Index

Page numbers in *italic* denote figures. Page numbers in **bold** denote table.

Adriatic Dense Water 200, 203

Adriatic Sea, SW margin
- basin floor 209, *italic* 211–212
- bathymetry 201, 203
- bottom current deposits 199–221
- circulation patterns 200, **bold** 200, 202, 218–219
- furrows 205, 206, 207, 216, 217
- geology 202
- moat 209, *italic* 211, 216, 217, 218
- morphology 203–209
 - as barrier to flow 216–218
- northern slope 204–205, *italic* 206–208
- oceanography 202
- sea-level change 219
- sediment waves 205, *italic* 206-208, 217, 219
- migration 218–219, *italic* 220
- sediment winnowing 209
- seismic stratigraphy 203–209
- slope gradients 218, *italic* 219
- southern slope 209, 210

Adriatic Surface Water 203

Agulhas Current 5

Agulhas Plateau, sediment waves 276, 277

Albufeira sheeted drift 56, *italic* 62, 63

Alexander Channel 99, **bold** 100, 101, 104, *italic* 112

- glacial sedimentology 114, 115–117, 115, 121
- lineations 102–103, 104

Alexander sedimentary mound see Drift 7

Alvarez Cabral Moat 56, 57, 60, 65, 66, 72, 73, 74

ANASTASYA surveys 53–54

Animal Basin, sedimentology 161, 162, 163, 164, 165, 165, 166, 167

Antarctic Plate, fracture zones 104

Antarctic Bottom Water 123, 124, 172, 173, 176, 177, 179, 193–194

- Eirik Drift 247, 248, 260
- Porcupine Seabight 227

Antarctic Circumpolar Current 194

Antarctic Intermediate Water 130, 176, 177, 179, 336, 338

Antarctic Peninsula
- Drift 7 96–107
- glacial sediments 111–124
- ice-rafted debris 111, 113, 115, 121
- palaeoclimatology 111, 113

Antarctic Polar Front 147

Antarctica, outer shelf-upper slope 5

Armorican terrane 299, 322, 323

Atlantic Deep Western Boundary Current 7

Atlantic Inflow Water 52

Atlantic Ocean, Northeast
- coarse-grained contourites 5
- Porcupine Seabight 225–242

Avulsion 9, *italic* 12

Ayamonte mixed drift 62, 65, 66, 68, 72, 73

barchan dunes 13, 205, 218, 228

Bari Canyon 207, 203, 217

Barra Fan 271, 272, 277

Bartolomeu Dias sheeted drift 56, 57, 62, 63, 69, 70

Base Chalk, Danish Basin 267, 268, 269, 270, 272, 279

Bacchichetine Formation 285, 288

Bathyllasma 228

bedforms 6, 18, 42

- Drift 7 101–102, 106

Belgica mound province 225, 228–229, 234, 239, 240, 241–242

benthos, Antarctic Peninsula Margin 122–123

Bill Bailey Bank 27, 28, 29, 31

bioturbation 18

- Antarctic glacial mud 111
- Bluecliffs Silt Formation 141
- Californian Borderland 165
- Campos Basin 84, 86
- Devonian pelagic carbonates 313, 315, 320, 324
- Eirik Drift 252
- Gulf of Cadiz 39
- lack of, Antarctic Peninsula margin 122–123
- Porcupine Seabight 233, 239

Blake Outer Ridge 2, 279

Blue Marker 183

Bluecliffs Silt Formation 130, 131, 136, 137, 140–141, 146

- grain size 142, 143, 144, 145
- time of deposition 145–146

Bolling Allerød, Mediterranean Outflow Water 53

Bora events 203

bottom-simulating reflector zones 2

Bounty Trough 130, 146, 148

Bow Formation 285, 288

Brasiliano Cycle 173

Brazil Current 172, 176, 178, 179, 182, 191, 192, 336, 338

see also palaeo-Brazil Current

Brazilian margin

- Canyon São Tomé 329–341
- effect of sea-floor topography 7, 9–13
- geology 82–83
- ocean circulation 176, 177, 336–337
- Santos Drift System 171–195
- seismic data 13, 15, 16
- unconformities 6, 7

