Index

Page numbers in italic refer to figures, in bold refer to tables

Aachen Formation 201–202
Aalburg Formation 201
acid-gas
dewatering 227
injection 2, 11, 137
Alberta Basin, Canada 225–234, 226, 227
case histories 232–233
disposal wells 230
choice of location 230
environmental issues 230–231, 233
formation damage 231
phase behaviour 229
safety 227, 229, 231–232
surface operations 228–230, 231
interaction with subsurface formation 231
migration pathways 230
properties 227
sweetening 228
Alberta basin
acid-gas injection 225–234
CO₂, 138, 139, 141, 142
CO₂ injection 93, 94
CO₂ solubility 90
flow rates 132, 134, 135
Alpine Fold Belt 30
Anahuac Formation 149, 152, 153
andesite, Eocene 37
anhydrite-CO₂ interaction 97, 98
aquiclude 87, 89, see also caprock
aquifers
drinking water 202–203
saline
CO₂ sequestration 1, 2, 11, 21–26, 134–138
Campine Basin 197, 198
reactive transport simulation 109–126
screening criteria for CO₂ storage 124–125
see also Saline Aquifer CO₂ Storage project (SACS)
aquitard 132
asphaltene precipitation, effect of CO₂ injection 222
asphyxiation 38
bacteria, source of CO₂ 62
Badot, mineral water 37
barriers, engineered 235, 236, 242
basins
sedimentary 130
characteristics 132–133
CO₂ source 129, 131
CO₂ storage capacity 131
formation 132–133
geothermal gradient 138
geothermal regime 132–133
Belgian Coal Measure Group 194
Belgium, greenhouse gas reduction 193, 207–208
Black Warrior Basin 207
bleaching 55
blow outs, CO₂ 34
Blue Whale gas field, Vietnam 10
Blue Whale high CO₂ accumulation 64–65, 66, 67, 78–79, 80
Bonanza Carboniferous reservoir, CO₂-EOR 219, 220
borehole completions, reactions with CO₂, 88, 99–102
Bowen-Gunnedah-Sydney Basin system, CO₂-mineral reactions 96, 119
Brac Fault, North Sea 66
Bravo Dome, New Mexico, high CO₂ reservoir 10, 67, 71–73, 74, 76, 78, 79, 82–83, 95–96
brine formations, CO₂ storage 147–162
brine injection experiments 216–222
Buckley-Leverett theory 140
buffering 73, 76, 79, 90, 92
Bunter sandstone 2, 19, 21, 26, 33
reservoir properties 24, 25, 26
Buntsandstein
Campine Basin 194, 201
Vorderrhrn 33
calcarenite, Campine Basin 202–203
calcite precipitation 46, 47–48, 88, 119, 120–122, 125, 211
scale formation at CO₂-EOR facilities 223
calcium silicate hydrate (CSH), interaction with CO₂, 101, 102
Campine Basin, Northern Belgium 2
carbonates 197–200
CO₂ sequestration 193–209
coal reserves 204, 205, 206
coaled methane reserves 203–206
geology 194, 195, 196, 197, 203
karstification 194, 197–200
reservoir properties 198
capacity 151
Frio Formation 154, 156–157
Utsira Formation 178
caprock
carbonate cementation 123–124
optimal performance 124
pore space (‘membrane’) 230
porosity-permeability 123–124
reaction with CO₂, 96–99
Utsira Formation 12–13, 23, 183
carbon
emission trading schemes 13, 193
uptake by terrestrial ecosystems 17–18
carbon dioxide see CO₂
carbonate mineral dissolution 76, 78–79
carbonate rock, addition of CO₂, 80, 81
carbonate veins, isotope analysis 51–52, 53
carbonates
 Campine Basin 197-200
decarbonation 54
injection of CO₂ 1, 95
modelling 91-94
Castile Formation brine 243, 244
CBM see coalbed methane
cement
