Index

Note: Page number in italic denote figures. Page numbers in bold denote tables.

Aegean Sea hydrological zone 14–15, 20, 21
agriculture
 southern Europe, water demand 145, 147–148
 use of salty water 149
 use of wastewater 150, 151
Apulia
 groundwater availability, and climate change 46–50
 rainfall 41, 42, 43, 44–45
 temperature 46
aquifer storage and recovery 160, 161, 166, 170
aquifer storage transfer and recovery 160, 161
aquifers
 deep confined, Neyveli 174–181
 detritic, climatological cycles 53–61
 direct and indirect recharge 162
 unconfined 79–97
Arad, ancient water supply 138, 139, 140–141, 142
ArcGIS 84
Atlantic ocean-atmosphere circulation 39, 137
see also North Atlantic Oscillation
Azraq springs 113, 118
bacteria, water-related 150, 153, 158, 163, 166
Badain Jaran Shamo, groundwater 113, 114–117, 119
Bagnara spring system, impact of climate change 5
Balkan mountains 13–14, 15, 16
bank filtration 160, 161
baseflow see rivers, baseflow
Basilicata, temperature and rainfall 41–45, 46
Beden spring 17
Bhdak–Bheemda area, recharge 123, 129–131, 132
Black Sea hydrological zone 14, 20, 20
boreholes, effect on discharge, Larissa Plain 73, 74–75
BRANCH model 91
brine, disposal, impact on marine ecosystem 149
Bulgaria
 1982–1994 drought, groundwater variability 18–23
 climate change and groundwater 13–23
 hydrological zones 14–15
 karst springs 15, 16–18, 26–27
 discharge variability 35–36
 National Hydrogeological Network 16
Calabria
 groundwater and climate change 47–50
 rainfall and temperature 41, 42, 43, 44–45, 46
Campania
 climate change
 analysis 28–30
 impact on groundwater resources 30–37
 hydrogeology 25–27
Canaan, climate change and society 138–143
Canada, Grand Forks valley unconfined
 aquifer 80–97
Canadian Global Coupled Model 81–83, 92, 95
carbon isotopes 4
13C measurement
 Israel 138, 140
 Neyveli confined aquifer 177, 177, 178, 179
 Rajasthan 123, 126, 127
 Thar Desert 105, 107
14C measurement
 desert water dating 114, 115, 117
 Israel 138
 Neyveli confined aquifer 176, 177, 178, 179
 Rajasthan 123–125, 126, 127–128, 130–133
 Thar Desert palaeohydrology 103–104, 105
Chalkodonio Massif 64, 71–72
channels, river, BRANCH modelling 91–92
chloride isotope tracers 4, 123, 178, 179–180
chloride mass balance 116, 171–172, 173
Cholistan, fresh groundwater resource 99–108
Chott, fresh groundwater 113
circulation patterns, atmospheric 39
clogging, during recharge 159, 162, 163
coastlines, water resources, southern Europe 147–148
cobalt-60 tracer 102
coductivity, hydraulic 112, 113, 115
 Grand Forks aquifer 87
contamination see pollution
Craddock test 45
cyclicality, climatological, spectral analysis 53
 Vega de Granada alluvial aquifer 56–61
Danube hydrological zone 14, 15, 19, 20
Dead Sea
 ancient levels 138, 140
 transient groundwater flow 117
desalination 146, 149
deserts, groundwater 113–119
 Thar Desert 99–108
 western Rajasthan 121–134
Devnia springs 15
discharge 5–6, 112
 Campania, springs 35–36
 Granby River 91, 92
 Kettle River 90–91, 92
 in water balance studies 118
 Yperia Krini spring 68, 70, 71
disease, water-related 150, 153–154, 158
downscaling, GCMs 80–83, 92
drought
 groundwater variability, Bulgaria 18–23
 and La Niña events 39
 mitigation. India 174–81
 southern Italy 40, 49
dune filtration 160, 161
Ein el Sultan spring 141, 142
El Niño South Oscillation 58
INDEX

electrodialysis reversal 149
Elisha’s Spring 141, 142
environment
impact of desalination 149
impact of groundwater recharge 163–164, 165
Escherichia coli 150, 153, 166
Europe, southern, water resources 145–167
coastlines 147–148
groundwater recharge 145, 164, 167
mainland 148
water demand 145, 147–148

Escherichia coli
environment
impact of desalination 149
impact of groundwater recharge 163–164, 165
Europe, southern, water resources 145–167
coastlines 147–148
groundwater recharge 145, 164, 167
mainland 148
water demand 145, 147–148
evaporation, desalination 149
evapotranspiration variation, Campania 31–33
in water balance studies 118

Fertile Crescent, climate change 138–143
springs 139, 141, 142
filtration 160, 161
flooding 28, 171, 174
flow, groundwater 5, 112–113, 115
Campania 34
transient 113, 117–119

Glava Panega spring 16–17, 18, 20
Global Circulation Models (GCMs) 2, 3
Canadian Global Coupled Model 81–83
dowsnscaling 80–83
global warming 1, 2, 75, 111
causes 1
anthropogenic 1
solar variability 1, 2, 28, 39, 57, 58
future scenario 1, 2, 111–112
Gobi Desert see Badain Jaran Shamo
Granby River
flow modelling 91–92
hydrology 89–91
Grand Forks aquifer 80–97
climate prediction modelling 95–97
model calibration 93
hydraulic conductivity 87
hydrologic modelling 89–92
recharge modelling 84–89, 95–97