British-Irish Ice Sheet, deglaciation 233–234

Brushy Canyon, upper slope deposits 5

Bulimina ex gr. *marginata* 214
Porcupine Seabight 239–241
seismic characteristics 13, 15, 16
shallow-water 2, 5
terminology 95
upper slope 5
contourites v. turbidites 1, 44, 96, 289
Alexander Channel 117, 120–121
core analysis
Porcupine Seabight 232–234, 236–238
hydrodynamic interpretation 235, 239
Coriolis effect
and bottom currents 5, 7
Alexander Channel 121
California Continental Borderland 57
Canterbury Drifts 130, 146
Danish Basin 271, 280
Drift 7 105, 106
Faeroe Bank 43
Gulf of Cadiz 52
Santos Basin 193
Crantera Sandstone 141
Cretaceous, Upper
Danish Basin 265–280, 266
transgression 265
currents
bottom 2, 3, 4, 5, 81
Adriatic Sea deposits 199–221
Campos Basin sandstone 81, 83
Canterbury Drifts 147
Canyon Sao Tome 330–341
Danish Basin 271, 279–280
density-enhanced 6
Devonian pelagic carbonates 302, 313–325
Drift 7 105, 106
effect of sea-floor topography 7
Eirik Drift 251, 252–253
Faeroe Bank channels 26, 28, 29, 31, 43
Gulf of Cadiz 35, 43–44
Gulf of Mexico 5, 6, 13
intensity 7, 18, 193, 218, 252
paleohydrology 92–93
Porcupine Seabight 225, 228, 229–230, 235, 239–242
reworking 82, 91–92, 120, 165–167, 182, 239, 315, 320
Santos Basin 181
Santos Drift System 182, 183, 184, 189, 190, 192, 193
SW Adriatic Margin 199–221, 201
winnowing 160, 162, 165–166, 209, 239, 271, 275, 280
contour 4, 25, 218
geostrophic 25, 43, 44, 147
see also Coriolis effect, and bottom currents
shelf 4
slope, Santos Basin 13
storm 5
surface 155
Brazilian margin 176, 177
thermohaline see circulation, thermohaline
tidal-driven, Canyon Sao Tome 331–332, 334, 335
turbidity 44, 105
Antarctic Peninsula margin 117, 120, 121, 122
Canterbury Drifts 146
modeling, Canyon Sao Tome 336, 337
velocity 4, 6, 156, 167
cyclicity 50, 57
Danish Basin, Upper Cretaceous 266–280, 266, 267
bottom currents 271, 279–280
chalk sea floor 265
erosion 271
gEOLOGY 266–267
moat-drift system 274–275, 277–279, 280
mounded drift 271, 274–275
ridge and valley system 266–267, 270–271, 275
sediment waves 275, 276, 277
seismic stratigraphy 268–279
Top Campanian Unconformity 271, 272, 273, 277
Dauno Seamount 201, 203, 209, 211–212, 217–218
Davidson Current see California Undercurrent
debris, ice-rafted
Antarctic Peninsula 111, 113, 115, 120, 121
Eirik Drift 251, 252
Porcupine Seabight 234, 235, 239
debrites, Campos Basin 83, 86, 87
Deep Brazil Current 172
Deep Western Boundary Current 245, 246, 247, 260, 261–262
Denmark Strait Overflow Water 247, 248, 253, 258
dense Water Outflow Current 203
Dentatium 141
Descanso Basin 160, 162, 167
Devonian
pelagic carbonates 299–325
turbidity 44, 105
Antarctic Peninsula margin 117, 120, 121, 122
Canterbury Drifts 146
modeling, Canyon Sao Tome 336, 337
velocity 4, 6, 156, 167
cyclicity 50, 57
drift 44
confined 231, 240
fossil mounded 65–6
mixed 66, 68
mounded 62
plastered 56, 62, 64, 209, 210, 218
Porcupine Seabight 228–232
sheeted, Gulf of Cadiz 53, 56, 57, 62–64

