 161, 347, 360
Turner Valley district, 702
Turner Valley field, 368
glacity of oil, 169
Twenhofel, W. H., cited, 362, 431, 761
Two Buttes structure, 721
Type structures carrying oil pools in California, 228
Tzochomskayaya, V., and Gubin, V., cited, 915
Udden, J. A., Baker, C. L., and Böse, Emil, cited, 666
Uinta basin, 680, 683
Uncompahgre uplift, 682
Unconformities, 133, 205, 367, 431, 510, 512, 612, 668, 691, 786
accumulations of oil at, 339
affecting accumulation of oil, classes, 793
affecting structural features of Michigan synclinal basin, 549
associated with reservoirs on salt structures, 674
fields associated with major, 319
importance of oil pool production in San Joaquin Valley, California, 785
in Cretaceous, 778
in Michigan basin, effects of, 551
in Mid-Continent region, relation of oil and gas pools to, 761
in Montana, 697
in Ordovician, 762
INDEX

in Ordovician of Oklahoma, 763
in San Joaquin basin, 792
oil fields in limestones or dolomites associated with, 317
related to limestones, 513
relation of gas production to, 781
relation of oil and gas to, 768
relation to accumulation, 520
Tertiary, 782

Unconformity, 172, 223, 393, 402, 411, 567, 592, 597, 692
defined, 761
at base of Mississippian, 765
at base of Pennsylvanian, 767, 769
at Turner Valley, 161
in Belridge field, 197
in Big Lake field, 353
relation to oil accumulation, 294, 295, 383

Underground circulation, 281, 837, 839
Underground waters, role of, in oil accumulation, 257

Unger, T., cited, 41
Union County, 666
Unit operation, 809
United States, carbon-ratio maps of, 85
source beds in oil fields of, 58

Valley Center field, 298, 299, 599
Valley Center pool, 293
Van, 302, 330
Van Couvering, Martin, cited, 404
van Delden, A., cited, 914, 923
Van field, 301, 302, 415, 786, 903
Van Orstrand, C. E., cited, 987, 991, 994, 1005
temperature gradients, 989
Van pool, 295, 404, 579
Van structure, 302
van Suchtelen, F. H. H., cited, 37
Van Tuyl, F. M., and Beckstrom, R. C., cited, 257, 258, 462, 679
Van Zandt County, 415, 641, fol. p. 642, 651, 652, 996
Vanadium, 451
Vanadium oxides, 241
Vanalta sand, 711
Vaqueros formation, 185, 194, 739, 756
Vaqueros sands, 189, 207
Vaqueros sediments, 790
Variation in depth in particular oil fields, 123
in physical properties, 97
of A.P.I. gravity with depth, 124
of A.P.I. gravity with depth at Spindletop, 119
of A.P.I. gravity with depth in Gulf Coast Miocene crude oils, 115
of A.P.I. gravity, sulphur, wax, and gasoline content with depth, 110
of base of crudes, 120
of Baumé gravity of crude oil with age in Pennsylvania, Ohio, West Virginia, and Tennessee, 104
of character of crude oil with depth, 112
of character of Gulf Coast crude oil with age and with depth, 125
of character of Gulf Coast crude oil with depth, 112
of crude oil with age, 126
of Eocene Gulf Coast crude oil with depth, 120, 122
of Oligocene Gulf Coast crude oil with depth, 120, 121
of sulphur, 131
of temperature, regional, 147
shift of "normal," 146
Veatch, A. C., cited, 665
Veatch, A. C., and Harris, Gilbert D., cited, 665
Vedder zone, 205
Vegetable matter, gravity of oil from, 107
Velasco, 397
Velasco formation, 392
Velocity of movement, 277

United States Bureau of Mines, 84, 85, 109, 111, 112, 115, 119, 121, 134, 139, 154
United States Bureau of Mines analyses, 149, 151
United States Geological Survey, 17, 19, 71, 110
Unloading, effect of, 818
Uplift, 147
progressive relative, 296
relative, 627
vertical, 627
Uplifting, 181, 228
Upper Cretaceous oil and gas in Rocky Mountain states, 171
Upshur County, 301, 332, 403
Urania, Louisiana, oil field, 782
Uruguay River, 57
Use of petroleum, 2
Permian oil, 165
Utah-Colorado province, 634
Utah-Colorado salt-structure province, 635
Utica, 59
Utica shale, source of oil and gas, 528
Uwatoko, Kunio, cited, 370, 449
of water movement in Dakota-Woodbine deposits, 277
Venango County, 472, 473
Venango sand, percentage of oil and water in, 285
Venango sand fields, 473
Venango sands, 400, 472, 474, 845
Venezuela, 110
Venice field, 222, 405, 742
Ventura anticline, 212
Ventura antclinal dome, 209
Ventura Avenue, 145
Ventura Avenue field, 209, 338, 405, 742, 755, 966
water, analyses, 967
waters in, 965, 985
Ventura Avenue pool, 340
Ventura County, California, 190, 191, 192, 103, 209, 211, 405, 739
Ventura County fields, 191, 755
Ventura County-Santa Barbara coast area, 738, 753, 754
Ventura field, 230
Ventura pool, oil zones in, 210
Veracruz, 634
Vernon, Jess, cited, 356
Vernon pool, 550
Versluys, Jan, cited, 358

