accidents in nuclear reactors 144–6
acid deposition 159
acid generation 175–7
acid waters 192–3, 322
actinides 67
 americium 146–8
 anthropogenic emissions 143–51
 borosilicate glasses 41
 geochemical behaviour 89–111
 immobilization 46–51, 54, 123–8
 neptunium 78–80
 plutonium 14–15, 17, 18–19, 76–8, 146–9
 sorption mechanisms 549–57
 uranyl sorption 545–9
activation energies 114–15, 147
adsorption 549
 see also sorption
advection 156
air classification 255–6
air pollution
 coal mining 173, 181, 183, 184–6, 190–1
 dispersion 156–7
 geochemical mitigation 189–90
 geothermal energy 315
 global 161–6
 health/environmental impacts 154–6
 local and regional 156–61
 modelling 158
 Shilbottle Coalfield, UK 199
 tyre combustion 485
alkaline fly ash weathering 646
alkali–hydrogen exchange kinetics 583–6
alteration
 see also corrosion
 actinide host phases 91–8
 coal combustion wastes 642–52
 glasses 115
 hydrothermal 124, 131
alternate fuel see tyre-derived fuel
alternative energy sources 4, 7, 166
aluminates 590–1, 596–8
aluminium phosphates 129–30, 131
aluminium pollution 320
aluminium-rich minerals 177, 179–80
aluminium–iron phases 597, 601–3
alumino-silicate fly ash (Class F) 213, 214, 216, 229,
 232–3, 249–51
americium 146–8
ammonia removal process 260
amorphous silica, geothermal scaling 321, 322–4
analyses see natural analogues
ankerite 178, 179
anthropogenic radionuclide emissions 143–51
apatite group 439–41, 440, 442–4, 446
aquifers see reservoirs
arsenic pollution 318–20
ash
 see also bottom ash; fly ash; incinerator wastes
electrostatic precipitation 436
oil shales combustion 267, 273–7
tyre combustion 483
asphyxiating mine gases 185–6, 189–90
atmosphere see air pollution; emissions
atmospheric structure 162, 163
automotive structure 162, 163
baﬄes 190
Bangombé natural nuclear reactor, Gabon 123–8, 125,
 547–9
barriers 28–30, 516–19, 520, 531–2
basalt dykes natural analogues 135–41
basaltic glasses 114–18
batch leaching tests 626–8, 634, 651
beneficiation of coal combustion wastes 247–62
bentonite barriers 516–19, 531–2
binary cycle-type power plant 371
binding mechanisms in cement 598–604
bitumen waste form 54, 55
boilers 481–2, 493
boreholes 355, 358
 see also wells
boron pollution 318–20
borosilicate glasses
 corrosion 583–9
 high-level waste 16, 40–1, 54, 89–90
 production technology 44–6
bottom ash (BA) 211, 225
bricks 428
calcium phosphate minerals 449–51
ceramics 427–8
characteristics 412–15
chemical composition 227–9, 415–18, 419, 425,
 437
definition 247
formation 226
glasses 429–30
incinerator waste 424, 436
landﬁll 607–8
leachate systems 451–5, 620
metal separation 412, 414–15, 416
mineral composition 419–20, 420
mineral reaction products 460
municipal solid waste 411–22

Note: page numbers in italics refer to Figures, those in bold refer to Tables.
INDEX

oil shales 265
processing 252–5
quality 249
brannerite 94, 96, 102–3, 106
bricks 428
brine 287–90
brushtie 451
burn-up effects 67–8
burning see fire hazards

Caesium 148–9, 150
Calcium carbonate 321, 324–6
Calcium phosphate minerals 449–51
Calcium silicate hydrate 596–7, 600–1
Calcium-rich fly ash (Class C) 213, 214, 216, 229, 233–8, 249–50
Cambrian sandstones 290–3
Canada Cigar Lake uranium 123–34, 526
heat pumps 511
canister corrosion process 519–21
carbon dioxide
atmospheric concentrations 153, 165, 166
coal mining 185
deep aquifer injection 285–96
emissions 1, 2, 4, 10, 19–20
geothermal energy pollution 315–17
storage mechanisms 286–90
carbon monoxide 186, 190
carbon sequestration 285–96
carbonaceous materials 177–9, 321, 324–6
cascaded use of waste heat 373–4
cement
binding mechanisms 596–604
binding minerals 596–8
fly ash 211, 217–19, 249
heavy metals stabilization 595–606
kilns 481, 494
low-level waste 53–4, 55
surface sorption 603–4

ceramics
see also tiles
Crystalline waste forms 90
Experimental data 98–105
geochemical behaviour 89–111
incinerator waste 426–7
Multiphase 49–51
single-phase 46–9
Synroc 49–50, 54–5, 98–100
technologies 51–2
CFCs see chlorofluorocarbons
chemical composition
bottom ash 227–9, 415–18, 419, 425, 437
coal 223–5
Estonian oil shales 267–8, 269
fly ash 227–9, 232, 240, 242, 425, 437
geothermal fluids 310–15, 341, 347–9, 361
glasses 586

