Index

Page numbers in italic, e.g. 221, signify references to figures. Page numbers in bold, e.g. 60, denote references to tables.

Adventue Subglacial Trench 220–221, 221
Alaska
 Bering Glacier 60, 68, 75
 Black Rapids Glacier 172, 172, 173
Burroughs Glacier 60
Columbia Glacier 172, 173
Gulkana Glacier 60, 73
Hubbard Glacier 75
Kaskawulsh Glacier 60
Malaspina Glacier 60, 68, 75
Phantom Lake 69
Spencer Glacier 205
Twin Glacier 60
Variegated Glacier 61, 65, 67, 68, 76, 76, 86
 deformation history 90, 92, 94
 shear zones 72, 75, 75
 strain 88, 89, 92, 94
 subglacial till deformation 172
 surging 86, 87
 velocity 88, 89
Worthington Glacier 61, 65
Amery Ice Shelf, Antarctica 61
 ammonium concentration, Greenland Ice Sheet 15, 16, 20
 anisotropy of ice
 annealing 101, 104, 106, 107, 111, 112
 c-axis orientation 100–104, 101, 103, 104, 105–107, 106, 111
 experimental procedure 100
 orientation 100–104, 105–107
 strain-compression behaviour 101, 102, 105, 111
Antarctica
 Amery Ice Shelf 61
 Asgard Range 182
 Belgica Subglacial Highlands 221–223, 225
 Central Masson Range 116, 117
 David Range 116
 East Antarctic Ice Sheet 61, 217–218
 radar study 218–220, 221, 222, 223, 224, 227–228
 underlying sediments 220–221, 227
 Fearn Hill grid 116, 117, 119
 Ferguson Peak 116, 117
 Ferrar Glacier 60
 Framnes Mountains 65, 115, 116
 George VI Ice Shelf 61
 Ice Stream B 61, 172, 173, 272–275
 Ice Stream C 172, 174, 175
 Ice Stream D 172, 173
 Johnsons Glacier, Livingstone Island 147, 156–157
 deformation 150–154, 156
 foliation 152
 motion 156
 sedimentary stratification 149, 150–151, 150, 151, 152
 setting 147–149, 148, 149
structure 156
 surface strain-rates 154–155, 154, 155, 156
 tephra layer 149, 150, 151, 152, 156
 thrust faults 153
 Lambert Glacier 61, 72
 Meserve Glacier 60, 181, 184, 184, 187, 189
 North Masson Range 116
 South Masson Range 116
 South Shetland Islands 148
 Suss Glacier, Taylor Valley 182, 187, 189
 Taylor Glacier 11
 Taylor Valley 182
 Transantarctic Mountain range 221
 Wordie Ice Shelf 61
Ards Peninsula, Northern Ireland 307
argillans, definition 256
Arrhenius relation 34
Asgard Range, Antarctica 182
Astro Glacier, Canada 69
Austerdalsbreen, Norway 60
Austre Brøggerbreen, Svalbard 70
Austre Lovenbreen, Svalbard 70, 77
Austre Okstindbreen, Norway 205
Austria
 Hintereisferner 60
 Langtaufenerjochferner 60
 Pasterze Glacier, Austria 159–160
 ablation rate 160
 ductile shear zones 162
 extensional allochthon 159–160, 165, 166–167
 folding 162, 163
 foliation 162, 163
 glaciology 160–161, 161
 shear-extensional fractures 165
 structures 165–166
 tension gashes 165
 thrust faults 162–165, 164
 Pasterzenkees Glacier 60
 Axel Heiberg Island, Canada 243
 Astro Glacier 69
 Thompson Glacier 68, 69, 77, 169
 White Glacier 60, 65, 69
 Wreck Glacier 69
Bakaninbreen, Svalbard 61, 68
Barnes Ice Cap, Canada 60, 61, 65
Bas Glacier d'Arolla, Switzerland 73
bedding, definition 261
Belgica Subglacial Highlands, Antarctica 221–223, 225
Berendon Glacier, Canada 60
Bering Glacier, Alaska 60, 68, 75
Bjerrum defects 44
Bjornbo Gletscher, Greenland 60
Black Rapids Glacier, Alaska
 subglacial till deformation 172, 172, 173
 blind thrusts 67
Blue Glacier, USA 60, 73
 subglacial till deformation 172
INDEX

boudinage 71–72, 71, 115–116, 133–134
deformation processes 131–133
development 117–119, 118
finite difference model 122–125
gas-filled cavities 184
geometric constraints 119–120, 121, 127–128, 127
high grade metamorphic rocks 133
ice flow model 119–122
investigations 60
pressure distribution 131, 132
rheological control 129–131
stress distribution 128–129, 129, 130
studies 116
Boulton-Hindmarsh rheology 318
Breiam6rkurj6kull, Iceland 174
subglacial till deformation thickness 172, 173
brittle deformation of sediments 246, 247, 261
Burroughs Glacier, Alaska 60