East Brazil rift system 173
East Cortez Basin, sedimentology 162, 163, 164, 165, 166, 167
Eastern Mediterranean Deep Water 203
Eastern New Zealand Oceanic Sedimentary System 130, 146
Eastern North Atlantic Water 227
Eifelian
Devonian pelagic carbonates 320, 321
palaeoceanography 322
Eirik Drift 104, 245–262, 246
bathymetry 249, 250
bioturbation 252
bottom currents 251, 252–253
circulation patterns 247, 248
depositional architecture 260
foraminifera 253
formation 258, 260, 261–262
ice-rafter debris 251, 252
morphology 261–262
oceanography 247
palaeoceanography 258, 260
Pleistocene cycles 261
sedimentary waves 255
sedimentology 252–253
seismic waves 255
seismic stratigraphy 249, 251–258, 259
tectonic history 246
Emsian
pelagic carbonates 311, 314, 315, 320
riftting 300
Eocene, bioturbated sandstone, Campos Basin 81, 82, 86, 92
epeiric sea, Upper Cretaceous 265, 280
Equatorial Surface Current 323
erosion
bottom current, Faeroe Bank 28, 30
Danish Basin 271, 277, 280
Gulf of Cadiz 56
Porcupine Seabight 229, 230, 231, 232, 241
sea floor 3
slope current 3, 13
terrace 5
Esenitza Formation 285, 288
Espírito Santo Basin 171
Etropole Formation 285, 288
contourite identification 289, 290, 293, 295–297
Faeroe Bank 26, 27
coarse-grained contourites 5
contourite sand channels 26–35, 27, 43–45
sand body geometry 33, 35
sediment cores 31, 33, 34, 35
seismic profiles 31, 32
Faeroe Bank Channel 26, 27, 28, 29, 44, 247, 248
Faeroe-Iceland Ridge 26, 27, 28
Faeroe-Shetland Channel 4, 5, 18, 43
Famennian, pelagic carbonates 300, 314, 320
Farewell Fracture Zone 246, 256
Faro Drift 37, 43, 130
Faro-Albufeira drift 56, 57, 58, 59–60, 62, 63, 65, 72, 73, 74
Faro-Cadiz sheeted drift 56, 57, 58, 62, 63–64
faults, South Moesian platform 287
Fish Clay 266
Flabellum 141
flocculation 122
Florianópolis Fracture Zone 171, 173
Florianópolis High 171, 172
flow regimes 155–156
flow stripping 44
foraminifera
Bluecliffs Silt Formation 141
Eirik Drift 253
Faeroe Bank Channel 33, 34, 35
Porcupine Seabight 227, 233, 239
SW Adriatic margin 209–210, 214, 215–216
fracture zones, Antarctic Plate 104
Frasnian
palaeoceanography 322–323
pelagic carbonates 299–300
Carnic Alps 305, 311–313, 316–317, 320
Harz Mountains 304, 308–311, 312, 313, 315, 319
furrows 5, 6, 11
Santos Basin 9, 12
SW Adriatic margin 205, 206, 207, 216, 217
gas accumulation, biogenic, Gulf of Cadiz, seismic features 13
gas hydrate deposits 2, 3
Gil Eanes Channel 7, 35–45, 37, 38
Givetian
palaeoceanography 322–323
pelagic carbonates 299–300
Carnic Alps 305, 311–313, 316–317, 320
Harz Mountains 304, 308–311, 312, 313, 315, 319
Moroccan Central Massif 314
Glacial North Atlantic Intermediate Water 192, 250
 glaciation
Antarctic Peninsula 111, 113
effect on plankton 122–123
Santos Drift 193, 194
gliding, gravitational, Santos Basin 173
Globigerina quinqueloba 214, 215
Globigerinoides ex gr. ruber 214
Globorotalia inflata 214, 215
Globorotalia scitula 214, 215
Globorotalia truncatulinoides 214, 215
Gondolfa Fault 202, 203
Gondwana 302
Devonian pelagic carbonates 299–325
palaeoceanography 322–323
Grand Banks, Newfoundland 5, 247, 248
gravity flow, Santos Drift 189
Green Knoll, Gulf of Mexico 6
greenhouse climate
Danish Basin 265
Santos Basin 193
greenhouse gas emission 3
INDEX

