Index

Abakan-Chernogorsk region, Khakassia, Siberia, alkaline coal mine drainage 287-90
analysis of drinking water at Byelii Yar opencast mine 290
properties of typical coals from Minusinskii sampling and analysis methods 288
Abaza Magnetic Mine, Khakassia, Siberia, alkaline coal mine drainage 287-8, 290-1
chemical composition of pumped water 291
sampling and analysis methods 288
acid mine drainage Carnoulès, France, arsenic 267-74
South Nottinghamshire Coalfield closure 99-104
acid-base accounting (ABA) 145
acidic spoil drainage
acidity values 252
Cleveland Ironstone Field 260-2
vestigial/juvenile acidity 139, 205
Adrio Valley, SW Spain, Aznalicollar mine spill 187-204
Aitik mine, Sweden, mineral weathering rate prediction 151-5
albite weathering 153-5
reactive surface area at field scale 143
alkaline coal mine drainage Siberia Abakan-Chernogorsk region 287-90
Abaza Magnetic Mine 287-8, 290-1
Vershina Tyγai Magnetic Mine 287-8, 291-2
Svalbard, Longyearbyen 287-8, 292-5
Altiplano aquifer complex, Bolivia 215-39
anorthite weathering 153-5
reactive surface area at field scale 143
aquifers overlying coal mines 17-45
hydraulic head drops 20-3
hydraulic tests 28-30, 34-5
transmissivities 22-3
water level recovery 23-4
see also longwall coal mining (UK and USA)
Arctic region see Longyearbyen, Svalbard
arsenic acid mine drainage system, removal by oxidizing bacteria 267-74
mine pit lakes 163
potable water limits 335
Spain, NW, Mieres, Asturias, pollution from mercury and coal mine spoil in Morgao catchment 327-36
Aznalicollar see Spain, SW
bacteria, arsenic removal 267-74
base flow index (BFI) 130
berthierite 254
biotite weathering 151-5
reactive surface area at field scale 143
Black Clough discharge, Deerplay Colliery see Lancashire, UK
Bolivia (San Jos, Mine, Oruro), contaminant sources 215-39
cross-section and site 218
genological and hydrogeological setting 219-23
bedrock 219
chloride concentrations 220
contour maps of aquifer complex 220, 222
sedimentary complex 219-23
groundwater chemistry in wells 237
mine water hydraulics 223-8
ingress of surficial waters 224
MHFIM model 223-6
mine flooding modelling 224-7
MODFLOW model, ground water leakage, flooded mine 223-8
possible water outflows 224
void distribution 223
water influxes/inf lows 223-4
mine water quality 228-33
composition of pumped mine water at Santa Rita entrance 230-1
hydrochemical characteristics 228-9
results of analyses of water 232
speciation modelling 229-32
pumping rates from mine 219
risk assessment 234-6
leachate analyses 235
map of copper concentrations 236
mine wastes 233-4
risk source characterization 234
secondary mineral efflorescences 234
Cantabrian zone, map 330
Carnoulès, Gard see France
chalcopyrite weathering 147-55
reactive surface area at field scale 143
chamosite 254
chemical stratification, mine pit lakes 167
Chile (Escondida Copper Mine), depressurization of north wall 107-19
conceptual model of groundwater flow 113-14
altered (argillic) porphyry 113-14
rhyolites 113
silicified Escondida porphyry 113
conceptual model of recharge mine 108
current pore pressures 110-13
depressurization system design 116-18
field programme and database 108-10
location plan 108
numerical modelling 114-16
chloride plume migration, gold mine tailings dam 337-46
Cleveland Ironstone Field, UK, pyritic rook strata in aquatic pollutant release 251-66
current mine water discharges 255-7