Canada
Astro Glacier, Axel Heiberg Island 69
Axel Heiberg Island 243
Barraes Ice Cap, Baffin Island 60, 61, 65
Beredon Glacier, British Columbia 60
Elliott Lake 253, 255
Ice Cap, Ellesmere Island 60
Kaskawulsh Glacier 60
Mohawk Bay 251, 252, 253
Nova Scotia 249–253, 250
Phillips Inlet glaciers, Ellesmere Island 61
Saskatchewan 308
Saskatchewan Glacier, Alberta 60, 65
Thompson Glacier, Axel Heiberg Island 68, 69, 77, 169
White Glacier, Axel Heiberg Island 60, 65, 69, 76, 77
Wreck Glacier, Axel Heiberg Island 69
carbon dioxide concentration, Greenland Ice Sheet 15, 16, 17, 18, 19, 20
Carpathian Mountains 160, 165, 166
cavity formation relationship 188
c-axis fabrics 97–98, 112
c-axis orientation of ice 100–104, 101, 103, 104, 105–107, 106, 111
Central Masson Range, Antarctica 116, 117
Charles Rabots Bre, Norway 60
Chile
Glaciar Universidad 60
Humbusco Soler Glacier, Patagonia 61
Chimney Bluffs, New York State, USA
glacial sediments 251, 253
chlorine concentration, Greenland Ice Sheet 19, 19
cleavage, definition 261
cleavage zones 72
coaxial deformation, definition 261
Coi re a’ Cheud-chnoic, Scotland 327, 331, 331
Columbia Glacier, Alaska
subglacial till deformation thickness 172, 173
compressive flow regimes
beneath an ice-fall 73
terminal lobes 73–75
Coulomb-plastic flow 171, 174–175, 177
crevasses traces 74, 75
crevasses 66–68, 74
development 61
en échelon 74, 75
formation 60, 61
Cwm Idwal, Wales 321, 322, 322
glacio-tectonic map 326
grain-size data 327
moraine-ground formation 321, 323, 323, 331, 332, 333
depositional model 330–331
fsaces 327–328
morphology 324–326, 325
previous interpretation 328–330
thrust moraines 331–333
topographic survey 322–324
Cwm Cneifion, Wales 322, 322, 323, 329
Danish North Sea
deformation history 303–304
geological setting 293–295, 294
glaciomarine deformation 293
seismic database 295, 296
seismic profiles 296, 297, 299
thrust mechanism 303
thrust structures
architecture 295–299, 298
geographical extent 298, 299–302, 300, 301
subglacial valleys 302
substrate lithology 302
thrust timing 302–303
David Range, Antarctica 116
De Lutte, Netherlands 275
dehormal bed hypothesis 1
deformation history
analysis methodology 86–87
modelling assumptions 87–89
strain rate fields 89
structural assemblages
distal ice 93–95
intermediate ice 91–93
proximal ice 90–91
surge cycle 89–90
Variegated Glacier, Alaska 88, 90, 92, 94
velocity fields 89
deformation, subglacial 4–5, 259–260, 275
brittle shear-zone structures 266, 266, 267
definition of terms 261
ductile shear-zone structures 266–267, 266, 267
macrostructure development 263–267
microstructure development 263–267
progressive simple shear 262–263, 262, 263, 264, 265
pure and simple shear strains 262, 267–269, 268, 271
Reidel shears 265, 266
relative intensity 269–271
sheared clay in till 271, 273
structural style 265–267
tension veins 271–272, 273
theoretical model 260–263
thickness of layer 272–275
transposed foliation 269, 272, 273
ice cores 24–37, 24, 25, 26, 28, 29, 30, 31, 32, 33
ice crystals 24, 27–32, 28, 29, 30, 31, 32, 33, 34
stratigraphy 25–27, 26
temperature 34, 36