HT materials 384–7, 400
Oil shale ash 274–6, 274
Semi-coke 272
spent nuclear fuels 521–3, 521
Chemical durability 38–9
Chemical pollution 315–21
chemical stabilization agents 435–73
Chemical weathering minerals 648–9
Chernobyl nuclear catastrophe 144–5, 148, 150
chloride 312
chlorofluorocarbons (CFCs) 161–2
Chloropyromorphite 452–4
Chromium 403, 404
Cigar Lake natural analogue, Canada 124, 126, 128–30
clays
coal measures 180
fly ash 632, 647–9, 653
phyllolites 129, 130
smectite colloids 532–3
wetting and drying 188–9
climate changes 164–5
closed nuclear fuel cycle 8, 17
closed-loop heat pump systems 501–3, 502, 507, 510
cogeneration of geothermal power 373
coal
co-combustion with TDF 491–5
combustion 211, 212, 213–16, 225–7, 242, 249–51, 619–20
composition 212, 223–5
geochemistry 174–8, 620–1
mineralogy 174–80, 224, 225
coal combustion wastes 211–22, 223–46
see also bottom ash; fly ash
beneficiation 247–62
disposal 211–22, 641–58
environmental impacts 239–42
flue gas desulphurization products 219, 238–9, 242
formation 225–7
gases 219, 226, 227
leachate geochemistry 619–39
mineralogy 641–2
secondary mineral formation 642–52
trace elements 240–1, 620–1
uses 211, 217–19, 220
coal mining 169–209
see also spoil heaps
environmental consciousness 170–4
environmental impacts 180–4
geochemical aspects 184–9
glossary of terms 171–2
mitigation measures 189–96
pollutant sources and buffers 174–80
Shilbottle–Whittle Coalfield 196–203
voids 180, 181–2, 192
coffinite 124, 126, 128, 129, 130, 131
coke 211, 219, 251
colloids
generation and stability 530–5, 540
mobility 538–40, 546
radionuclide interaction 535–8
column leaching test 628–30, 636, 651
combustion
oil shales 273–7, 279–80
trace elements 621–3
tyres 480, 483–9
composite wastes 54
composition
see also chemical composition; mineralogy
nuclear waste 37–8
solid waste 488
tyre-derived fuel 484–5, 486–7
tyres 482–3, 484–5
concrete 53–4
see also cement
condensing cycle-type power plant 369, 371
consistent rate law 579–94
contaminated soil stabilization 447–8
correlative geothermal systems 297
corrosion
geothermal fluids 322
glasses 579–94
HT materials 387–95, 403, 404
SNF canisters 519–21
covering system 27
crystalline ceramic waste forms 90
crystallization 52
data base, Nagra/PSI TDB 01/01 561–77
defat in coal mining 173
deep geological disposal 285–96, 516
degassing 321, 325
density separation 252–5, 256–7
deposition of acids 159
diffusion processes 612–14
direct use of geothermal energy 373–4, 375–8, 377
directional drilling 327
dislocation structure 68
disposal
see also injection; reuse
coal combustion wastes 211–22, 641–58
fly ash 220, 248, 631
groundwater waste water 302–4, 338–9
HT materials 382, 398–406
nuclear waste 31–2, 515–28, 529–43
spent nuclear fuel 8, 17, 18–19
uranium tailings 26–32
waste tyres 476, 477–9, 477
district heating 373, 376, 377
Drax power station fly ash 625–36
drilling see boreholes; wells
dry scrubber residues 461
durability
crystalline ceramics 89–111
glasses 579–80
nuclear waste forms 38–9
dust 186, 190–1, 462
ecosystem establishment 195
EDS see energy dispersive spectroscopy
EELS see electron energy-loss spectroscopy
efficiency of geothermal energy 299
efflorescent salts 176–7
Eggborough power plant, UK 622–3
electric potential 358–9
electric utility boilers 481–2
electrocity generation see power generation
electron energy-loss spectroscopy (EELS) 78–80
electrostatic separation 257–9, 436
elemental composition
fly ash 629, 633
Nagra/PSI TDB 01/01 563, 565–6
tyres 486
emissions
anthropogenic radionuclides 143–51
carbon dioxide 1, 2, 4, 10, 19–20
deep aquifer storage 290–3
fuel blends 492, 494
geothermal power plants 317
hydrogen sulphide 337, 338, 378
methane 165
oil shales combustion 277–9, 280
open cast coal mines 191
particulate 621–3
standards 154, 156, 157
stoker boilers 493
tyre combustion 485, 489–95
energy consumption
efficiency measures 165
fossil fuels 153
geothermal power 301, 302, 303
vitrification technologies 382
world 1, 2
energy dispersive spectroscopy (EDS) 70, 80
energy production
see also power production
coal combustion 223
nuclear power 7, 11–14
oil shales 263, 265–6, 269, 270, 280
waste 3
energy recovery
mining waste 499–513
MSW incineration 424
waste tyres 475–98
Engineered Barrier System (EBS) 516, 520
environmental awareness of coal mining 170–4
environmental impacts
air pollution 154–6
anthropogenic radionuclide emissions 143–51
ash beneficiation 248–9
crcoal combustion wastes 239–42
crcoal mining 180–4
groundwater energy utilization 298–9, 374
glassfill and glassroad 400-3
high temperature materials 400-3
hydrogeological modelling 201-3
nuclear fuel cycle 7-23
oil shale emissions 278-9
Shibbottle Coalfield, UK 198-200
uranium tailings 26
waste tyres energy recovery 475-98
equilibrium thermodynamics 561-77
Estonian oil shales 265-79
atmospheric emissions 277-9, 280
chemistry and mineralogy 267-8, 269
exploitation 268-9
oil production and refining 269-70
power generation 263, 269, 270
solid wastes 270-7
stratigraphy 266-7
ettringite 236-7, 597-8, 650, 653
European Hot Fractured Rock (HFR) project 355-67
EXAFS see extended X-ray absorption fine structure
exothermic reactions 505-6
experimental data see laboratory studies
extended X-ray absorption fine structure (EXAFS) 549, 552-7
FA see fly ash
FBC see fluidized-bed combustion
FGD see flue gas desulphurization
field studies, fly ash leaching 630-6
fineness of fly ash 251-2, 255-6
fire hazards 172-3, 175, 180, 181, 186-7, 191-2, 199
fissile nuclides 8-9, 13, 17
fission products
gases and metals 68-70
geochemical behaviour 89-111
natural reactors 123-8
types 67
flammable mine gases 184-5, 189-90
flash-steam geothermal plants 370
flue gas desulphurization (FGD) products 219, 238-9, 242, 620
fluidized-bed combustion (FBC) 211, 239
fluids see geothermal fluids; liquid wastes; water
fluoride pollution 320-1
fluxes of metals 403-6
fly ash (FA) 211, 212
beneficiation 247-62
characterization 232-5
chemical composition 227-9, 232, 240, 242, 425, 437
composition and morphology 213-17, 227-9, 232, 240, 242
disposal 220, 248, 631
formation 225-7
geochemistry 620-1
incineration residues 381, 424-5
leaching studies 623-36
mineralization 213-16, 229-32, 235-8
oil shales processing 265
particles 217, 228, 235-6, 278, 621-3
Portland cement 211, 217-19, 249
secondary minerals 647-52
trace elements 621-2
treatment technologies 247-62, 424
tyre combustion 485-9
use 211, 217-19, 248-9
weathering 646
former Soviet Union 16-17
fossil fuel cycle 4, 153-67
see also air pollution; coal; emissions
France, Hot Fractured Rock project 355-67
fruits, ceramic 428
foam flotation 259-60
gabon see natural analogues 82-4, 123-34, 547-9
geology and mineralogy 266-7
garnets 49
gases
see also carbon dioxide; greenhouse gases; steam
air pollutants 154, 159
coal combustion 219, 226, 227
coal mining 184-6, 189-90
fission gas release 68-70
geothermal 301-2, 312, 321, 325, 337, 345-7, 347
methane 165, 184-5, 190, 317-18
oil shale emissions 277, 279-80
gas chemistry
alteration 91
coal ash leachates 619-39
coal seams 174
crystalline ceramics 89-111
landfill leachates 611-16
mine water heat pumps 503-7
mitigation measures 189-96
modelling 630
near field 519-21
nuclear fuel cycle 9-10
phosphates 438-41
PHREEQC code 518, 519
secondary minerals 642-5
general energy utilization
byproducts 326
chemical pollution 315-21
direct use 298, 299, 299-301, 301, 302, 303, 373-4, 375-8, 377
directional drilling 327
electricity generation 297-8, 298, 299, 301-6
environmental impacts 298-9, 374
hot-dry-rock systems 328-9
INDEX