carbonation in borehole completions 88, 99-102
compatibility with acid-gas 231-232
cementation
carbonate, in shales 122-124
dawsonite 231-232
dolomite, dissolution 217, 220
Cenozoic, rift system 29, 30, 31, 39
CFCs (chlorofluorocarbons) 8
CH₄ see methane
Chaffin Ranch Geyser 55
chalk, Campine Basin 201-203
Chaunoy Formation 72-73, 77
climate change 1, 7
CO₂
acid-gas 225-228, 229
atmospheric 61, 62
levels 17-18
biogenic 32, 62
‘bubble’ 87, 89, 147
buoyancy 20, 141, 142
capture 8-10, 18-19, 59
chemical fixing 21
chimney 186
dissolution 3, 21, 65, 87-89, 135, 211
effect on seismic reflectivity 186-188
effect on subsurface 61
emission reduction 1, 107
flow paths 54-55, 88
fluid properties 138-141, 139
gas cap 32
gas pools 30, 31, 34, 36
gas vents 31, 38
geochemical fate 3, 21
injection 20
ECBM production 206-207
effect on host rock
 experiments 94-95
 simulation 91-94
effect on seismic data 181-190
effect on water-rock interaction
 field evidence 212-216, 217-220
 simulation 216-217, 220
EOR projects 212-223
methods 212, 213
see also Utsira Sand Formation, CO₂ injection
leakage 37-39, 43-56
mantle 34, 37
methane production 2-3
migration 3, 21
immiscible 108, 111, 114
natural
 as analogues 3, 29-40, 43-56, 61-63, 63
reservoirs 10, 60
 sources 43, 53-54, 61-63, 62, 65, 71
 northern Europe, point sources 19
 oil and gas recovery 2, 11, 21, 22
 partial pressure 73
 phase change 20, 32, 88, 138
 reactive transport simulation 109-126
 in rock geochemistry 61, 73, 76-83
 solubility 21, 89, 90
 stripping 2, 109, 111
 supercritical 37, 87, 88-90, 97, 99, 138-139, 147
 tuning effect 185, 187, 188
 viscosity 138, 139, 140
volcanic 32, 62
CO₂-brine injection 216-222
CO₂-EOR programs 2, 11, 212-223
Colorado, USA 214, 215
 experimental data 221
 Hungary 213, 214, 215
 transport 19
 Wyoming, USA 214, 215-216
CO₂-water reactions 87-90
CO₂-water-rock interaction 3, 4, 21, 94, 96-97, 212-223
CO2ROCK simulator 91
col amine, CO₂ storage 206-207
col am rank-methane relationship 204
coal seams
 unmineable
 CO₂ storage 1, 11
 methane extraction 2-3
 Westphalian 203-207
 coal storage potential 206-207
 coal reserves 204, 205
 gas content 204
coalbed methane (CBM) 203-207, 205, 206
Colorado Plateau
géologie 43-44
natural CO₂ reservoirs 43-56
Colorado, USA, CO₂-EOR programs 214, 215
Compliance Monitoring Programme (CMP) 244
containment 87-88
acid-gas 231-232, 233
caprock-CO₂ reaction 96-99
core flooding experiments 95, 216-222
corrosion, acid-gas 227, 228, 231
‘cracks’ 230, 233
Crooks Gap Carboniferous reservoir, CO₂-EOR 218, 220
Crystal Geyser 44, 46, 47, 48, 54
 water chemistry 50-51, 51, 52, 71
Culebra Dolomite 243, 244
Da Nang Basin, offshore Vietnam 64-65
dawsonite 80, 90, 93, 96, 98
 intra-plume cementation 119-120, 125
decarbonation 54
decomposition, organic 62
degassing
 mantle 53, 62
 natural 43-56
desulphurization 2, 225
diagenesis 62, 63, 64-65, 66, 67, 71, 78
Dilsen Fault System 194, 195
INDEX

disequilibrium 108, 109
dissolution 65
 CO₂, 3, 21, 87-89, 135, 211
dolomite 217, 220
 K-feldspar 37, 79, 119-120
 Visean 197
dolostone, CO₂-water-rock interaction 214, 216
 Dolphin low CO₂ accumulation 64-65, 66, 67, 78-79, 80