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/4525266/9781862394247_backmatter.pdf by guest on 28 December 2018
INDEX 339

di-electric profile (DEP) conductivity, Greenland Ice Sheet 15, 16
diffusion creep 50
domain, definition 256
dropstones 270, 270
drumlins 307, 308
formation 307–308, 316–317
basal sliding 311–312
bedform stability 308–309
effective pressure 310
growth rate 315–316, 315, 316
Hindmarsh model 309, 316
instability condition 314, 314, 317
linear stability analysis 312–314
subglacial bedforms 309–312, 310
till rheology 310–311, 317–318
ductile deformation, definition 261
ductile deformation of sediments 246, 247
dynamic hydraulic conductivity of subglacial sediments 235–236, 237, 238, 239
dynamics, definition 261
East Antarctic Ice Sheet 61, 217–218
radar study 218–220, 221, 222, 223, 224, 227–228
underlying sediments 220–221, 227
East Carpathian orogen 165, 166
Elliot Lake, Canada
Glacier d’Otemma, Switzerland
Glacier de Tsanflueron, Switzerland
East Antarctic Ice Sheet 61, 217–218
East Carpathian orogen 165, 166
Elliot Lake, Canada
en échelon crevasses 74, 75
extensional flow regimes 73
fabric, definition 261
Fearn Hill grid, Antarctica 116, 117, 119
Ferrar Glacier, Antarctica 60
finite strain, definition 261
flow-induced mixing, Greenland Ice Sheet 18–20
folding deformation 68–69, 68
chevron 68
Greenland Ice Sheet 18–20
intrafolial 68
isoclinal 68
parallel 68
similar 68
foliation 68, 69–71, 70
definition 261
investigations 60, 61
transposed 269, 272, 273
Forbes bands 72, 73
Fox Glacier, New Zealand 60
Framnes Mountains, Antarctica 65, 115, 116
France
Mer de Glace 60
Franz Joseph Glacier, New Zealand 60
gas content, total, Greenland Ice Sheet 17, 19
gas-filled cavities in basal ice 183
George VI Ice Shelf, Antarctica 61
Glaciar Universidad, Chile 60
Glacier d’Otemma, Switzerland 72
Glacier de Tsanflueron, Switzerland 24, 24
glaciers
as analogues of rock deformation 62–63
blue ice 116–117, 123
bubbly ice 116–117, 123
characteristic structures 73–76
compressive flow 262
confluence investigations 60
crevass trace 66
cumulative strain 62–63, 63, 87
velocity-gradient method 65
debris transport and deposition 77–78, 79
deforation 63–68
histories 76
measurement 65
numerical methods 65
effect of subglacial sediment 187–189
flow 3–4
flow modelling 135, 144–145
crevasses 137–142, 141
deposition-transport-exposure 142–144, 143, 144
field site 136–137
methodology 136–137
strain rate 137, 139, 142
velocity 137, 139
Piedmont-type 68, 73
polythermal 67, 68
strain-related structures 66–73
structure 3–4
surge-type 66, 68–69, 86
tectonic processes, investigation 61
thrust faults 66–67
glaciology
history 1, 59–62
structural investigations 60–61
glaciotectonic deformation 294
Danish North Sea 293–295, 294
defformation history 303–304
seismic database 295, 295
seismic profiles 296, 297, 299
substrate lithology 302
thrust timing 302–303
thrust mechanism 303
thrust structures
architecture 295–299, 298
geographical extent 298, 299–302, 300, 301
subglacial valleys 302
glaciotectonics
definition 5–6
structures 5–8
Glen’s Flow Law 63, 98, 111, 120, 122
Glen’s model 44
Cihedenberg, Germany 272, 273, 274
grain growth law 34
Greenland
Bjørnbo Gletscher 60
Greenland Ice Core Project (GRIP) 14, 21
Greenland Ice Sheet 13
anisotropy 97
c-axis fabrics 97
Central
ammonium concentration 15, 16, 20
basal ice 13–14
carbonate concentration 15, 16, 17, 18, 19, 20
carbon dioxide concentration 15, 16, 17, 18, 19, 20
Greenland Ice Sheet (continued)