hydrochemistry 258, 260
known discharges of polluted mine drainage 256
metals 289
WATEQ4F modelling 261
data collection methods 252-3
Eston Mine, major discharge 257-60
mining history 253-5
genological framework 254
pollutant generation and attenuation reactions 254
sketch map of area 253
New Marske Mine, acidic spoil drainage 260-2
Saltburn, new discharge 262-3
Skinningrove, two overflowing mines 263-4
clubmoss (*Lycopodium clavatum*) spores, underground minewater tracing 52-3
Coal Measures
permeability values 66
Upper, Middle and Lower see South Wales Coalfield coal mining, see also longwall coal mining
CODE-BRIGHT model, flow and heat 192-4
column, sulphide oxidation in unsaturated soil 189-90
ConSim model 234
contaminant sources
mine water pollution 138
vestigial/juvenile acidity 139, 205
contaminant transport, modelling 208-9
copper see Bolivia (San Jos, Mine); Chile (Escondida Copper Mine); Sweden (Aititik Mine)
Cumbria, UK (Nenthead), abandoned mines as sinks for pollutant metals 241-50
groundwater setting 243-4
map of Nent Valley, main inputs of contaminants 242
mine water chemistry, absence of sinks for zinc 249
other mineral sinks for zinc 245
Rampgill Mine 244-5
sampling methods 244
zinc concentration in River Nent 243
zinc deficits in Nent Valley mine waters 245-8
x-y plots showing lack of correlation between zinc and sulphate 248-9
deep mine voids, test pumping for assessment 315-26
Deerplay Colliery see Lancashire, UK
depressurization systems, design 116-18
dolomite 255
Donana National Park, SW Spain, Aznalicollar mine spill 187-204
Durham County, UK, iron release from spoil heap 205-14
conceptual model 209-13
contaminant sinks 210
contaminant sources 209-10
input parameters 210
laboratory and modelled iron and sulphate 211
long term sulphate concentrations 212
results and discussion 210-13
historical and geological overview 206
laboratory methods/results 206-8
location map 206
modelling methods 208-9
contaminant transport 208
oxygen diffusion 208
weathering reactions 208-9
Durham County, UK, mine water recovery records 64-7
East Fife see Fife, UK
environmental impact, South Nottinghamshire Coalfield closure 99-104
environmental impact assessment (EIA)
gold mining in Ghana 121-34
uranium mine, Slovak Republic 370
Escondida Copper Mine see Chile
Eston Mine, Cleveland Ironstone Field, UK 257-60
European Commission, uranium mine liabilities, Slovakia project 368
evapotranspiration, actual (AE) 127

Ferrobacillus ferrooxidans 209
Fife, UK, East Fife coalfield, monitoring mine water recovery 62-4
Fife, UK, Frances Colliery, test pumping deep mine voids 315-26
hydrogeochemistry 323-4
Piper diagram, plotting pumped mine water chemistry 323
pumped mine water quality 323
hydrogeological results 317
calculation of Reynolds numbers (RE) for submerged insets 319
plots of discharge against specific capacity 318
test pumping data 318
map of location 316
mine water levels 64
sampling and data collection 316-17
schematic diagram showing connection with adjacent collieries 316
source of poor water quality 325
stratification within mine workings 324-5
diagram showing build-up 325
various determinands 324
Fife, UK, Lochhead Colliery, mine water levels 64
fingerprinting minewater emissions, South Wales Coalfield 275-86
flooded workings, mine water discharge chemistry 379-90
flow measurement 252