 Donderslag Fault Zone 194, 195, 199
 Drax coal-fired power-station 18
 ECBM see enhanced coalbed methane
ecosystems, uptake of CO₂ 17-18
 emission
 anthropogenic 7-8, 8, 17, 19, 193
 trading schemes 13, 193
energy
 alternative 5, 13, 17
 renewable 8, 14, 124
 enhanced coalbed methane (ECBM)
 production 193, 206-208
 CO₂ injection 206-208
 enhanced oil recovery (EOR) 2, 11, 21, 22, 212-223
 CO₂ injection methods 212, 213
 transport 19
 Entrada Sandstone 50, 55
 environment, accessible 242
 Europe
 natural CO₂ accumulation 30
 underground CO₂ sequestration 17-27
 evaporites
 Crystal Geyser system 51, 52
 Triassic 37
faults 153
 CO₂ fluid flow 54-55
 ‘low permeability’, CO₂ leakage 43-56
 feldspar, dissolution 37, 79, 80, 119-120
 fingering, viscous 89, 108, 232
 fixing, chemical 21
 Flanders, CO₂ sequestration 193-209
 flaring, gas 225
 Florina CO₂ field 38
 flow
 fluid 20, 54
 down-dip 134, 141
 in sedimentary basins 132-133, 133
 up-dip 3, 55
 folds 153
 forests, CO₂ sequestration 9
 fractures 230
 Montmaurin reservoir 37
 Vorderbrüggen reservoir 31-34
 France, CO₂ accumulations 36
 Frio Formation 149-150, 152-154
 fuel, fossil
 combustion 1, 17
 in sedimentary basins 129
 gas
 accumulations 31
 acid see acid-gas
 CO₂, stripping 2, 11, 109
 flaring 225
 greenhouse 8
 anthropogenic 7-8, 8, 13, 107, 193
 reduction 1, 4-5, 7-9, 13, 59, 193
 natural
 sour-gas 225, 228
 storage 10, 198, 199
 non-condensable (NCG) 39
 recovery, CO₂, enhanced 2
 gas cap 32
 gas fields, CO₂ sequestration 21
 gas pools, CO₂-rich 30, 31, 34, 36
 gas vents (moffettes) 31, 38, 39
 Gassmann modelling 183-184, 186
 GEMBOCHS database/software 108, 109
 Genendijk-Huls structure 195, 199
 geochemistry
 CO₂ 3, 21
 rock 73, 76-83
 geysers 44, 46, 47, 48, 49-51, 55
 Glauconite Sandstone aquifer, CO₂ injection simulation 93, 94
 Glen Ruby 1-X well 44, 54
 global warming 1, 7-8, 18
 Global Warming Potential (GWP) 8
 Gorgon gas field, Australia, CO₂ stripping 2
 gravimetry 34
 Green River 45
 gas seeps 46
 gross pushdown factor 186-188
 Gulf Coast sandstones 148
 Gulpen Formation 202
 Herbaart dome 198-200
 Helchteren Formation 194, 201
 heterogeneity
 effect on sequestration effectiveness 151
 effect on storage capacity 151
 geological 141, 142, 147-162
 modelling 149-150
 Frio Formation 153-161
 stratigraphic 152
 structural 153
 Utsira Sand Formation 175-176
 HFCs (hydrofluorocarbons) 8
 Hoogstraten fault 194, 195
 Hordaland Formation 167, 168, 171
 Houston, Texas
 CO₂ emissions 148
 geological heterogeneity 148-153
 Houthem Formation 202
 H₂S
 in acid-gas 225-228, 229
 storage 2, 137
 Hungary
 CO₂ gas fields 34, 35
 leakage 37-38
 CO₂-EOR programs 213, 214, 215
 hydrate, formation in acid-gas 228, 229-230, 232
 hydrocarbon
 migration 3
 as source of CO₂ 53-54
 hydrogen sulphide see H₂S

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3876578/9781862394810_backmatter.pdf by guest on 10 December 2018
injection see CO₂ injection
injectivity 26
International Panel on Climate Change (IPCC) 1, 7
isotope analysis
Da Nang Basin CO₂ accumulation 64
travertine 51-52, 53
K-feldspar, dissolution 119
karstification
Campine Basin 194, 197-200