Central
- deuterium data 16, 20
- di-electric profile (DEP) conductivity 15, 16
- flow-induced mixing 18–20
- folding deformation 18–20
- melting and refreezing 20
- methane concentration 16, 19
- lead isotope composition 18
- neodymium isotope composition 18
- nitrate concentration 19, 20
- oxygen-18 data 15, 17, 18, 19
- oxygen/nitrogen ratio 18
- physical conditions 20
- stratigraphy 14
- strontium (Sr) isotope composition 18
- temperature 13, 16, 18
- folding deformation 18–20
- investigations 60
- multi-parametric data 15
- shear zones 60

Griesgletscher Glacier, Switzerland 60, 64, 65, 73, 74, 75, 76

Grossglockner (mountain), Austria 160

Ground-penetrating radar (GPR) 78

Gulkana Glacier, Alaska 60, 73

Hagafellsjökull Eystri, Iceland 204

Hagafellsjökull Vestari, Iceland 204–205, 204, 205, 213–215
- bedform morphology 205–207, 206, 207
- drumlin micromorphology 209–212, 210
- drumlin sedimentology 207–209, 208
- flute sedimentology 212–213
- grain size 209

Haut Glacier d’Arolla, Switzerland 136–137, 136, 138, 139, 140, 141, 144–145

subglacial sediments 232–233, 232, 233, 238–241
dynamic hydraulic conductivity 235–236, 237, 238, 239
laboratory study 233–241
static hydraulic conductivity 235, 236
strength 236–238, 240

Heiligenhafen, Germany 271–272, 272, 273

Heiligenhafen, Svalbard 61, 76

Hindmarsh model for drumlin development 309, 316

Hindereisfjerner, Austria 60

Holmströmsøen, Svalbard 61

Hubbard Glacier, Alaska 75

Hvítad Klint, Denmark 274, 275

hydrochloric acid 39

hydrofluoric acid 39, 44

ice
- anisotropy
- annealing 101, 104, 106, 107, 111, 112
c-axis orientation 100–104, 101, 103, 104, 105–107, 106, 111
experimental procedure 100
- orientation 100–104, 105–107
- strain-compression 101, 102, 105, 111
- blue ice 116–117, 123
- brittle fracture 66
- bubbly ice 116–117, 123
- compaction 52
- compared to deformed rocks 62
- contaminants 39
- creep 52
- activation energy 39, 40
diffusion 50, 53
- dislocation geometry 49
- power law 49–50, 53
- steady-state rate 39
- transient 50, 53
- critical resolved shear stress (CRSS) 41, 43, 44
- crystals
- activation energy 34
- equilibrium diameter 35, 35
- formation in glaciers 117, 119, 125
- grain growth law 34
- mean minimum size 34, 36
- size 23, 27, 35
- structure 23–24, 27, 28, 29, 30, 31, 32, 33
- deformation 2–3, 52–54, 79
deflection curves 53
flow behaviour 115
- mechanical testing 47–48
- basal shear stress 52, 52
- beam centrifuge 48, 49, 50–52
- behaviour of models 52–53
- environmental controls 51
- instrumentation 51–52
- model construction 50–51
- scaling 48–50
- strain rate 52, 52
- stress configurations 48
- polycrystalline 97
- polyphase deformation 62
- rheology 125–127
- shear localization 98
- shear strain rate 41
- Glen’s model 44
- shear stress-strain curves 41, 41, 42, 43
- stress exponent 39, 40, 44
- vertical stress modelling 48–49, 49

Ice Cap, Canada 60
- ice core studies
 - Glacier de Tsanflueron, Switzerland 24–37, 24, 25, 28, 29, 30, 31, 32, 33
 - ice facies, characteristics 182
 - ice sheet flow 98
 - ice sheet flow modelling 119–125
 - parameters 120, 123–124
- Ice Stream B, Antarctica 61
 - subglacial layer thickness 272–275
 - subglacial till deformation thickness 172, 173
- Ice Stream C, Antarctica
 - subglacial till deformation 172
- Ice Stream D, Antarctica
 - subglacial till deformation 172, 173

ice
INDEX

Iceland
Breiamérkurjökull 174
subglacial till deformation 172, 173
Hagafellsjökull Eystrí, Iceland 204
Hagafellsjökull Vestari, Iceland 204–205, 204, 205,
213–215
bedform morphometry 205–207, 206, 207
drumlin micromorphology 209–212, 210,
drumlin sedimentology 207–209, 208
flute sedimentology 212–213

outlet glaciers 60
Vatnajökull 611

incremental (infinitesimal) strain, definition 261
inseptic plasma fabric, definition 256
Isfallsglaciären, Sweden 60, 205