Greenland margin
Eirik Drift 245–262
sedimentary mounds 106, 107
Greenland-Scotland Ridge 246, 258
Guadalquivir Bank 56, 65, 68, 69, 72, 73
Guadalquivir channel 52, 55, 56, 65, 70, 72, 73, 74
Guadalquivir fossil mounded drift 62, 65, 67, 72
Guadalquivir moat 72, 73
Gulf of Cadiz 4, 7, 18, 37, 50, 51
circulation patterns 52
contourite depositional system 35–45, 50–75
active contourite deposition 55–65
bedforms 42–43, 55, 62
channels and ridges 55, 56
diapiric ridges 68–69, 72, 73, 74
drifts
active 59–65
mounded 59–60, 62, 63
plastered 62–64, 65
sheeted 62–64, 70, 72
fossil mounded 62, 65–66, 67, 72
mixed 62, 66, 68
stratigraphic architecture 59–68
geometry and patterns 35–36
morphoseimentary features 55–56, 68–69, 70
mud waves 37–38
overflow-sedimentary lobe 55–56
Quaternary evolution 69, 71, 72–75
sand waves 36–37
scour and sand ribbons 55, 55
sediment cores 39, 41
sediment wave fields 62, 66, 68, 69
seismic profiles 38–39, 40
seismic stratigraphy 56–58, 61
submarine canyons 55, 56
genetics 51
paleoceanography 53
present-day features 55–56
sea bed topography 52
seismic data 13, 15, 26
Gulf of Mexico, sand dunes 5, 6, 13
Gusano channel 56, 73, 74
gyres
California Borderland 157
'sea-floor polishing effect' 7
halokinesis see salt diapir uplift
Harz Mountains
pelagic carbonates 300, 301, 302, 304, 304, 308–311, 311, 312, 313, 319
bottom currents 315–319
Heezen fracture zone 98, 104
Heinrich events 53, 58
Herzyn Limestone Formation 300, 304, 304, 311, 315, 319
 hiatuses, Devonian 314, 315–318, 320, 323–324
High Salinity Shelf 123
Holocene, CDS evolution, Gulf of Cadiz 71, 73
homogeneity 91
Huelva channel 55, 56, 65, 74
Huelva fossil mounded drift 62, 65–66, 72, 73
hydrocarbons
exploration 2, 3, 96, 171, 283
reservoirs 1, 2, 3–16, 25, 44, 96
Campos Basin 81–94, 88, 89, 93
architecture 92, 93
seepage 56
hydrodynamic modelling, Canyon São Tomé 329–341
ice-rafted debris see debris, ice-rafted
Iceland Scotland Overflow Water 247, 248
Iceland Scotland Ridge 247
ichnofossils
California Continental Borderland 165
Campos Basin 84
Ionian Surface Water 203
Irminger Sea 247
Jurassic, Middle, Tarnovo depression 283–297
Juréia Progradation 174
K-T boundary 266, 267
Kostina Formation 285, 288
Labrador Basin 246, 247
Labrador Sea Water 227, 224, 248
Lagos drift 56, 59, 62, 63, 70, 72, 73, 74
Lagos moat 62, 72, 74
Lagos submarine canyon 56, 70
Last Glacial Maximum 203, 215, 216, 219
Launrussia 102