Mátrađerecske 37-38
kerogen, decarboxylation 62, 63
Keuper Formation 194, 201
Kupferschiefer 31
Kyoto Protocol 8, 13, 193, 207
Latera geothermal field 38-39
leakage 37-39, 43-56, 133
acid gas 229, 230-232, 233
Leut Fault 194, 195
Little Grand Wash fault, Utah
CO₂ leakage 43, 44-49
geology 44, 45, 46
mineral deposits 47-49
Maastricht Formation 202
magnesite precipitation 98, 119, 120-122, 123
Massif Central 36, 37
Mátrađerecske, CO₂ seepage 37-38
Mercia Mudstone Group 97
methane (CH₄)
in acid-gas 227-228, 229
effect on density of CO₂ 140
Latera geothermal field 39
production 1
reduction 8
Westphalian Coal Measures, Campine Basin 203, 204, 206
see also coalbed methane
methanogenesis 62
migration
acid gas 230
CO₂, 3, 12-13, 21
immiscible 108, 114-116
in natural accumulations 29, 34, 37-39
Utira Sand Formation 12-13, 176-178
Mihályi-Répcelak reservoir 34, 35
Miller oil field, North Sea, high CO₂ reservoir 65, 66, 67, 68, 70, 71, 79, 80
minerals, aquifer, reaction with CO₂ 90-96
mines, coal, CO₂ storage 206-207
Moab fault 54
modelling
CO₂-mineral interaction 91-94
Gassmann 183-184
geochemical 39, 141
CO₂ addition to geological systems 79-83, 91-94
impact of heterogeneity on sequestration 149, 153-161
reactive transport 108-109
hydrological and compositional data 110-112
thermodynamic and kinetic data 113-114
Utira Sand reservoir 176-179, 183-189
moffetta see gas vents
moffettes see gas vents
monitoring
compliance-related 243-244
drilling, Delaware Basin 244-245
environmental 244
geophysical 23-24
geochemical 244, 245
groundwater 244
injected CO₂ 4, 11-13, 23-24
nuclear waste disposal 235-239
operational phase 240-241
post-closure 238-239, 241, 243, 245
pre-closure 243, 244
pre-operational 240
rock mechanics 245
seismic 12, 181-190
subsidence 245
WIPP 241-245
Montmiral reservoir 34, 36, 37
Montreal Protocol 8
mud edifices, Utira Sand Formation 167, 168, 169, 170, 171, 173, 181
Muschelkalk Formation 194, 201
Natuna gas field, Indonesia 10
Natural Analogues for the Storage of CO₂ in the Geological Environment (NASCENT) project 29, 31
NCG see gas, non-condensable
Neeroeteren Formation 200-201, 207
N₂O (nitrous oxide) 8
Nordland Shale 167, 172
North Sea Basin 19
oil fields, CO₂ content 65-71, 68
sequestration reservoirs 21-26
Norway, CO₂ emission 2
nuclear power, as alternative to fossil fuel 8
nuclear waste disposal see waste disposal, nuclear
NUFT reactive transport simulator 108-109
oceans, storage of CO₂ 9-10, 13, 19-20
oil fields, CO₂ sequestration 21-22
oil recovery, CO₂ enhanced see enhanced oil recovery (EOR)
Pannonian Basin 30, 34, 35
Paradox Basin, Utah
geochemistry 43-44
oil and gas deposits 44, 53, 54
Paradox Salt 54
Paris Basin 72-73, 77, 91
Pembina Cardium Formation, CO₂-water-rock interaction 214, 217
performance assessment (PA), nuclear repository sites 237, 243, 244
permeability
Montmiral reservoir 37
sedimentary basins 132
Utira Sand Formation 175
Perrier, mineral water 37
petroleum, North Sea reservoirs 65-71
PFCs (perfluorocarbons) 8
pH evolution 116-119
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3876578/9781862394810_backmatter.pdf by guest on 10 December 2018
pipelines 13, 19, 208