Johnsons Glacier, Livingstone Island, Antarctica 147,
156–157
crevasses 153–154
deformation 150–154, 156
foliation 152
motion 156
sedimentary stratification 149, 150–151, 150, 151, 152
setting 147–149, 148, 149
structure 156
surface strain-rates 154–155, 154, 155, 156
theca layer 149, 150, 151, 152, 156
thrust faults 153

Kaskawulsh Glacier, Canada 60
Killough, Northern Ireland 309
kinematics, definition 261

Kongsvegen, Svalbard 61, 76

Lake Vostok 227
radar study 219, 220
seismic data 220, 228

Lambert Glacier, Antarctica 61, 72
lattiseptic plasma fabric, definition 256
Laurentide Ice Sheet, USA 217
lead isotope composition, Greenland Ice Sheet 18
linear stability analysis 312–314
Little Ice Age 160
Llyn Idwal, Wales 323, 324, 326
loadcasts 192, 193, 194

Malaspina Glacier, Alaska 60, 68, 75
maseptic plasma fabric, definition 256
mega-boudins 72
Meikleour, Scotland

Mer de Glace, France 60

Meserve Glacier, Antarctica 60, 181, 184, 184, 187, 189
methane concentration, Greenland Ice Sheet 16, 19
modelling techniques
deformation 87–89
finite difference 122–125
flow modelling 119–122, 135, 144–145
crevasses 137–142, 141
deposition-transport-exposure 142–144, 143, 144
methodology 136–137
strain rate 137, 139, 142
velocity 137, 139
Glen’s model 44
ice rheology 47–54
low-stress ice flow 53–54
moraine deposition model 330–331
Nabarro-Herring model 50
subglacial tills 194–199
three-dimensional structures 79
vertical stress modelling 48–49, 49

Mohawk Bay, Canada

normal stress, definition 261

Nabarro–Herring model 50
necking 251, 253
neodymium (Nd) isotope composition, Greenland Ice
Sheet 18

New Zealand

Fox Glacier 60
Franz Joseph Glacier 60

nitrate concentration, Greenland Ice Sheet 19, 19
non-coaxial deformation, definition 261

Norway

Austerdalsbreen 60
Austre Brøggerbreen, Svalbard 70
Austre Lovénbreen, Svalbard 70, 77
Bakaninbreen, Svalbard 61, 68
Charles Rabots Brc 60
Hessbreen, Svalbard 61
Holmströmibreen, Svalbard 61
Kongsvegen, Svalbard 61
Slettmarkbreen 205
Southern Lyngen 205
Svalbard 330, 331

Malaspina Glacier, Alaska 60, 68, 75
maseptic plasma fabric, definition 256
mega-boudins 72
Meikleour, Scotland

Mer de Glace, France 60

Meserve Glacier, Antarctica 60, 181, 184, 184, 187, 189
methane concentration, Greenland Ice Sheet 16, 19
modelling techniques
deformation 87–89
finite difference 122–125
flow modelling 119–122, 135, 144–145
crevasses 137–142, 141
deposition-transport-exposure 142–144, 143, 144
methodology 136–137
strain rate 137, 139, 142
velocity 137, 139
Glen’s model 44
ice rheology 47–54
low-stress ice flow 53–54
moraine deposition model 330–331
Nabarro-Herring model 50
subglacial tills 194–199
three-dimensional structures 79
vertical stress modelling 48–49, 49

Mohawk Bay, Canada

normal stress, definition 261

Nabarro–Herring model 50
necking 251, 253
neodymium (Nd) isotope composition, Greenland Ice
Sheet 18

New Zealand

Fox Glacier 60
Franz Joseph Glacier 60

nitrate concentration, Greenland Ice Sheet 19, 19
non-coaxial deformation, definition 261

Norway

Austerdalsbreen 60
Austre Brøggerbreen, Svalbard 70
Austre Lovénbreen, Svalbard 70, 77
Bakaninbreen, Svalbard 61, 68
Charles Rabots Brc 60
Hessbreen, Svalbard 61
Holmströmibreen, Svalbard 61
Kongsvegen, Svalbard 61
Slettmarkbreen 205
Southern Lyngen 205
Svalbard 330, 331