W
Wabash arch, 537
Wagner, Paul, cited, 110
Wagner, R., cited, 41, 263
Wahlstrom, Edwin A., and DeFord, Ronald K., cited, 350, 413, 415
Waksman, S. A., cited, 37, 38, 42, 43
Waksman, S. A., and Stevens, K. R., cited, 43
Wall Creek sand, 408, 728
Walling, Rolla W., cited, 404
Wapanucka formation, 439
Warfield, 485
Warfield gas field, 518
Waring, Gerald A., Stephenson, L. W., and Logan, William N., cited, 666
Warner, A. J., cited, 12
Warren County, Pennsylvania, 461, 472, 476
Warren Third sand, 103
Wartburg basin, 515, 518
Wasatch beds, 171
Wasatch formation, 334
Wasatch Mountains, 683
Wasatch sandstones, 172
Washburne, Chester W., cited, 57, 143, 155, 239, 243, 835, 1003
Washburne, Chester W., and Lahee, F. H., oil-field waters, foreword, 833
Washington, carbon ratios in, 88
Washington County, Ohio, 4
Oklahoma, 292
Pennsylvania, 465, 469, 471
Texas, 648, 649, 654
Washta shale, 379
Wasson, Theron, cited, 331
Watchhorn, 293
Water, 725
absence of, in reservoir sands, 469
action of circulating, in modifying gravity, 172
action of sulphur, 198
an important agent in concentration of oil and gas, 677
circulation of, a cause of oil and gas migration, 258
circulation of, in sedimentary formations, 272
encroachment of, 936
escape of, 371
from Berea sand, analyses of, 846
from Clarendon and Bradford sands, analyses of, 849
from oil sands of Pennsylvanian age, analyses of, 849
INDEX

from 2nd Venango or Hundred-Foot sand, analyses of, 848
from 3rd Venango or Gordon sand, analyses of, 848
functions of circulating, 259
in Madison limestone, 160
influence on migration of oil, 7
rate of encroachment of, 937
rate of movement of, 256
removal of, 280
transfer of heat by migration of, 999

Water analyses, 423
at Barbers Hill salt dome, Chambers County, Texas, 895
at Darst Creek, Guadalupe County, Texas, 904
correlation within oil fields by means of, 900
interpretation of, 855
Powell-Mexia fault fields, 901
practical application of, to oil-field development, 897
relation of, to structure and porosity in West Texas Permian basin, 869
West Texas Permian basin, 879, 880, 883
Water circulation, 280, 282, 343, 731, 833
in relation to accumulation, 729, 730
Water displacement by oil and gas, 8
Water drive, 833, 834, 837, 935, 936
in Rocky Mountain fields, 839
Water encroachment, 466, 473, 481
Water flooding, 481
Water-free sands, 101
Water level, changes in, 18
Water migration, 904
Water samples, collecting, 842
Water-soluble proteins, 31
Water sources, 955
Water witch, 972
Waters, J. A., Heath, F. E., and Ferguson, W. B., cited, 648, 649, 654
Waters associated with petroleum in Appalachian region, occurrence of, 844
California oil-field, 953
chlorine content of, and geology at Hull field, 900
in Gulf Coast region, classification of normal shallow, 893
in oil-bearing formations of Rocky Mountain province, 837
in Oklahoma, analyses of Hunton and "Wilcox," 860
occurring in Pliocene and Miocene formations of California, 985
of Gulf Coast region of Texas and Louisiana, 836
of Madison formation, 950
of oil and gas-bearing formations of Rocky Mountains, 927
of oil and gas-bearing formations of Rocky Mountains, chemical characteristics of, 938
of Oklahoma and Kansas, 835
of Ordovician in Kansas and Oklahoma, 856
Wax, 182
Waxes, 261, 452
Waxy esters, 261
Weathered coal samples, 83
Weaver, Donald K., cited, 404
Weaver, Paul, and Belt, B. C., cited, 396, 397
Weir sand, 400, 404, 495, 506
Weirich, T. E., 585, 586, 587, 770, 772
West Allen pool, 411
West Columbia, 347, 418
West Columbia dome section, 675
West Columbia pool, 340
West Coyote field, 752
West Coyote Hills field, 225
West Hackberry dome, 659, 661
West Side field, 195
West-Side fields in California, 745
West Texas, 351, 352, 369, 372, 577
West Texas Permian basin, 373, 835
relation of water analyses to structure and porosity in, 869
southeast part, structural features, 871
southeast part of, total concentration of analyses, 870
water analyses, 879, 880, 883
West Texas Permian basin fields, 413
West Texas-New Mexico Permian, 322
West Virginia, 7, 9, 12, 13, 15, 72, 73, 106, 338, 340, 465, 485, 497, 498, 499, 510
Baumé gravity of crude oil in, 103
Doddridge and Harrison counties, 493
geologic column, 488, 489
oil and gas fields of, 491
productive anticlines, 10
eastern Ohio, and eastern Kentucky, occurrence of oil and gas in, 485
Western Coal basin, 515, 517