scenery spoliation 326
space heating 306–7, 501
uses 299–301
waste heat problems 369–74

go geothermal fluids
ancient flows 360–1
chemical composition 310–15, 341, 347–9, 361
convection 297
disposal 302–4, 338–9
flow modelling 361
gas chemistry 345–7, 347
high-T systems 305, 307–10, 322
isotopic variations 347–9
low-T systems 297, 310, 322
microseismicity 359
mineralogy 361–4, 365, 366
natural tracers 338–9, 344–5, 352
reservoir disequilibrium 349–51
scaling 321–6
tunnel waters 374–8

GHGs see greenhouse gases
glass fibres 430–1, 432
glass/water reactivity models 580–2
glasses 40–6
see also high temperature materials
activation energies 114–15, 114
alkali–hydrogen exchange kinetics 583–6
alteration layers 115
basaltic 114–15
borosilicate 40–1, 89–90, 583–9
chemical composition 586
corrosion kinetics 579–94
dissolution, phase-separated 586–9
durability 579–80
fly ash 214, 229, 623–4
HT materials 383–6
incinerator waste 428–31
phosphates 43–4
reactivity with water 580–2
secondary minerals 589–91
secondary raw materials 382–3, 398–406
stability and corrosion 387–95
glassfill 382–4, 398–406
glassroad 382–4, 398–406
glass–ceramics 52–3, 429–31, 432
global warming 153, 162–6
granite 357, 360–1, 363
greenhouse effect 162, 163
greenhouse gases (GHGs) 19, 162–5
ground deformation 180–4, 187–9, 192, 199
groundwater
carbon dioxide trapping 286–90, 294
colloid generation 530–5
fly ash leachates 625–36
heat source 500–3
landfill leachates 607–17
near-field waste–water interactions 516–19
radionuclide migration 530–5
gypsum 219, 650
hazardous air pollutants (HAs) 156
hazards of coal mining 181–2, 183–4
see also fire hazards
haze 159, 160
HCFCs see hydrochlorofluorocarbons
HDR see hot-dry-rock systems
heat
direct use 373–4, 375–8, 377
geothermal energy 297–336
ground source 500–3
nuclear waste 17–18
waste geothermal 369–79
heat pumps 499–513
heating
district 373, 376, 377
space 306–7, 501
superheating 372
heavy metals
bottom ash 418
cement stabilization 595–606
landfill leachates 614–16
solubility 599
HFR see Hot Fractured Rock project
high temperature (HT) materials
corrosion 403
dynamic behaviour 387–95
environmental impacts 400–3
glassfill v. glassroad 382–3, 398–406
physico-chemical characteristics 383–7, 400
processing 383, 384, 399
Strasbourg test 390–5, 392, 394
Switzerland 381, 411–12
thermodynamics 395–8
high-level nuclear waste (HLNW) 15–16, 515–16
compliance requirements 38
glasses 40–1, 42, 43–4, 54
immobilization 89–91
liquids 37
properties comparison 45
repository statistics 526
storage 38
high-T geothermal systems 305, 307–10, 322
HLNW/HLW see high-level nuclear waste
hollandite 48, 94–5, 103–4, 106
host phases for ceramics 89–111
Hot Fractured Rock (HFR) project 355–67
hot springs 306–7
hot-dry-rock (HDR) systems 328–9, 344
HT materials see high temperature materials
human health 154–6, 173, 174, 186
hydrated minerals 235–8
hydrochlorofluorocarbons (HCFCs) 161–2
hydrodynamic trapping 286–7, 294
hydrogen sulphide
geothermal fluids 316, 317, 318, 320, 337, 338, 378
mine gas 185
hydrogeology 201–3, 307–10
hydrology
incinerator ash deposits 608–11
leachate composition 612
nuclear fuel cycle 9–10
hydrothermal alteration 124, 131
Iceland, geothermal power 305–6, 310, 324