Malaspina Glacier, Alaska 60, 68, 75
maseptic plasma fabric, definition 256
mega-boudins 72
Meikleour, Scotland

Mer de Glace, France 60

Meserve Glacier, Antarctica 60, 181, 184, 184, 187, 189
methane concentration, Greenland Ice Sheet 16, 19
modelling techniques
deformation 87–89
finite difference 122–125
flow modelling 119–122, 135, 144–145
crevasses 137–142, 141
deposition-transport-exposure 142–144, 143, 144
methodology 136–137
strain rate 137, 139, 142
velocity 137, 139
Glen’s model 44
ice rheology 47–54
low-stress ice flow 53–54
moraine deposition model 330–331
Nabarro-Herring model 50
subglacial tills 194–199
three-dimensional structures 79
vertical stress modelling 48–49, 49

Mohawk Bay, Canada

normal stress, definition 261

Nabarro–Herring model 50
necking 251, 253
neodymium (Nd) isotope composition, Greenland Ice
Sheet 18

New Zealand

Fox Glacier 60
Franz Joseph Glacier 60

nitrate concentration, Greenland Ice Sheet 19, 19
non-coaxial deformation, definition 261

North Masson Range, Antarctica 116

North Sea, Danish
deformation history 303–304
geological setting 293–295, 294
glaciotectonic deformation 293
scismic database 295, 293
seismic profiles 296, 297, 299
thrust mechanism 303
thrust structures
architecture 295–299, 298
geographical extent 298, 299–302, 300, 301
subglacial valleys 302
substrate lithology 302
thrust timing 302–303

Northern Ireland

Ards Peninsula 307
Killough 309

Norway

Austerdalsbreen 60
Austre Brøggerbreen, Svalbard 70
Austre Lovénbreen, Svalbard 70, 77
Bakaninbreen, Svalbard 61, 68
Charles Rabots Brc 60
Hessbreen, Svalbard 61
Holmströmibreen, Svalbard 61
Kongsvegen, Svalbard 61
Slettmarkbreen 205
Southern Lyngen 205
Svalbard 330, 331
INDEX

Norway (continued)
Svartisen ice cap 205
Vesl-Skautbreen 60
Nova Scotia, Canada
glacial sediments 249–253, 250

octahedral shear stress 35–36, 35
octahedral strain 102, 108, 108
ogives 72–73, 73
Forbes bands 72, 73
investigations 60
Oldenhorn, Switzerland 24, 34
omniseptic plasma fabric, definition 256
outlet glaciers, Iceland 60
oxygen-18 data, Greenland Ice Sheet 15, 16, 17, 18, 19, 20
oxygen/nitrogen ratio, Greenland Ice Sheet 17, 18

P shear fractures 75
Pannonian Basin 160, 165
partial derivatives, calculating 318
Pasterze Glacier, Austria 159–160
ablation rate 160
ductile shear zones 162
extensional allochthon 159–160, 165, 166–167
folding 162, 163
foliation 162, 163
glaciology 160–161, 161
shear-extensional fractures 165
structures 165–166
tension gashes 165
thrust faults 162–165, 164
Pasterzenkees Glacier, Austria 60
Phonotone, Lake, Alaska 69
Phillips Inlet glaciers, Canada 61
plasma, definition 256
polygonization 34
polyphase deformation of sediments 246
power law creep 49–50

radar study of subglacial lakes 218–220
Adventure Subglacial Trench 221, 222
Belgica Subglacial Highlands 225
East Antarctic Ice Sheet 221, 222, 223, 224
Lake Vostok 219
underlying sediments 220–221, 227
Wilkes Subglacial Basin 224, 226
Raitts Burn, Speyside, Scotland 279–281, 280, 281, 291–292
deformation history 288–290, 289, 290–291
deformation structures 288–290
micromorphology 282–288, 283, 284, 285, 286
rhythmic lamination 288
stratigraphy 281–282
Strathspey 279, 280, 291–292
deformation model 290–291
Quaternary geology 279–281, 280, 281
subglacial sediments 236–238, 240
Scott Polar Research Institute (SPRI) 217
sedsents
see also subglacial sediments
deformation structures 246–247, 247, 249
glacial 1, 2, 249–253
microfabric development 245–246, 253–256
microstructure development 245–246, 253–256
microstructure taxonomy 247–248, 253–256
necking 251, 253
omniseptic fabrics 248
plasmic microfabrics 247–248
polyphase deformation microstructures 249
rheology of ice
creep 52
activation energy 39, 40
diffusion 50, 53
dislocation geometry 49
power law 49–50, 53
steady-state rate 39
transient 50, 53
critical resolved shear stress (CRSS) 41, 43, 44
deformation curves 53
effect of grain size 54
mechanical testing 47–48
basal shear stress 52, 52
beam centrifuge 48, 49, 50–52
behaviour of models 52–53
environmental controls 51
instrumentation 51–52
model construction 50–51
scaling 48–50
strain rate 52, 52
stress configurations 48
shear strain rate 41
Glen's model 44
shear stress–strain curves 41, 41, 42, 43
stress exponent 39, 40, 44
vertical stress modelling 48–49, 49
rhomboseptic fabrics 253
rhomboseptic plasma fabric, definition 256
Riedel shear fractures 75
Rundoddle grid, Antarctica 116