Devonian pelagic carbonates 299–325, 315
paleoceanography 322–323
Leif Fracture Zone 246
Levantine Deep Water 219
Levantine Intermediate Water 52, 200, 203, 218–219
levées 43, 44
limestone, Devonian 299–325
Limopsis 141
Little Ice Age 123
Lofoten Contourite Drift 122
Loop Current 5, 6
Lophelia pertusa 229
Lopyan Member 285, 288, 289, 293, 295, 296, 297
Louisville drift 231
Madracopa occulata 229
MAGICO (Multibeam Antarctic Glacial system Integral COverage) survey 97, 99, 103
Malvinas Current 176
margin configuration 4, 4
Marguerite Trough 98, 112
Marshall Paraconformity 132
Mediterranean Lower Water 50, 52, 71, 72, 73, 74
Mediterranean Outflow Water 26, 35, 36, 37, 44, 50, 52
oceanography 50, 52–53
paleoceanography 53, 71, 72, 73, 74
Porcupine Seabight 227, 229, 240, 241–242
Mediterranean Sea
bottom current deposits 199–221
thermohaline circulation 202–203, 218–219
Mediterranean Undercurrent 35, 43
Mediterranean Upper Water 50, 52, 71, 72, 73, 74
Messinian salinity crisis 51, 69
methane 3
Blake Outer Ridge 2
microfossils, siliceous 105
Mid-Pleistocene Revolution (MPR) discontinuity 56, 62, 65, 67, 72, 240
Mississippi Fan 4
 bottom current reworking 5
moat-drift system 11, 43
Danish Basin 274–275, 277–279, 280
Santos Drift 188
modelling
 hydrodynamic, Canyon São Tomé 329–341
 sediment transport, Canyon São Tomé 332, 336–341
Moesian platform
 tectonic history 283–284
 see also Southern Moesian platform
MOGAM (MOdelling and Geology of Antarctic Margins) project 111
Moroccan Central Massif
Devonian pelagic carbonates 300, 301, 302–304, 306, 307–309, 310, 318
 bottom currents 314
MPR discontinuity see Mid-Pleistocene Revolution
mud
 carbonate, Devonian reworking 299–325
 glacial
 Antarctic Peninsula 111, 114, 115–124
 Porcupine Seabight 239, 242
 waves, Gulf of Cadiz contourite channels 37–38
Neogloboquadrina pachyderma 214, 215
Neogloboquadrina pachyderma (s.) 227, 233, 236
Nordic Sea 247, 248
Noric Terrane 300, 323
North Atlantic Central Water 43, 52, 227
North Atlantic Deep Water 176, 177, 179, 240
 Brazilian margin 336, 338
 Eirik Drift 247, 248, 253
North Atlantic Surface Water 50, 52
North Atlantic Deep Water 50, 52
North Brazil Current 7, 176
North Gondwana Current 323
North East Atlantic Deep Water 227
Norwegian Sea Outflow Water 26, 28, 31, 44, 227
Notocyathus 141
Nuttallides unbonifera 253
O2, Antarctic Peninsula Margin 122, 123–124
Ocean Drilling Program site 1119, SW Pacific Ocean 130, 131, 133–136, 137, 138, 139, 146–147