immobilization
see also vitrification
ACTs and REEs 46–51, 54
heavy metals 595–606
high-level waste 16, 89–91
long-term prediction 113–21
metals 403–6, 405, 552–7
natural analogues 123–34
phosphate stabilization 435–73
trace elements 652–4
impoundments 27–30
in-line technologies 383, 394
incinerator wastes 381
see also bottom ash; fly ash; high temperature materials
hydrology 608–11
landfill leachates 607–17
phosphate stabilization 448–9, 455–63
residues 423–5, 435–6
secondary raw materials 425–31
injection
carbon dioxide 285–96
Hot Fractured Rock project 355–67
Lardarello geothermal field 340–51
inorganic wastes 37–8
inventories of nuclear waste 15
ion exchange 583–6
iron oxides 241, 647
iron-rich minerals 177–80
isotopic composition 347–9
isotopic methods 146–50
Italy, geothermal power 304–5, 340–51
kerogen 264, 269
kinetic mass transfer model 525–6
kinetics
glass corrosion 579–94
heat pumps 507–9
kokesite shales 266–8, 269
laboratory studies
ceramics 98–105
fly ash leaching 625–30, 636–7
uranium tailings 30–1
land reclamation 194–6
landfills
HT materials 398–406
hydrology 608–11
incinerator waste 607–17
leachate geochemistry 611–16
lysimeter investigation 608, 610–11, 612, 614
Switzerland 607–8, 609–10, 611
waste tyres 477–8
landscape degradation see ground deformation
Lardarello geothermal field 304–5, 340–51
law of consistent rate 579–94
leachates
bottom ash 451–5, 620
coal ash 220–1, 241, 619–39
diffusion processes 612–14
geochemical factors 611, 614–16
HT materials 392–5, 402
incinerator ash landfills 607–17
municipal solid wastes 437, 449–51
leaching
cement 595
coal mining waste 188, 202–3
colloids 531
field studies 630–6
glasses 430
laboratory studies 625–30, 636–7
nuclear waste forms 38–9, 41
phosphate-stabilized ashes 464–5, 466
lead 128, 600–1
lead–iron phosphate (LIP) glass 44
lightweight aggregate 249, 252–3
LILW see low- and intermediate-level waste
limestone 179
Lindádi diagram 298
liners 28–9
LIP see lead–iron phosphate glass
liquid wastes
nuclear 37
oil shales processing 265
liquid-dominated geothermal systems 307–10
long-term prediction 113–21
low- and intermediate-level waste (LILW) 37, 43, 44–6, 53–4
low-T geothermal systems 297, 310, 322
lysimeter, landfill investigation 608, 610–11, 612, 614
MCC-1 test 398
Meaford power station fly ash 625–36
melting reactions 214–15, 226
mercury pollution 318–19
meta-schoepite 75
metals
see also heavy metals; trace metals
bottom ash leachate systems 451–5
coal combustion wastes 241
fission products 68–70
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3884282/9781862394841_backmatter.pdf by guest on 18 August 2019
INDEX

fluxes 403–6

glassfill and glassroad 400–3

immobilization mechanisms 442–7

incinerator residues 412, 414–15, 416, 417–18, 436

phosphate stabilization 435, 439–42

Strasbourg test 392, 394

methane 165, 184–5, 190, 317–18

microseismicity, geothermal systems 359

migration of radionuclides 529–43

mine gases 184–6, 189–90

mine waters 193–4, 201–3, 503–7

mineral trapping 289–90, 291–3, 294

mineralogy

see also secondary minerals

bentonites 517

bottom ash 419–20, 420

Cigar Lake, Canada 526

coal 175–9, 224, 225

coeal combustion wastes 641–58

Estonian oil shales 267–8

fly ash 213–16, 229–32, 235–8, 623–4

geothermal fluid injection 361–4, 365, 366

HT materials 383–4

phosphates 438–41

mines 503, 507–8, 509–11

see also coal mining

mining wastes 271, 499–513

modelling

see also analogues; natural analogues

air quality 158

fly ash geochemistry 630

fly ash weathering 646

geothermal fluid flows 361

glass/water reactivity 580–2

hydrogeology 201–3

landfill hydrology 608–9, 611

mineral trapping 291–3

Nagra/PSI TDB 01/01 574

nuclear waste management 515–28

molybdenum 68–70

monosulphate 598, 603

monosulphoaluminate 237

MSW see municipal solid wastes

mullite 230

multibarrier concept 516

multiphase ceramics 49–51

municipal solid wastes (MSW)