Saskatchewan, Canada 308
Saskatchewan Glacier, Canada 60, 65
satellite imagery investigations 61
satellite interferometry 79
Schmid Factor 122
Scotland
Coire a' Cheud-chnoic 327, 331, 331
Meikleour 253, 254
Raitts Burn, Speyside 279–281, 280, 281, 291–292
deformation history 288–290, 289, 290–291
deformation structures 288–290
micromorphology 282–288, 283, 284, 285, 286
rhythmic lamination 288
stratigraphy 281–282
Strathspey 279, 280, 291–292
deformation model 290–291
Quaternary geology 279–281, 280, 281
subglacial sediments 236–238, 240
Scott Polar Research Institute (SPRI) 217
sediments
see also subglacial sediments
deformation structures 246–247, 247, 249
glacial 1, 2, 249–253
microfabric development 245–246, 253–256
microstructure development 245–246, 253–256
microstructure taxonomy 247–248, 253–256
necking 251, 253
omniseptic fabrics 248
plasmic microfabrics 247–248
polyphase deformation microstructures 249

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/4525266/9781862394247_backmatter.pdf by guest
INDEX

porewater-produced microstructures 249
rhomboseptic fabrics 253
S-matrix 247
S-matrix microstructures 248–253
sérae 57
shear regime
 non-surge temperate glacier 75
 surge-type temperate glacier 75–76
shear stress, definition 261
shear zones 72
skelseptic plasma fabric, definition 256
Slettmarkbreen, Norway 205
S-matrix in sediments 247, 248–253
South Masson Range, Antarctica 116
South Shetland Islands, Antarctica 148
Southern Lyngen Glaciers, Norway 205
Spencer Glacier, Alaska 205
static hydraulic conductivity of subglacial sediments 235,
 235, 236, 236
Stokes' equations 194
Storglaci/iren 172, 173
strain, definition 261
strain softening 23
Strathspey, Scotland 279, 280, 291–292
deformation history 288–290, 289
deformation model 290–291
deformation structures 288–290
micromorphology 282–288, 283, 284, 285, 286
Quaternary geology 279–281, 280, 281
rhythmic lamination 288
stratigraphy 282–288, 283, 284, 285
subglacial sediments 236–238, 240
sulphuric acid, effect on ice flow 39, 43–44
experimental details 39–41
surge study 203–204, 213–215
bedform morphometry 205–207, 206, 207
drumlin micromorphology 209–212, 210
drumlin sedimentology 207–209, 208
flute sedimentology 212–213
grain size 209
site 204, 204
Svalbard 330, 331
 Austre Brøggerbreen 70
 Austre Lovénbreen 70, 77
 Bakaninbreen 61, 68
 Hessbreen 61
 Holmstrømbreen 61
 Kongsvegen 61, 76
 Svartisen ice cap, Norway 205
Sweden
 Isfjellsgeïären 60
 Isfjellsgeïären 60
Switzerland
 Bas Glacier d’Arolla 73
 de Tsanflueraon Glacier 24, 24
ice cores 24–37, 24, 25, 26, 28, 29, 30, 31,
 32, 33
ice crystals 24, 27–32, 28, 29, 30, 31, 32, 33, 34
stratigraphy 25–27, 26
temperature 34, 36
Glacier d’Otemma 72
Griesgletscher 60, 64, 65, 73, 74, 75, 76
Haut Glacier d’Arolla, Switzerland 136–137, 136,
 138, 139, 140, 141, 144–145
subglacial sediments 232–241, 232, 233, 235, 236,
 236, 237, 238, 239, 240
 Oldenhorn 24, 34
 Turtmanngletscher 205
Unteraargletscher 65
Vadret del Forno 68