Ocean-atmosphere system 3
OKEAN sidescan sonar 25, 26, 28–31
Opal A-CT diagenetic boundary, Drift 7 105, 106
Øresund, Danish Basin 266–280, 267
OREtech sidescan sonar 25–26, 31
Otaio River
 grain size 142, 143, 144
 stratigraphy 140–141, 140
 time of deposition 145–146
Otanto Strait 203, 219
overflow-sedimentary lobe, Gulf of Cadiz 55–56
Oxygen Minimum Zone 136
oxygenation, bottom water
 Antarctic Peninsula Margin 122, 123–124
 California Continental Borderland 156–157, 165, 167
Ozirovo Formation 285, 288
Pacific Ocean Margin
 Antarctic Peninsula 112
 Drift 7 98–107, 107
 glacial contourites 111–124
 ice-rafted debris 111, 113, 115, 120, 121
 palaeoceanography
 Ocean Drilling Program site 1119 130, 131, 133, 134–136, 137, 138, 139, 146–147
 see also Canterbury Basin; Canterbury Drifts
Pahau Silstone 141
 Pal Limestone 300, 311, 314, 315, 319, 321
 palaeo-Brazil Current 189, 190, 193
 palaeo-Southern Ocean Current 172
 palaeoceanography
 Canterbury Drifts 148
 Devonian pelagic carbonates 322–323
 importance of contourites 96
 Mediterranean Outflow Water 53, 71, 72, 73, 74
 Santos Drift System 193–194
 Palaeocene-Eocene, bioturbated sandstone
 Campos Basin 81–94
 palaeohydrology 92–93
 palaeoceanography
 Canterbury Drifts 148
 importance of contourites 96
 Santos Drift System 193–194
 palaeohydrology, Campos Basin 92–93
 Palaeophycus 84, 86
 Palomelon 141
 Panthalassa Ocean 323
 Paraiso do Sul river 174
 ‘Pebby’ unit 83, 86, 87
 Pelagosa Sill 200, 203
 Pelotas Basin 171, 173
 permeability, sediment 2
 petroleum, reservoirs see hydrocarbons, reservoirs
 phosphorites 309, 313, 314–315, 319, 320–322, 323
 plankton, Antarctic Peninsula Margin 122–123
 Planolites 84, 86
 Pleistocene
 CDS evolution, Gulf of Cadiz 69, 71, 72–73
 cycles, Eirik Drift 261
 Pliszone, depositional architecture, Eirik Drift 260, 261, 261
 Pliszone-Recent, Canterbury Drifts 130–151
 plume, Antarctic Peninsula margin 117, 120, 121–122
 Polatien Formation 285, 288
 polynya, and oxygen transport 113, 113, 123, 124
 Porcupine Basin 225
Porcupine Seabight 225–242, 226
 bedforms 228
 bottom currents 225, 228, 229–230, 235, 239–242
 circulation patterns 227–228
 contourite drift 240–241
 coral 225, 228–231, 230–233, 240, 241
 core analysis 232–234, 236–238
 hydrodynamic interpretation 225, 239
 erosion event 229, 230, 237, 232, 241
 foraminifera 227, 233, 239
 ice-rafted debris 234, 235, 239
INDEX 349