plume, immiscible
interaction with formation water 116–119
interaction with shale 123–124
migration 114–122, 124, 138
monitoring 23–24
Poederlee antiform 198–199
pore-water 20
porosity
Frio Formation 150
monitoring 23–24
Montmiral reservoir 37
Rotliegend 31
secondary 37, 39
Utsira Sand Formation 23, 174–175
porosity-permeability evolution 122, 123–124
power plants
CO₂ capture 1, 18–19, 211
CO₂ emissions 1, 18, 147, 148
precipitation
calcite 46, 47–48, 88, 119, 120–122, 125, 211
carbonate 3, 76, 87–88, 211
carbonate rind 120–122, 123, 125
dawsonite 90, 98, 119–120
imnagene 98, 119, 120–122, 123
pressure
fluid 73
reservoir 176
well head 184
'punctures' 230–233
'pushdown' effect 181, 186–188, 189
radon 38
reactions
in cement 99–102
dissolved CO₂-aquifer minerals 90–96
dissolved CO₂-caprock 97–99
in rock, CO₂ addition 73, 76–83, 87–103, 89
supercritical CO₂-borehole completions 99–102
supercritical CO₂-caprock 97
supercritical CO₂-water 88–90
within borehole completion 99–102
within caprock 96–99
within host formation 88–96
reef mounds 198–199
reflectivity, seismic 186–188
reforestation 9, 17–18
regulation 4, 13
Répéclak see Mihályi-Répéclak reservoir
reservoir simulation 13
reservoirs
carbonate 64–65
degassing 43–54
fractures 31–34, 37
geochemical models 39
geological
barriers to implementation 11–13
risk assessment 13
storage of CO₂ 10–11, 13–14, 20–27, 197, 198
natural CO₂ 31–40
oil and gas
CO₂, 1, 2
CO₂ sequestration 21, 140–141, 197
quartzose sandstone 65–66, 69, 71
red-bed sandstone 71–73
Utsira Formation 18, 22–24, 165–179
CO₂ injection 182
geology 165, 167–168, 171
heterogeneity 175–176
model 176–179, 183–186, 184
net/gross ratio 175
permeability 175
porosity 23, 174–175
pressure and temperature 176
Rhenish Massif 32
rind, carbonate 120–122, 123, 125
Rio Grande rift system 72
risk assessment, geological storage 13
Roer Valley Graben 194, 197, 201–202, 207
Rotliegend CO₂ reservoir 31, 33
SACS see Saline Aquifer CO₂ Storage project
Salado Formation 241, 243
Saline Aquifer CO₂ Storage project (SACS) 12–13, 165, 181
salt
deformation 44, 54
structures 24, 25, 153, 154
Salt Norm 51, 52
Salt Wash faults, Utah
CO₂ leakage 43–56
geology 45, 46
salting-out 89, 117
San Juan Basin, USA, coal seam storage of CO₂ 11
sandstone
bleached 44, 50, 55
carbonate cemented, CO₂-water-rock interaction 214, 216
sandstone, addition of CO₂ 80, 81, 82
laboratory experiments 94–95
modelling 91–94
saturation, immiscible 114–116
scale
at CO₂-EOR facilities 223
Florida CO₂ field 38
screening criteria, storage sites 124–125, 240
seals
borehole completions, reaction with CO₂ 99–102
caprock 23, 96, 124
sedimentary basins see basins, sedimentary
segregation, gravity 198, 115
CO₂ 8–9, 13, 17–27
deep ocean 1, 9–10, 13, 19–20
effectiveness 151, 157–161
impact of folding and faulting 153
impact of heterogeneity, modelling 153–157
natural analogues 59–83
Colorado Plateau 55–56
options 8–9, 13
underground 20–27
chemical reactions 87–102
environmental issues 26–27
Westphalian Coal Measures 203–207
serpentine, reaction with CO₂ 138
SF₆ (sulphur hexafluoride) 8
seismic survey 22, 166, 167, 169, 170, 173, 177–178, 181