fluorspar mine (Frazer's Grove, North Pennines, UK) consequences of abandonment 245, 347-63
geological setting 348-50
geophysics 356
hydrochemistry 356-62
metal concentration data 359-61
hydrogeology 355-6
map of Great Limestone during/after mining 357
lithological samples 355
map of location 348
methodology 350-2
mine description 352-5
geological succession 352
sketch diagram 351
monitoring locations 349, 350
water quality data 353-4
fluorspar mine (Strassberg-Harz), underground minewater tracing 49-57
France (Carnoullis, Gard), arsenic removal by oxidizing bacteria 267-74
acidity mine drainage system 268-72
mean values and SD, acidic waters at 40m and 1500m 270
seasonal variations in soluble and particulate As concentrations 271
bio-oxidation 272-3
sampling and analytical methods 268
site description and map 268-9
Frazer's Grove, North Pennines, UK see fluorspar mine
Germany, Strassberg-Harz underground minewater tracing 49–57
Ghana, gold mining, environmental impact assessment (EIA) 121–34
 geological map 122
 hydrogeological data collection
 appropriate phases of mineral exploration 133
 geology 124–5
 hydrogeochemistry 125
 hydrology 125
 pedology 124
 physiography 124
 use 132
Tarkwa 125–32
 map 123
 mean chemical characteristics summary 131
 monthly water balance 128
 soil test summary 126
 Tarkwaian System 126–7
 gold mining see Ghana; South Africa, plume migration from gold mine tailings dam
Guadiamar River, SW Spain, Aznalicollar mine spill 187–204
Hlobane Colliery see South Africa, post-closure water quality
hydrological simulation program Fortran (HSPF) 303
Illinois see longwall coal mining
 impact structure, Vredefort Dome 339
 iron
 mine water discharge chemistry 387–9
 release from spoil heaps, Country Durham 205–14
 vestigial/juvenile acidity 139, 205

see also pyrite
 iron ore bodies
 pyritic roof strata 251–66
 see also Cleveland Ironstone Field; Durham
juvenile acidity 139, 205
Khakassia see Siberia
Lancashire, UK (Deerplay Colliery), test pumping deep mine voids 315–26
 hydrogeochemistry 323–4
 Piper diagram 323
 pumped mine water quality 323
 hydrogeological modelling 319–23
 contour plots, modelled groundwater levels, with/without conduits 320–1
 diagram of conduit network 319
 pumping rate and daily rainfall 322
 hydrogeological results 317–19
 plots, discharge vs specific capacity 318
 test pumping data 317
 map of location 316
 sampling and data collection 316–17
 schematic diagram of colliery and site of Black Chough discharge 317
 stratification within mine workings 324–5
 lead–zinc mines(former)
 Cumbria, UK (Nenthead), abandoned mines as sinks for pollutant metals 241–50
 France, arsenic contamination 267–74
 Frazer’s Grove, North Pennines 245, 347–63
 limestone-hosted metal mine see fluorspar mine (Frazer’s Grove)
longwall coal mining, aquifer effects (UK)
 Sherwood Sandstone, Selby Coalfield 75–88
 background to study 76
 data analysis 82–3
 geology 77–9
 groundwater abstraction at Unitriton-BOCM 81–2
 hydrogeology 79–80
 piezometer installation 81
 results 83–6
 site description 76–7
 subsidence 80–1
longwall coal mining, aquifer effects (USA) 17–45
 head drops 21–23
 Jefferson County site, Illinois 26–33
 geochmical changes 30
 hydraulic tests 28–30
 potentiometric changes 30
 mechanisms of hydrogeological effects 17–24
 deformation zones 18–19
 drainage 17–18
 permeability changes, previous field studies 20–1
 subsidence 17, 18