moats 230, 231
mounded contourite drift 230–232, 233, 234, 240
paleoecological drift 240
pre-contourite drift 228–230
progradation 230
Quaternary hydrodynamic environment 239–240
sediment waves 229
seismic stratigraphy 228–232
turbidites 230
Portimao sheeted drift 56, 62, 63
Portimao submarine canyon 56, 72, 73, 74
Princeton Ocean Model 330–341
progradation
Canterbury Basin 130, 131, 132, 148
Porcupine Seabight 236
Santos Basin 171, 182, 183, 188, 191
Proto North Atlantic Deep Water 147, 148
Protoatlantic 302, 322, 323, 325
Prototethys 300, 302, 322–323, 325
pyrrhotite 123
Quaternary
Gulf of Cadiz, CDS evolution 69, 71, 72–75
Porcupine Seabight, hydrodynamic environment 239–240
Rauchkofel Nappe 300, 301, 305, 311, 314, 315, 316–317, 319–322
RDI erosion event, Porcupine Seabight 229, 230, 231, 232, 241
reservoirs, hydrocarbon see hydrocarbons, reservoirs
reworking, bottom current 89, 91–92, 120, 165–167, 182, 239, 315, 320
Rhenohercynian Ocean 300
ripping
Santos Basin 173
South Moesian platform 287
Ringkøbing-Fyn high 266, 267
Rockall Trough, coarse-grained contourites 5
Sagres drift 56, 59, 62, 63, 72
Sagres submarine canyon 56, 72
salt and flow density 6
salt diapir uplift 7, 9, 10, 11
Campos Basin 82, 84
Gulf of Cadiz 35, 36, 43, 51, 55, 56, 57, 68, 69, 70, 72, 73, 74
Santos Drift 176, 184, 185
São Paulo Plateau 181
San Clemente Basin, sedimentology 161, 163, 164, 165, 166, 167
San Miguel Gap 157, 167
San Nicolas Basin, sedimentology 159, 161, 162, 163, 164, 165, 166, 167
San Pedro Basin 156, 157
San Vicente submarine canyon 56
sand
Antarctic Peninsula Margin 115, 116, 117, 121
Canterbury Drifts 136, 137
deep-water, Porcupine Seabight 239
offshore transport 4
overspill 4, 5
see also contourites, coarse grained
sand dunes 4
migrating 5
see also barchan dunes
sand waves 4
Faeroe Bank channels 30
Gulf of Cadiz, contourite sand channels 35–36, 55, 66, 68, 69
upper slope 5
see also sediment waves
sandstone, Eocene-Palaeocene, Campos Basin 81–94
Santos Basin 156
Santa Barbara Basin 156
Santa Cruz Basin 157
Santa Monica Basin 156, 157
Santos Basin 171–195
bottom currents 181
reworking 182
channels 179, 181
circulation patterns 172, 176, 178, 179
continental slope 179, 181
effect of topography 9–13
hydrology 176, 177, 178, 179
physiology 174, 176, 179–181
progradation 174, 182, 183, 188, 191
São Paulo Platform 181
sedimentation 174
stratigraphy 175
submarine canyons 179–181
tectonic history 173–174, 183, 193
Santos Channel 172, 179, 180, 181, 182, 184, 166, 189, 190, 191
Santos Drift 7, 16, 172, 180, 181–183
bottom currents 189, 190, 192, 193
 glaciation 193, 194
sequence stratigraphy 183–191
Santos Drift System
bottom currents 182, 183, 184, 189, 190, 192, 193
circulation patterns 192–193
development 181–183
palaeoceanographic control 193–194
palaeoclimate 193–194
Santos moat 172, 180
São Paulo Channel 179, 180, 181, 191, 193
São Paulo Drift 180, 181, 188, 191, 193
São Paulo Plateau 171, 172, 179, 180, 181
São Sebastião submarine canyon 172, 180, 181
sea level change
Jurassic, Tarnovo Depression 287, 288
Pleistocene, California Continental Borderland 156, 157, 165, 167
Quaternary, Adriatic Sea 219
Tertiary, Santos Drift 183, 184, 187, 188, 193
sea-floor
‘polishing effect’ 7
topography see topography, sea-floor
sea-ice, effect on plankton 122–123
sealing rock 16, 18, 95
SEAMAP sidescan sonar 26, 35, 38, 43
SEDANO (SEDiment Drifts of the ANtarctic Offshore) project 111–124
sediment drifts 97
see also contourites
sediment transport, modelling, Canyon São Tomé 332, 336–341
INDEX