seismic velocity 183–189
shale 172–173, 183
storage capacity 178
Vaals Formation 201–202
Variscan uplift 194
velocity
pushdown effect 24, 181, 186–188, 189
seismic, Utsira Sand Formation 183–189
Vert le Grand, Paris Basin, low CO₂ reservoir 67, 71–73, 74, 75, 78, 79, 82
Vichy, mineral water 37
Vietnam, Blue Whale gas field 10, 64–5
Viking Graben 65, 66, 69
Viséan carbonates 197–200, 207
volcanism
role of CO₂ 61
Tertiary 29, 30, 31, 37, 39
Vorderrhön CO₂ deposits 30, 31–34, 33
WAG see water-alternating-gas
warming, global see global warming
waste disposal
nuclear
monitoring 235–239
performance assessment 237
Waste Isolation Project Plant (WIPP), New Mexico 235, 237, 241–245
monitoring 243–245
water
CO₂-rich 29, 31, 39
flow 54–55
mineral water industry 37
drinking, Campine Basin 202–203
formation
displacement by injected CO₂ 108
reaction with acid-gas 231
reaction with CO₂ 73, 77–78, 87–90, 116–119
in sedimentary basins 132
geyser, chemistry 50–51
solubility in acid-gas 227, 228, 229
water-alternating-gas (WAG) 212
wavelet determination 184–185
Weber Formation, 220,
CO₂–water–rock interaction 214, 217, 220
Weber Sandstone, CO₂ injection simulation 95
Werra potash mine 31, 32
Werra Rock Salt 31, 32, 34
Westphalian Coal Measures
CO₂ sequestration 203–207
geology 203
Weyburn oil field, Canada
EOR/CO₂ storage 2, 11
Monitoring Project 12, 13
Woodside Geyser 55
Wyoming, USA, CO₂-EOR programs 214, 215–216
Zechstein Limestone 31, 32, 33
Zechstein Salt 24, 25, 34
Carbon dioxide (CO\textsubscript{2}) is the main compound identified as affecting the stability of the Earth's climate. A significant reduction in the volume of greenhouse gas emissions to the atmosphere is a key mechanism for mitigating climate change. Geological storage of CO\textsubscript{2}, or the injection and long-term stabilization of large volumes of CO\textsubscript{2} in the subsurface in saline aquifers, in existing hydrocarbon reservoirs or in unmineable coal seams, is one of the more technologically advanced options available. A number of studies have been carried out and are reported here. They are aimed at understanding the safety, physical and chemical behaviour and long-term fate of CO\textsubscript{2} when stored in geological formations. Until efficient, alternative energy options can be developed, geological storage of CO\textsubscript{2}, the subject of this volume, provides a mechanism to reduce carbon emissions significantly whilst continuing to meet the global demand for energy.

Visit our online bookshop: http://bookshop.geolsoc.org.uk
Geological Society web site: http://www.geolsoc.org.uk

Cover illustration:
Time-lapse seismic data across the Utsira Formation, the world's first long term CO\textsubscript{2} storage reservoir, at Sleipner field, North Sea. The images (from left to right) show pre-CO\textsubscript{2} injection, 3 and 5 years post-CO\textsubscript{2} injection data acquired across the injection point. High amplitude reflections are observed throughout the storage reservoir, illustrating the intra-reservoir distribution of the CO\textsubscript{2}.

(Seismic image provided by Statoil and the SACS project partners.)