 Saline Country site, Illinois 33–43
 geochemical results 38–40
 hydraulic tests 34, 35–7
 potentiometric responses 34–5, 37–8
 subsidence and strata deformation 33–4, 35
 water level recovery after mining 23–4
Longyearbyen, Svalbard, alkaline coal mine drainage 287–8, 292–5
 composition of three sampled waters 294
 mine spoil leachate 293
 pumped mine water 293–5
 sampling and analysis methods 288
 schematic cross-section of mine 293
Los Ruedos Mine, NW Spain, pollution from mercury and coal mine spoil in Morgao catchment 329–31
 Lycopodium clavatum spores, underground minewater tracing 52–3
 LydiA technique (Lycopodium clavatum/microspheres), mine water tracing 52–6
Magnesian Limestones, Upper and Lower 79
 mercury pollution, Morgao catchment, Spain, mining wastes 330–1
 metal cations, mine pit lakes 163, 164
 metal sulphide mines see alkaline coal mine drainage, Siberia and Svalbard
 Mieres see Spain, NW
MIFTM model, mine water hydraulics 225–8
 mine pit lakes, hydrogeochemical dynamics 159–85
 chemical stratification 167
 chemistry 161–73
 arsenic variation 163
 divalent metal cations variation 163
 representative analysis 162
 Younger diagram 163
 concentration processes 173–5
 conceptual model 160–1
 deep mine voids test pumping for assessment 315–26
 Mines see Spain, NW
 metal sulphide mines see alkaline coal mine drainage, Siberia and Svalbard
 Mieres see Spain, NW
 MIFTM model, mine water hydraulics 225–8
 mine pit lakes, hydrogeochemical dynamics 159–85
 chemical stratification 167
 chemistry 161–73
 arsenic variation 163
 divalent metal cations variation 163
 representative analysis 162
 Younger diagram 163
 concentration processes 173–5
 conceptual model 160–1
 deep mine voids test pumping for assessment 315–26
 Minas de Linares, NW Spain, contamination from abandoned mines 230–43
 map of location 231
 sampling and data collection 232–4
 schematic diagram of colliery and site of Cueva de la Plata 233
 stratification within mine workings 234–5
 lead–zinc mines(former)
 Cuenca, Spain 235–40
 Madrid, Spain 240–43
geochemical controls 167-73
attenuation processes 171-3
mineral weathering rate prediction 137-57
Aitik mine, Sweden 151-5
laboratory vs field conditions and data 152
predicted vs measured weathering rates at meso-scale and field scale 154-5
modelling 144-50
batch reactors 144-7
column reactors 147-50
mine water discharge chemistry 379-90
iron chemistry 387-9
ternary diagram comprising Fe, SO4 and HCO3 389
mine pit lakes 161-73
mine water characterisation 381-6
discharge data for Wales, Scotland and County Durham 382-4
net-alkalinity vs Cl/Cl + SO4 386
Piper diagrams 381-6
names of mines/sources and times 381
proposal for modified classification scheme 386-7
summary of processes affecting discharge chemistry 380
mine water discharges, list 381
mine water inflow, general conceptual models 69-72
mine water pollution
assessment by risk-based methods 139-44
RBCA guidelines 139-44
contaminant sources 138
mine wastes as risk source 233-6
sinks for metals (Cumbria) 241-50
South Nottinghamshire Coalfield closure 102-4
mine water recovery in UK coalfields 61-73
modelling 66-72
area-related flow model 71
average permeability model 71-2
coal measures inflows 69
inflow data 68-72
logarithmic flow model 72
recovery curves 66-8
results 72
shaft water 68
shallow workings water 69
monitoring 61-6
dams 64-5
East Fife coalfield 62-4