sediment waves
Cilician Basin 229
Danish Basin 227, 226, 227
Drift 7 101, 102, 105
Eirik Drift 255
Porcupine Seabight 229
SW Adriatic margin 205, 206–208, 217, 218–219, 219, 220
see also sand waves
sedimentary structures 146–147
Serra da Mantiqueira mountains 174
Serra do Mar mountains 174
shale, Tarnovo depression 290–293
shelf, outer 4–5
Shelf Edge Current, NE Atlantic slope 227
Shipkovo Member 285, 288
Sicily Channel 231, 239
Sigsbee Escarpment 5, 6
silica, biogenic 104, 105
silt
Antarctic Peninsula Margin 115, 116, 117, 117, 120, 121
California Continental Borderland 160
Canterbury Drifts 136, 137, 139, 141, 142, 143, 145, 146–147
Eirik Drift 252, 253
slope
continental, Santos Basin 179
upper 5
slope gradients, and sediment deposition 218, 219
slope indentation 5
slope instability 13
Drift 7 105
importance of contourites 96
Sorgenfrei-Tornquist Zone 266, 267, 271, 275, 279–280
South Atlantic Central Water 176, 177, 179
South Atlantic Subtropical Gyre 176
South Equatorial Current 176
Sumba drift 231, 240
Tanner Basin, sedimentology 157, 159, 161, 162, 163, 164, 164, 165, 165, 166, 167
Tarnovo depression 283–297, 284
bottom current deposits 290, 292, 295–297
contourite identification 287–289, 290, 293, 295
core analysis 290, 291, 292–293
lithostratigraphy 285, 288
shale 290–293
Te Ngawai River
grain size 142, 143, 144
stratigraphy 140, 141
time of deposition 146
terrace, upper slope 5
TOBI sidescan sonar
North Atlantic sand channels 26, 28–31, 35, 36
SW Adriatic margin 201, 202, 203, 205, 206–207, 209, 211–212
Top Campanian Unconformity 271, 272, 273, 277
topography, sea-floor
effect on bottom currents 7–13
Gulf of Cadiz 52
trace fossils see ichnofossils
transgression, Upper Cretaceous 265
Tropical Water 176, 177, 179
Tula fracture zone 98, 104
turbidites 1, 4, 44, 81
Antarctic Peninsula margin 117, 120, 121
Campos Basin 81, 83–84, 85, 86–87, 88, 89, 91–92
Drift 7 96
Porcupine Seabight 230
see also contortites v. turbidites
Tvrditza-Ptitchevo strike-slip fault zone 285
unconformities
deep-sea 6–7
erosional, Faeroe Bank Channel 31
late Pliocene, Porcupine Seabight 229, 231, 232, 241
Palaeocene-Eocene ('Pebbly') 83, 86
sequence boundary 6, 7
Top Campanian, Danish Basin 271
Valenčin Limestone 300, 311, 314, 315, 319, 321
Variscan orogeny 322
Venus Channel 44
Vocintian Basin 5
volcanoes, mud 56, 70
Waipara River
grain size 142, 143, 144
stratigraphy 141
Weka Pass Limestone 140, 140, 141
well log profiles 15, 16
Western Mediterranean Deep Water 52
winnowing
bottom current 160, 162, 165–166, 239, 271, 275, 280
Adriatic Sea 209
Wolayer Glacier 301, 311–312, 315, 316–317, 320, 321
Zeacolpus 141
Ziar-Mrirt Nappe, Morocco
Devonian pelagic carbonates 300, 301, 302–304, 303, 306, 307–309, 310, 318
bottom currents 314
Zoophycos 84, 86
Economic and Palaeoceanographic Significance of Contourite Deposits

Edited by
A. R. Viana and M. Rebesco

There has lately been a growth in the number and level of studies of contourite deposits. Most recent studies of contourites have two major lines of interest. One, propelled by the oil industry's continuous move into increasingly deep waters, concerns their economic significance. The other involves the stratigraphic/palaeoceanographic record of ocean circulation changes imprinted on contourite deposits that can be a key to understanding better the climate–ocean connection. The application of many different theoretical, experimental and empirical resources provided by geophysics, sedimentology, geochemistry, petrology, scale modeling and field geology are used in the 16 papers of this volume, proposing answers to those two main aspects. The papers are subdivided into two major categories (economic interest and stratigraphic/palaeoceanographic significance), with case studies ranging from well-documented drifts to new examples of modern and fossil series, involving a large diversity of geographic and physiographic scenarios worldwide.

Visit our online bookshop: http://www.geolsoc.org.uk/bookshop

Geological Society web site: http://www.geolsoc.org.uk

PETROBRAS is thanked for generous contributions towards production costs.

Cover illustration:
Seismic block diagram representing the action of bottom currents in constructing the Santos Drift, SE Brazil margin, during the lower Miocene (see Duarte & Viana, pp. 171–198). Seismic data by PGS.