ash composition 425, 437

incinerator residues 411–22, 423–33

landfill leachates 607–17

phosphate stabilization 435–73

secondary raw materials 425–31

vitrification 381–410, 428–31

murataite 47, 48

Nagra/PSI Chemical Thermodynamic Data Base

01/01 561–77

chemical consistency 564–8

structure and availability 563–8

unreliable data 568–71, 574–5

update procedure 561–3

natural analogues

basaltic dykes in evaporites 135–41

Cigar Lake deposit 128–31

Gabon reactors 124–8, 130–1

long-term prediction 113–21

spent nuclear fuel 82–4, 523–7

uranium tailings disposal 31–2

uranil sorption 547–9

natural tracers 338–9, 344–5, 352

near field

geochemistry 519–21

waste–water interactions 516–19

neodymium 139

neptunium behaviour 78–80

Nesjavellir geothermal field 305–6, 324

New Zealand, geothermal power 305

ningyote 128–9

nitrogen oxides 159, 161

Northumberland Basin, UK 196

Norway, heat pumps 509–11

nuclear fuel cycles 3–4, 7–23

characteristics 18–19

closed 8, 17

clear 8, 9, 17

symbiotic 13, 18

nuclear power

carbon emissions reduction 19–20

catastrophes 144–6

modern reactors 13–14, 19

natural systems 123–4

production 3–4, 7, 11–14

nuclear waste

see also actinides; high-level nuclear waste; radionuclides; spent nuclear fuel

classification 14

composition 37–8

disposal 31–2, 515–28, 529–43

heat content 17–18

laboratory studies 30–1

minerals and solid phases 526

near-field waste–water interactions 516–19

plutonium 14–15, 17, 18–19, 76–8, 146–9

repository performance assessment 572–3

volume 15, 17

nuclear waste forms 37–63

cement 53–4

ceramics 46–52, 54–5, 89–111

chemical durability 38–9

compliance requirements 38

composites 54

glasses 40–6, 54, 89–90

glass–ceramics 52–3

radiation resistance 39–40

nuclear weapons 9, 10

dismantling 14–15, 17
testing 143–4, 148

Ohio, USA, carbon dioxide injection 290–3
oil production 269–70
oil shales 263–84