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3840891/9781629812564_backmatter.pdf by guest
INDEX

Western Highland Rim, 515
Weston County, 729
Wetumka pool, 411
Wewoka pool, 411, 766
Wheeling Canyon, 193
Wheeling pool, 776
Wheeling Ridge anticline, 740
Wheeling Ridge field, 202, 229, 748
Whirlpool formation, 457
White, David, cited, 25, 44, 70, 71, 73, 77, 81, 89, 704
White, I. C, cited, n, 12, 14, 20, 254, 3
White, Luther H., cited, 762, 765, 767
Whitehorse, 351
White lime, 350, 414, 415
Whitlash dome, 703
Whitlash field, 712
Whittier fault, 215, 748
Whittier fault fields, 751
Whittier fault zone, 214
Whittier field, 214, 229
waters in, 984
Wichita Falls district, 59, 577
Wichita Mountains, 574, 611
Wietze sand, 828
Wilbarger County, 600, 603
Wilcox formation, 302
Wilcox pool, 708
"Wilcox" sand, 203, 294, 298, 314, 411, 412, 438, 764, 856
"Wilcox" sand pools, 764
"Wilcox" water on north slope of Arbuckle Mountains, 858
Wilde, H. D., cited, 240
Wiley Canyon field, 192, 756
Willis, Bailey, 534, 736, 752
Willis, C. G., and Ferguson, R. N., cited, 749
Williston basin, 705
Wilson, H. A., cited, 243
Wilson, John, Briggs, Henry, and Owen, A. L. S., cited, 998
Wilson, J. H., cited, 74
Wilson, W. B., cited, 324, 325, 326, 430
proposed classification of oil and gas reservoirs, 433
Winchell, Alexander, cited, 6, 8, 12, 13
Winchester, Dean E., cited, 225
Wind River basin, 680, 929, 930
Winn Parish, 651
Winnfield dome, 651
Wisconsin, 541
Wolf Summit anticline, 404
Wolfe County, 509
Womans Pocket anticline, 715
Wood County, 524, 527
Wood County fault, 527
Woodbine, 275, 276
Woodbine basin, 276, 295
Woodbine Cretaceous oils, 140
Woodbine formation, 295, 296, 332, 403, 416, 417, 420, 421, 422, 779
in Tyler basin, 779
Woodbine oils, 137
"Woodbine" sand, 60
Woodbine sand, 302, 339, 333, 416, 578, 579, 669, 803, 901
Texas, oil fields of, 329
Woodbine sandstone, concentration of solids in waters of, 276
Woodbine sand basin, 315
Woodbine sand fields, 60
Woodbine sand pools, 404
Woodbine sand waters, 423
Woodring, J. R., Roundy, P. V., and Farnsworth, H. R., cited, 747
Woodruff, E. G., cited, 260, 334
Woodson County, 400
Woolnough, W. G., cited, 76, 89
Wortham field, 779
rise in temperature with approach to fault at, 999
Wortham pool, 404
Wrather, W. E., cited, 330
relations of petroleum accumulation to structure, foreword, 429
Wu, C. C, cited, 32
Wu, C. C, Trask, Parker D., and Hammar, Harald E., cited, 450
Wyckoff, R. D., Botset, H. G., Muskat, M., and Reed, D. W., cited, 808
abnormally high temperatures in oil fields of, 1008
gravity of oil in Madison limestone, 160
Mowry shale of, 57
oil-well waters of, 911
pre-Jurassic crude oil, 144
structural basins of, 927
Tensleep waters of, 941
typical Cretaceous waters of, 941
typical Sundance waters of, 941
Wyoming and Montana, frontier sands in important producing fields of, 934
Wyoming and Montana, frontier sands in important producing fields of, 934
Wyoming black oil fields, 163
Wyoming, Colorado, and northwestern New Mexico, oil and gas fields in, 719
Wyoming crude oils, 155
Wyoming oils, 143, 157
INDEX

X

Xyloid coals, 82

Y

Yale pool, 411
Yale-Maramec pool, 401
Yates dome, 414
Yates field, 413, 606, 607
Yates pool, 322, 341, 357, 362, 369, 881

Yeager pool, 411
Yeast cells, 41
Yegua formation, 403
Young crude oils heavy and asphaltic, 138

Z

Zaloziecki, R., cited, 44, 261
Ziegler, Victor, cited, 435

Zimmerly, S. R., and Maier, C. G., cited, 269
Zuber, Rudolf, cited, 38