mining connections, permeability 65-6
predicting mineral weathering rates 137-57
mine water risk assessment see mine water pollution
mine water tracing 47-60
artificial/natural tracers 49
LydiA technique (Lycopodium clavatum/microspheres) 52-6
sodium chloride 52
Strassberg-Harz underground mine 49-57
mine description 49-52
tracer amount 52
tracer sampling and analyses 52-3
tracer test aims 48
geochemical properties, vs natural lakes 160
hydromorphic properties, vs natural lakes 160
thermal stratification 166, 167
geochemical processes 160
geochemical trends over time 177-8
geological processes 175-83
geological controls 175-83
Nevada case study 179-83
hydromorphic properties, vs natural lakes 160
limnological processes 165-7
vs natural lakes 160, 165
geochemical controls 167-73
attenuation processes 171-3
mineral weathering rate prediction 137-57
Aitik mine, Sweden 151-5
laboratory vs field conditions and data 152
predicted vs measured weathering rates at meso-scale and field scale 154-5
modelling 144-50
batch reactors 144-7
column reactors 147-50
mine water discharge chemistry 379-90
iron chemistry 387-9
ternary diagram comprising Fe, SO4 and HCO3 389
mine pit lakes 161-73
mine water characterisation 381-6
discharge data for Wales, Scotland and County Durham 382-4
net-alkalinity vs Cl/Cl + SO4 386
Piper diagrams 381-6
names of mines/sources and times 381
proposal for modified classification scheme 386-7
summary of processes affecting discharge chemistry 380
mine water discharges, list 381
mine water inflow, general conceptual models 69-72
mine water pollution
assessment by risk-based methods 139-44
RBCA guidelines 139-44
contaminant sources 138
mine wastes as risk source 233-6
sinks for metals (Cumbria) 241-50
South Nottinghamshire Coalfield closure 102-4
mine water recovery in UK coalfields 66-72
plume migration from gold mine tailings dam 341-2
pyritic roof strata, aquatic pollutant release 261
SW Spain, Azañacullar mine spill 189-202
water quality, speciation 229-32
models
CODE-BRIGHT, flow and heat 192-4
ConSim 234
groundwater inflow 69-72
hydrological simulation program Fortran (HSPF) 303
MIFIM 223-6
MINTEQA2 (US EPA) 233
MODFLOW 114, 223, 226-8, 305, 342
MODPATH, particle tracking 234-6, 342
MT3DMS solute transport 342
SHTRAN/VSS-NET 93-5
WATEQ4F 356
see also Piper diagram/plot
MODFLOW model, simulation of ground water leakage from flooded mine 114, 223, 226-8, 305, 342
MODPATH particle tracking model 234-6, 342
models
CODE-BRIGHT, flow and heat 192-4
ConSim 234
groundwater inflow 69-72
hydrological simulation program Fortran (HSPF) 303
MIFIM 223-6
MINTEQA2 (US EPA) 233
MODFLOW 114, 223, 226-8, 305, 342
MODPATH, particle tracking 234-6, 342
MT3DMS solute transport 342
SHTRAN/VSS-NET 93-5
WATEQ4F 356
see also Piper diagram/plot
MODFLOW model, simulation of ground water leakage from flooded mine 114, 223, 226-8, 305, 342
MODPATH particle tracking model 234-6, 342
models
CODE-BRIGHT, flow and heat 192-4
ConSim 234
groundwater inflow 69-72
hydrological simulation program Fortran (HSPF) 303
MIFIM 223-6
MINTEQA2 (US EPA) 233
MODFLOW 114, 223, 226-8, 305, 342
MODPATH, particle tracking 234-6, 342
MT3DMS solute transport 342
SHTRAN/VSS-NET 93-5
WATEQ4F 356
see also Piper diagram/plot
MODFLOW model, simulation of ground water leakage from flooded mine 114, 223, 226-8, 305, 342
MODPATH particle tracking model 234-6, 342

<table>
<thead>
<tr>