see also Estonian oil shales
combustion 273–7, 279–80
genesis and composition 264–5
northeastern Europe 265–79
retorting 264
waste products 265, 270–7
Oklo natural reactors, Gabon 82–4, 123–4, 125
open nuclear fuel cycle 8, 9, 17
open-loop heat pump systems 501, 507
organic matter
bottom ash 416–17
fly ash 624
oil shale emissions 277–8
orthophosphates stabilization 435–73
oxidation
actinides 546
combustion 273–7, 279–80
genesis and composition 264–5
northeastern Europe 265–79
orthophosphates stabilization 435–73
permeability of geothermal fluids 307–8
perovskite 48, 95–8, 104–5, 106
phase composition
fly ash 213–16, 229–30, 231
glasses 586–9
HT materials 383–7
incineration residues 425
oil shale ash 274–6
Philippines, Palimpinon geothermal field 329, 339
phosphate glasses 43–4, 46
phosphate stabilization
see also apatite group
calcium minerals 449–51
ceramics 448
contaminated soil 447–8
divalent metals 451–5
longer term performance 464–5, 466
mechanisms 455–63
metals immobilization 552–7
mineral reaction products 460
mineralogy and geochemistry 438–41
municipal solid wastes 435–73
principles 436–8
solubility products 457–8
phosphates 49, 129–30, 131
photo-oxidants 159–61
PHREEQC (pH redox equilibrium calculations)
201–2, 518, 579
phylllosilicates 129, 130
plutonium 14–15, 17, 18–19, 76–8, 146–9
pollution see air pollution: chemical pollution; water pollution
polycyclic aromatic hydrocarbons (PAHs) 277–8, 490–1
polyphase ceramics 98–100
ponds, fly ash 631
porcelainized stoneware 427–8
porewaters see groundwater
Portland cement see cement
portlandite 650
potash salts 135–41
powder sintering technique 429, 430
power generation
see also geothermal energy utilization; nuclear power
efficiency 165–6, 299
Estonian oil shales 263, 269, 270
fly ash emissions 621–3
power plants 317, 369, 371, 622–3
pozzolanic properties of fly ash 218, 249
precipitation
acid deposition 159
air pollutants amelioration 157
landfill leachates 609–10, 612, 613
phosphate stabilization 444–6
prediction with analogues 113–21
pressurized water reactor fuels 521
processing
ammonia removal 260
bottom ash 252–5
fly ash 255–60
HT materials 383, 384, 399
oil shales 265
reprocessing, SNF 8–9, 13, 17
waste tyres 479–80
production technologies 44–6
pulp and paper mills 481
pulverised coal combustion 211, 212, 225–6, 247
pyrite oxidation 175–7
pyrochlore 46, 90, 91–3, 100–1, 106
pyrolysis 480
quality of fly ash 249–52
quartz 179, 230
radiation 39–40, 41, 68
radioactive waste see actinides; nuclear waste; radionuclides
radioactivity 26, 28
radiocollodids 519
radioecology 149–50
radiolyysis 71–2
radionuclides see also actinides
anthropogenic emissions 143–51
colloid influence 529–43
colloids interaction 535–8
fissile nuclides 8–9, 13, 17
isotopic distinction 146–50
leng-term disposal 31–2
modelling 515–28
natural analogues 523–7
near-field waste–water interactions 516–19
oxidizing environment 65–88
safety of disposal 529–30, 561–77
uranium mining 26
weathering redistribution 76
radiotoxicity 545
rainfall in landfills 609–10, 612, 613
rare earth elements (REEs)
basalt dykes 135, 136–8
behaviour 76–8
evaporites 138–40
immobilization 46–51, 54
plutonium behaviour 76–8
re-injection see injection
reactions
glasses 582–91
secondary mineral formation 643
reactors see natural reactors; nuclear power
recovery factor 340
recycling of tyres 476–7 see also reuse
redox systems 65–6
REEs see rare earth elements
refining waste 271–3
regional haze 159, 160
release of radio nuclides 529–43
repositories see also disposal; reservoirs
actinides 545
colloid influence 529–43
geological 8, 9–10
nuclear waste 516
performance assessment 561–77
reprocessing, SNF 8–9, 13, 17
reservoirs
carbon dioxide storage 285–96
dis-equilibrium conditions 349–51
fluid composition 337, 339–40
geochemical fluids re-injection 338–9
geochemical systems 307–10
respiratory diseases 186
re-torting process 264, 269–73
re-use see also secondary raw materials
carbon combustion wastes 211, 217–19, 248–9
fly ash 630–1
heavy metal wastes 595–606
incinerator waste 423–33
waste tyres 476, 477, 479–80
Rhine graben 356–7
road construction 382–3, 398–406
Rose Run Sandstone 290–3
Russia 16–17, 265–79
rutile 129
safety of nuclear waste disposal 529–30, 561–77
Salt Sea 324
salts, acid generating 176–7
sandstone injection 290–3
saturation reaction rates 580
scaling of geothermal fluids 321–6
scenery spoliation 326
Scotland, heap pumps 511
sea level rise 164
secondary minerals chemical weathering 648–9
coal combustion wastes 641–58
geochemical controls 642–5
observed 647–50
precipitation in glasses 589–91
predicted 650–2
secondary raw materials 381–2, 423–33
see also high temperature materials
bottom ash 416
bricks 428
ceramics 426–7
glass and glass–ceramics 428–31, 432
HT materials 398–406
incinerator waste 425–31
tiles 427–8
sediment buffers 29
seismicity 299, 359
semi-coke 265, 271–2, 271, 272
separation
bottom ash 252–5
density 252–5, 256–7
electrostatic 257–9
fly ash 256–9
glass phases 586–9
metals 412, 414–15, 416
sequestration carbon 285–96
trace elements 652–4
Shilbottle–Whittle Coalfield, UK 196–203
siderite 177–9
silica scaling 321, 322–4
silicophosphates 49
single-phase ceramics 46–9
slags 211, 219, 273–7
slope failure 188
Index