343
INDEX

Tauern window 160, 165
Taylor Glacier, Antarctica 11
Taylor Valley, Antarctica 182
temperature, Greenland Ice Sheet 13, 16, 18
Terzaghi's effect 310
Thompson Glacier, Axel Heiberg Island, Canada 68, 69, 77, 169
till rheology 310–311, 317–318
Traeth y Mwnt, Wales
 subglacial sediments 232–233, 233, 238–241
 dynamic hydraulic conductivity 235–236, 237, 238, 239
 laboratory study 233–241
 static hydraulic conductivity 235, 235, 236, 236
 strength 236–238, 240
Transantarctic Mountain range 221
transient creep 50
Trapridge Glacier, Canada
 subglacial till deformation thickness 172, 173
Turmannflatscher, Switzerland 205
Twin Glacier, Alaska 60

unistrial plasma fabric, definition 256
Unteraargletscher, Switzerland 65
Urumqi No. 1 Glacier, China 189
USA
 Bering Glacier, Alaska 60, 68, 75
 Black Rapids Glacier, Alaska 172, 172, 173
 Blue Glacier, Washington 60, 73, 172
 Burroughs Glacier, Alaska 60
 Chimney Bluffs, New York State 251, 253
 Gulkana Glacier, Alaska 60, 73
 Hubbard Glacier, Alaska 75
 Laurentide Ice Sheet 217
 Malaspina Glacier, Alaska 60, 68, 75
 Phantom Lake, Alaska 69
 Spencer Glacier, Alaska 205
 Twin Glacier, Alaska 60

Variegated Glacier, Alaska 61, 65, 67, 68, 76, 76, 86
 deformation history 90, 92, 94
 shear zones 72, 75, 75
 strain 88, 89, 92, 94
 subglacial till deformation 172
 surging 86, 87
 velocity 88, 89
 Worthington Glacier, Alaska 61, 65
Vadret del Forno, Switzerland 68
Variegated Glacier, Alaska 61, 65, 67, 68, 76, 76, 86
 deformation history 88, 90, 92, 94
 shear zones 72, 75, 75
 strain 88, 89, 92, 94
 subglacial till deformation 172
 surging 86, 87
 velocity 88, 89
Vatnajökull Iceland 60
Ventisquero Soler, Chile 61
Vesi-Skautbreen, Norway 60
Vostok, Lake 227
 radar study 219, 220
 seismic data 220, 228
Walder and Fowler subglacial drainage theory 310
Wales
 Cwm Cneifion 322, 322, 323, 329
 Cwm Idwal 321–322, 322
 glacio-tectonic map 326
 grain-size data 327
 moraine-mound formation 321, 333, 323, 323, 331, 332
 Llyn Idwal (lake) 323, 323, 324, 326
 White Glacier, Canada 60, 65, 69, 76, 77
 Wilkes Subglacial Basin, Antarctica 221–227, 224, 226, 227
 Wordie Ice Shelf, Antarctica 61
 Worthington Glacier, Alaska 61, 65
 Wreck Glacier, Canada 69
Deformation of Glacial Materials

edited by

A. J. Maltman, B. Hubbard
and M. J. Hambrey

University of Wales, Aberystwyth

The flow of glacier ice can produce structures that are striking and beautiful. Associated sediments, too, can develop spectacular deformation structures, and examples are remarkably well preserved in Quaternary deposits. Although such features have long been recognized, they are now the subject of new attention from glaciologists and glacial geologists.

This collection of papers addresses how the methods for unravelling deformation structures evolved in recent years by structural geologists can be used for glacial materials, and the opportunities offered to structural geologists by glacial materials for studying deformation in rocks.

- 360 pages
- 24 chapters
- 181 illustrations

Visit our on-line bookshop: http://bookshop.geolsoc.org.uk

Geological Society Internet Site: www.geolsoc.org.uk

Cover illustration: Aerial view of the world’s largest piedmont glacier, the Malaspina Glacier in SE Alaska. Medial moraines have been folded on a large scale as a result of longitudinal compression as the ice emerges from its confined channel. Photo: M. J. Hambrey.