<th>Conceptual Flow Model</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-mining and post-mining conditions</td>
<td>299–301</td>
</tr>
<tr>
<td>Water management strategies</td>
<td>311–13</td>
</tr>
<tr>
<td>Annual hydrographs</td>
<td>312</td>
</tr>
<tr>
<td>Impact on river water</td>
<td>313</td>
</tr>
<tr>
<td>Plan for mine closure</td>
<td>297–8</td>
</tr>
<tr>
<td>Reduction in river flow</td>
<td>312–13</td>
</tr>
<tr>
<td>South Nottinghamshire Coalfield closure</td>
<td>99–104</td>
</tr>
<tr>
<td>Borehole and shaft penetrations</td>
<td>101</td>
</tr>
<tr>
<td>Environmental consequences</td>
<td>104</td>
</tr>
<tr>
<td>Mine water risk evaluation</td>
<td>102–4</td>
</tr>
<tr>
<td>Water balance</td>
<td>103</td>
</tr>
<tr>
<td>South Wales Coalfield, Eastern sector, fingerprinting mine water</td>
<td>275–86</td>
</tr>
<tr>
<td>Methodology</td>
<td>277–8</td>
</tr>
<tr>
<td>Map of river catchments in Eastern sector</td>
<td>278</td>
</tr>
<tr>
<td>Middle–Lower Coal Measures</td>
<td>277, 282</td>
</tr>
<tr>
<td>Mining position</td>
<td>277</td>
</tr>
<tr>
<td>Monthly sampling analysis</td>
<td>285–6</td>
</tr>
<tr>
<td>Outline geology</td>
<td>276</td>
</tr>
<tr>
<td>Presentation of data</td>
<td>278–85</td>
</tr>
<tr>
<td>Bar charts</td>
<td>283, 285</td>
</tr>
<tr>
<td>Piper diagrams</td>
<td>281–4</td>
</tr>
<tr>
<td>Upper Coal Measures</td>
<td>276–7, 279–82</td>
</tr>
<tr>
<td>Spain, NW, Mieres, Asturias, pollution from mercury and coal mine spoil in Morgao catchment</td>
<td>327–36</td>
</tr>
<tr>
<td>Characteristics of studied area</td>
<td>329</td>
</tr>
<tr>
<td>Climate and precipitation</td>
<td>329</td>
</tr>
<tr>
<td>Coal mining wastes</td>
<td>331–2</td>
</tr>
<tr>
<td>Impoundments</td>
<td>329–32</td>
</tr>
<tr>
<td>Schematic view of spoil heaps and drainage systems</td>
<td>332</td>
</tr>
<tr>
<td>Geology and mineralization</td>
<td>329</td>
</tr>
<tr>
<td>Map of Cantabrian zone</td>
<td>330</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>332–3</td>
</tr>
<tr>
<td>Los Rueldos Mine</td>
<td>329–31</td>
</tr>
<tr>
<td>Elements from mercury spoil heap</td>
<td>331</td>
</tr>
<tr>
<td>Mining industry wastes</td>
<td>330–1</td>
</tr>
<tr>
<td>Map of study area and drainage basin</td>
<td>328</td>
</tr>
<tr>
<td>Water movement</td>
<td>332–3</td>
</tr>
<tr>
<td>Water quality</td>
<td>333–5</td>
</tr>
<tr>
<td>Spain, SW, Aznalcollar mine spill, sulphide oxidation in unsaturated soil</td>
<td>187–204</td>
</tr>
<tr>
<td>Column experiment</td>
<td>188–90</td>
</tr>
<tr>
<td>Leachates</td>
<td>188</td>
</tr>
<tr>
<td>Mass fraction of each mineral in sludge</td>
<td>189</td>
</tr>
<tr>
<td>Geochemical model</td>
<td>195–7</td>
</tr>
<tr>
<td>Location of mine and area affected by sludge</td>
<td>188</td>
</tr>
<tr>
<td>Modelling</td>
<td>189–202</td>
</tr>
<tr>
<td>Results</td>
<td>197–202</td>
</tr>
<tr>
<td>Reactive transport model</td>
<td>193–5</td>
</tr>
<tr>
<td>Clayey-soil mixture</td>
<td>201</td>
</tr>
<tr>
<td>Sandy-soil mixture</td>
<td>197</td>
</tr>
<tr>
<td>Transient flow and heat transport model</td>
<td>192–3</td>
</tr>
<tr>
<td>Clay-sludge mixture</td>
<td>194</td>
</tr>
<tr>
<td>Sand-sludge mixture</td>
<td>193</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>245</td>
</tr>
<tr>
<td>Spills</td>
<td>187–204</td>
</tr>
<tr>
<td>Soil drainage</td>
<td>245</td>
</tr>
<tr>
<td>Cleveland Ironstone Field</td>