slurry 273
smectite clay colloids 532–3
smog 158
SNF see spent nuclear fuel
sodium-aluminophosphate glass 44
sodium-rich glass 583–6
soils
amelioration 276
erosion 326
impoundment barriers 29
land reclamation 195–6
phosphate stabilization 447–8
solar radiation 162–3
solid solutions 457–8, 467, 573–4
solid wastes
coal combustion 211–22, 488
nuclear 37–8
oil shales 265, 270–7
tyre combustion 483–9, 484–5
uranium mining 25–35
vitrification 381–410, 428–31
solubility
aluminium–iron phases 601–3
heavy metals 599, 602
trapping 287–9, 294
uraninite 524
solution pH 644–5
solution phase immobilization 446–7
sorption
isotherms 600–1
mechanisms 442–4
surface 603–4
uranyl 545–60
Soultz-sous-Forêts, France, Hot Fractured Rock project 355–67
space heating 306–7, 501
spent nuclear fuel (SNF) 65–88, 516, 521–3
chemical composition 521–3, 521
disposal 8, 17, 18–19
microstructure evolution 66–71
natural analogues 82–4
oxidising conditions 74, 75–6
radiochemical analysis 80
radialysis 71–2
radiator toxicity 545
secondary U minerals 72–4
water interface 522
spiral concentrators 254
spoil heaps
environmental impacts 174, 180, 183–4
fire hazards 191
France 193
heat pumps 508
land reclamation 194–6
slope failure 188
spontaneous combustion 175, 187, 191
STABCAL (stability calculation software) 451, 452
stability
colloids 530–5
glasses 387–95, 429–30
stabilization
see also immobilization
heavy metals 595–606
phosphates 435–73
steam, geothermal 307–10, 337, 338, 340–2, 342, 343, 344, 369–70
stockpiled tyres 478–9
steker boilers 493
storage
see also repositories; reservoirs
ash 248
carbon dioxide 285–96
fissile nuclides 8, 9
nuclear wastes 38
Strasbourg test 390–5, 392, 394
strätlingite 237
stratospheric ozone depletion 161–2
strontium 150
structure of host phases 91–8
studsite 75
subsidence see ground deformation
sulphides 212, 321, 504, 506
sulphur 175–6
sulphur dioxide 159
sulphur-scrubbing products 219, 238–9
sulphuric acid neutralization 28
superheating 372
supersaturation of glasses 389–90
supplemental fuel 480–2
surface coal mining 174, 186
surface immobilization 442–6
surface sorption 603–4
surface temperatures 164
sustainability of heat pumps 507–9
swimming pools 298, 300–1, 306–7
Switzerland
bottom ash landfill 607–8, 609–10, 611, 612
HT materials 381–410
incinerator bottom ash 411–22
tunnel waters 375–8
symbiotic nuclear fuel cycle 13, 18
Synroc 49–50, 90, 98–100
tailings, uranium mining 26–32
tailored ceramics 50–1, 90
TDF see tyre-derived fuel
technetium behaviour 69, 80–2
technologies
see also processing
ceramics 51–2
fly-ash treatment 247–62, 424
glass production 44–6
secondary raw materials 383, 384, 399
Tefital lysimeter, Switzerland 608, 610–11, 612, 614
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM</td>
<td>see transmission electron microscopy</td>
</tr>
<tr>
<td>temperature inversion</td>
<td>157, 158</td>
</tr>
<tr>
<td>temperatures</td>
<td>428</td>
</tr>
<tr>
<td>ceramic firing</td>
<td>297, 298, 305, 307-10, 322, 350-1, 351</td>
</tr>
<tr>
<td>geothermal systems</td>
<td>573</td>
</tr>
<tr>
<td>stored heat</td>
<td>164</td>
</tr>
<tr>
<td>surface</td>
<td>80-1, 85</td>
</tr>
<tr>
<td>tests</td>
<td>see also laboratory studies</td>
</tr>
<tr>
<td>leaching</td>
<td>628-30, 636, 651</td>
</tr>
<tr>
<td>nuclear weapons</td>
<td>143-4, 148</td>
</tr>
<tr>
<td>Strasbourg test</td>
<td>390-5, 392, 394</td>
</tr>
<tr>
<td>thaumasite</td>
<td>650</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>500</td>
</tr>
<tr>
<td>thermal processing</td>
<td>259</td>
</tr>
<tr>
<td>thermal treatment</td>
<td>381-410, 411-12</td>
</tr>
<tr>
<td>thermodynamics</td>
<td>561-77</td>
</tr>
<tr>
<td>HT materials</td>
<td>395-8</td>
</tr>
<tr>
<td>uranium dioxide model</td>
<td>525</td>
</tr>
<tr>
<td>Three Mile Island nuclear catastrophe</td>
<td>145-6</td>
</tr>
<tr>
<td>tiles</td>
<td>427-8</td>
</tr>
<tr>
<td>time-resolved laser fluorescence spectroscopy (TRLFS)</td>
<td>537, 538, 549</td>
</tr>
<tr>
<td>titanite</td>
<td>49</td>
</tr>
<tr>
<td>tobermorite</td>
<td>596, 597</td>
</tr>
<tr>
<td>trace elements</td>
<td>411, 417-18, 419</td>
</tr>
<tr>
<td>coal</td>
<td>224</td>
</tr>
<tr>
<td>coal ash leachates</td>
<td>620-1, 634-6, 651</td>
</tr>
<tr>
<td>coal combustion wastes</td>
<td>240-1</td>
</tr>
<tr>
<td>combustion</td>
<td>621-3</td>
</tr>
<tr>
<td>geothermal fluids</td>
<td>314-15</td>
</tr>
<tr>
<td>leaching</td>
<td>623</td>
</tr>
<tr>
<td>sequestration</td>
<td>652-4</td>
</tr>
<tr>
<td>trace metals</td>
<td>386, 388, 391</td>
</tr>
<tr>
<td>bottom ash</td>
<td>411, 417-18, 419</td>
</tr>
<tr>
<td>P1T materials</td>
<td>386, 388, 391</td>
</tr>
<tr>
<td>tracers</td>
<td>geothermal fluids 338-9, 344-5, 352</td>
</tr>
<tr>
<td>landfill flows</td>
<td>609</td>
</tr>
<tr>
<td>transition state theory (TST)</td>
<td>580, 581-2, 583-4</td>
</tr>
<tr>
<td>transmission electron microscopy (TEM)</td>
<td>68-70, 69, 80-1, 85</td>
</tr>
<tr>
<td>trapping of carbon dioxide</td>
<td>286-90, 294</td>
</tr>
<tr>
<td>treatment technologies</td>
<td>247-62, 424</td>
</tr>
<tr>
<td>TRLFS/TRLFIS</td>
<td>see time-resolved laser fluorescence spectroscopy</td>
</tr>
<tr>
<td>TST</td>
<td>see transition state theory</td>
</tr>
<tr>
<td>tunnel waters</td>
<td>374-8</td>
</tr>
<tr>
<td>Tyne-side coal industry, England</td>
<td>170-4</td>
</tr>
<tr>
<td>tyre-derived fuel (TDF)</td>
<td>477, 480-2, 484-5, 486-7</td>
</tr>
<tr>
<td>tyres</td>
<td>see also waste tyres</td>
</tr>
<tr>
<td>combustion</td>
<td>483-9, 484-5, 495-6</td>
</tr>
<tr>
<td>composition</td>
<td>482-3</td>
</tr>
<tr>
<td>underground mine pumps</td>
<td>507-8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>power station fly ash 622-3, 625-36</td>
</tr>
<tr>
<td>Shilbottle-Whittle Coalfield</td>
<td>196-203</td>
</tr>
<tr>
<td>Tyneside coal industry</td>
<td>170-4</td>
</tr>
<tr>
<td>United States</td>
<td>carbon dioxide injection 290-3</td>
</tr>
<tr>
<td>fly ash characterization</td>
<td>232-5</td>
</tr>
<tr>
<td>heat pumps</td>
<td>509</td>
</tr>
<tr>
<td>nuclear waste</td>
<td>14, 15-16</td>
</tr>
<tr>
<td>update procedure, Nagra/PSI TDB 01/01</td>
<td>561-3</td>
</tr>
<tr>
<td>uraninite</td>
<td>actinides storage 126, 131</td>
</tr>
<tr>
<td>Cigar Lake deposit</td>
<td>124</td>
</tr>
<tr>
<td>Gabon deposit</td>
<td>124-8</td>
</tr>
<tr>
<td>uranium release modelling</td>
<td>523-7</td>
</tr>
<tr>
<td>uranium dioxide</td>
<td>modelling 525-6</td>
</tr>
<tr>
<td>oxidising conditions</td>
<td>74, 75-6</td>
</tr>
<tr>
<td>reducing conditions</td>
<td>74-5</td>
</tr>
<tr>
<td>solubility data</td>
<td>524</td>
</tr>
<tr>
<td>spent nuclear fuel</td>
<td>65-88, 521-3</td>
</tr>
<tr>
<td>uranyl carbonate complexes</td>
<td>552-3</td>
</tr>
<tr>
<td>uranyl sorption</td>
<td>545-60</td>
</tr>
<tr>
<td>uranyl–quartz systems</td>
<td>554-5</td>
</tr>
<tr>
<td>vapour-dominated geothermal fields</td>
<td>307-10, 337, 340</td>
</tr>
<tr>
<td>vehicle emission standards</td>
<td>157</td>
</tr>
<tr>
<td>ventilation systems</td>
<td>190</td>
</tr>
<tr>
<td>vitrification</td>
<td>see also glasses; high temperature materials</td>
</tr>
<tr>
<td>high level waste</td>
<td>16</td>
</tr>
<tr>
<td>municipal solid wastes</td>
<td>381-410, 428-31</td>
</tr>
<tr>
<td>nuclear waste forms</td>
<td>43, 44-6, 54</td>
</tr>
<tr>
<td>phosphate minerals</td>
<td>462</td>
</tr>
<tr>
<td>volatile organic compounds (VOCs)</td>
<td>161</td>
</tr>
<tr>
<td>Warakei geothermal field</td>
<td>305</td>
</tr>
<tr>
<td>waste</td>
<td>see liquid wastes; municipal solid wastes; nuclear waste; solid wastes</td>
</tr>
<tr>
<td>waste disposal</td>
<td>see disposal</td>
</tr>
<tr>
<td>waste fluids</td>
<td>see geothermal fluids</td>
</tr>
<tr>
<td>waste geothermal heat</td>
<td>avoidance strategies 372-4</td>
</tr>
<tr>
<td>environmental impacts</td>
<td>374</td>
</tr>
<tr>
<td>geothermal energy utilization</td>
<td>369-72</td>
</tr>
<tr>
<td>tunnel waters</td>
<td>374-8</td>
</tr>
</tbody>
</table>
waste tyres
 combustion products 483–9
 disposal 476, 477–9, 477
 energy source 480–2
 used and retreadable 476–7
 utilization 479–80
waste-to-energy cycle 4
waste-water interactions 4, 516–19
water
 see also groundwater
 acid 192–3, 322
 geothermal waste 302–4, 337–54, 372–3
 glass corrosion 389
 mines 193–4, 201–3, 503–7
 reactivity with glasses 580–2
 tunnels 374–8
 wastewater treatment 193–4
 wells 311

water pollution
 coal mining 170–2, 174, 182, 183–4, 189, 192–4
 geothermal energy utilization 319–21
 Shilbottle Coalfield, UK 198, 199–200
 water resource depletion 182, 189, 194, 200
 water-to-air heat pump 301, 502
 weathering 76, 188, 646
 wells
 geothermal fluids 301–4, 338–9, 340, 355
 water composition 311
 Werra–Fulda potash district, Germany 135–41
 X-ray photoelectron spectroscopy (XPS) 554
 zeolites 589–90
 zinc 600–1
 zircon 48–9
 zirconolite 46–7, 90, 93–4, 95, 101–2, 106
Energy, Waste and the Environment: a Geochemical Perspective

Edited by
R. Gieré and P. Stille

This book provides incentives for further development of sustainable fuel cycles through a novel and interdisciplinary approach to an Earth science-related topic. The main focus is on geochemical concepts in immobilizing, isolating or neutralizing waste derived from energy production and consumption. The book also addresses the issue of using some types of energy-derived waste as alternative raw materials. Moreover, it highlights research on how certain wastes can be used for energy production, an increasingly important aspect of modern integrated waste management strategies. The main objectives are to: (a) identify the most serious environmental problems related to various types of power generation and associated waste accumulation; (b) present strategies, based on natural analogue materials, for the immobilization of toxic and radioactive waste components through mineralogical barriers; (c) discuss modern procedures for reuse of waste or certain waste components; and (d) review the importance of geochemical modelling in describing and predicting the interaction between waste and the environment.

Visit our online bookshop: http://bookshop.geolsoc.org.uk

Geological Society web site: http://www.geolsoc.org.uk

Cover illustration:
Facility for the long-term storage of toxic waste in a salt mine.
Photograph courtesy of J. L. Crovisier.