<td>260–2</td>
</tr>
<tr>
<td>Iron release</td>
<td>205–14</td>
</tr>
<tr>
<td>Leachate, alkaline mine drainage</td>
<td>293</td>
</tr>
<tr>
<td>Mine water discharge chemistry</td>
<td>379–90</td>
</tr>
<tr>
<td>Pollution from mercury and coal mine, Spain</td>
<td>327–36</td>
</tr>
<tr>
<td>Strassberg-Harz underground minewater tracing</td>
<td>49–57</td>
</tr>
<tr>
<td>Possible tracers</td>
<td>48–9</td>
</tr>
<tr>
<td>Subsidence</td>
<td>143</td>
</tr>
<tr>
<td>Sulphate mass flow</td>
<td>143</td>
</tr>
<tr>
<td>Sulphide oxidation, SW Spain, Aznalcollar mine spill</td>
<td>187–204</td>
</tr>
<tr>
<td>Sulphide–water reactions, mine pit lakes</td>
<td>170</td>
</tr>
<tr>
<td>Sulphide-containing ores, post-closure mine water quality, S Africa</td>
<td>297–314</td>
</tr>
<tr>
<td>Summer Camp, Nevada, mine pit lakes</td>
<td>177–83</td>
</tr>
<tr>
<td>Svalbard, Longyearbyen, alkaline mine drainage</td>
<td>287–8, 292–5</td>
</tr>
<tr>
<td>Sweden, Aitik mine, mineral weathering rate prediction</td>
<td>151–5</td>
</tr>
<tr>
<td>Tailings dam, plume migration</td>
<td>337–46</td>
</tr>
<tr>
<td>Tarkwaian System, Tarkwa, hydrogeological data collection</td>
<td>126–7</td>
</tr>
<tr>
<td>Test pumping, deep mine voids</td>
<td>315–26</td>
</tr>
<tr>
<td>Thermal stratification, mine pit lakes</td>
<td>166</td>
</tr>
<tr>
<td>Thiobacillus ferroxidans</td>
<td>267–74</td>
</tr>
<tr>
<td>Iron oxidation</td>
<td>209</td>
</tr>
<tr>
<td>Tiered risk assessment, mine water pollution</td>
<td>139–42</td>
</tr>
<tr>
<td>Tin mines (Cornwall, UK)</td>
<td>90</td>
</tr>
<tr>
<td>Wheal Jane, water quality</td>
<td>see also Bolivia</td>
</tr>
<tr>
<td>Tin mines (Cornwall, UK) groundwater rebound model</td>
<td>89–97</td>
</tr>
<tr>
<td>Calculation of infiltration</td>
<td>92</td>
</tr>
<tr>
<td>Meteorological data</td>
<td>92</td>
</tr>
<tr>
<td>Mine layout</td>
<td>91</td>
</tr>
<tr>
<td>Relationship of pumping data with rainfall</td>
<td>92–3</td>
</tr>
<tr>
<td>SHETRAN/VSS-NET model</td>
<td>93–5</td>
</tr>
<tr>
<td>Simulations</td>
<td>94–6</td>
</tr>
<tr>
<td>Transient flow and heat transport models, sulphide oxidation in unsaturated soil</td>
<td>192–3</td>
</tr>
<tr>
<td>Transmissivities</td>
<td>22–3, 338</td>
</tr>
<tr>
<td>Uranium mine</td>
<td>see Slovak Republic, Novoveska Huta</td>
</tr>
<tr>
<td>Vershina Tyoka Magnetic Mine, Khakassia, Siberia, alkaline mine drainage</td>
<td>287–8, 291–2</td>
</tr>
<tr>
<td>Analyses of stream and pumped mine water</td>
<td>292</td>
</tr>
<tr>
<td>Sampling and analysis methods</td>
<td>288</td>
</tr>
<tr>
<td>Vredfort Dome, impact structure</td>
<td>339</td>
</tr>
<tr>
<td>Vryheid Coalfield</td>
<td>see South Africa, post-closure coalmine water quality</td>
</tr>
<tr>
<td>WATEQ4F model</td>
<td>356</td>
</tr>
<tr>
<td>Water</td>
<td>see mine pit lakes; mine water discharge chemistry; mine water tracing; mine water recovery</td>
</tr>
<tr>
<td>West Rand</td>
<td>see South Africa, plume migration from gold mine tailings dam wetlands, constructed</td>
</tr>
<tr>
<td>Whitmoor Common Fault</td>
<td>78–9</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>355</td>
</tr>
<tr>
<td>Younger diagram, chemistry of mine pit lakes</td>
<td>163</td>
</tr>
<tr>
<td>Zinc</td>
<td>see also lead–zinc mines (former)</td>
</tr>
<tr>
<td>Deficits</td>
<td>243–8</td>
</tr>
<tr>
<td>Potable water</td>
<td>241</td>
</tr>
</tbody>
</table>