GRAPHIC, UNESCO 25
Greece, Yperia Krini spring 63–75
greenhouse gases 1, 2, 111
groundwater
desert areas 113–119
discharge 5–6
flow 112–113, 115
transient 117–119
global volume 2
management, and transient flow 118–119
mean turn-over time 111, 112, 117
quality 6–7
rebound 6
recharge see recharge, groundwater
GWES, UNESCO 174
HACCP risk assessment 158, 159, 164
harmonic analysis 56, 57, 58
helminths, water-related 150, 154
HELP 83, 84, 86, 87–88, 89
Holocene, climate change and global hydrology 137
hydrogen isotopes 4

H2 measurement
Rajasthan 123, 125, 126, 128, 130, 131
Thar Desert 105, 106, 107

H3 measurement
Neyveli confined aquifer 176
Rajasthan 123–124, 126, 127–130, 133
hydrogeology, models 3–4

India
drought mitigation
Neyveli deep confined aquifer 174–180
percolation ponds 171–174
western Rajasthan, groundwater recharge 121–134
industry
impact on water resources 147
use of wastewater 151

integovernmental Panel on Climate Change (IPCC),
global warming forecasts 1, 2, 75, 111
irrigation
groundwater recharge 160, 161, 166
return flow, Grand Forks aquifer 87, 89, 95
southern Europe, water demand 145
use of wastewater 150, 151

isotope studies 4
Bhadka–Bheemda area, recharge 129–131
desert water dating 114, 115, 117
groundwater recharge, western Rajasthan 121–134
Jalore, groundwater recharge 127–129
Jodhpur-Nagaur limestone belt, recharge 131–133
Neyveli confined aquifer 176–181
Thar Desert
fresh groundwater origin 106–108
groundwater recharge 122–127
palaeohydrology 103–104, 105, 106

Israel
climate change 137–143
Negev Desert, wastewater transportation 150
see also Fertile Crescent

Italy, southern, climate change and groundwater 25–37, 39–50

Jaisalmer, palaeochannel 124–125, 126, 127
Jalore, groundwater recharge 123, 127–129
Jazo-Razlog spring 17, 20
Jericho, ancient water supply 138, 139, 141–142
Jodhpur-Nagaur limestone belt 123, 131–134
Jordan, Azraq springs 113, 118
Jordan-Dead Sea-Arava rift valley 137–138, 139

Kalwakurty percolation pond 173, 174, 180
karst springs
Bulgaria 15, 16–23
Campania 27–28, 35–36
Yperia Krini 63–75
Kazanlak, groundwater variability 21, 22, 23
Kettle River, Grand Forks unconfined aquifer 80–97
flow modelling 91–92
hydrology 89–91
water budget 93, 95
Kotel spring 17, 18, 20, 23
La Niña events, and Mediterranean drought 39
LARS-WG 83–84, 85, 88
Malko Tarnovo spring 17, 18, 20
Mann–Kendall test 42–43, 44, 45
Mediterranean climate system 137
water storage and reuse 164, 167
Mediterranean Oscillation 39
Metaponto plain, groundwater availability 46–50
Middle East, Holocene climate change 137
modelling
analogue approach 2–3
ArcGIS 84
BRANCH 91
Canadian Global Coupled Model 81–83, 92, 95
Global Circulation Models 2, 3
Grand Forks valley aquifer 80–97
HELP 83, 84, 86, 87–88, 89
hydrologic, Grand Forks aquifer 89–92
LARS-WG 83–84, 85, 88
MODFLOW grids 84, 87, 91, 93, 94
recharge, Grand Forks aquifer 84–89
WGEN 83, 84, 88
WHI UnSat Suite Plus 84
Zone Budget (ZBUD) 93, 95
MODFLOW grids 84, 87, 91, 93, 94
Moesian platform, karst springs 15
Molasse basin, Germany, transient flow 117
monsoon
Cholistan 99
India, percolation ponds 171–174, 180
Mount Malouka 63, 64, 65, 66, 67, 71–72
Murgia aquifer 46–50
Musina spring 16, 17, 19, 20
Naples, precipitation 28, 29
Nastan-Trigrad karst basin 17
National Hydrogeological Network, Bulgaria 13, 16
Negev Desert, wastewater transportation 150
Neyveli deep confined aquifer 174–181
nitrates 26
North Atlantic Oscillation 39, 57, 58–59
Old Hakra aquifer
fresh groundwater origin 106–108
hydrochemistry 100–101
hydrogeology 101
recharge 101–103
Old Hakra River 99, 100
osmosis, reverse 149
oxygen isotopes 4
18O measurement
groundwater recharge, Rajasthan 123, 125–132
Israel 138, 140
Neyveli confined aquifer 177, 177, 178–179
Thar Desert 105, 106, 107
Pakistan, Cholistan, fresh groundwater 99–108
palaeoanalogues 2–3
palaeochannel, Jaisalmer 124–125, 126, 127
palaeoclimate, Thar Desert 104, 106
palaeohydrology, Thar Desert 103–106
Palma de Majorca, runoff, as water supply 149
parasites, water-related 150, 153–154
pathogens, water-related 150, 153–154, 154, 163, 165
percolation ponds 160, 161, 170
India 171–174, 180
permeability, soil, Grand Forks aquifer 84, 86, 87
Phreat, Yperia Krini spring 63, 72–73
piezometry
southern Italy 47–50
Vega de Granada alluvial aquifer 55–61
pollution 147–148, 158, 163
chemical 26, 155, 158, 163, 166
physical 155, 158, 163, 166
population, southern Europe, water demand 145, 147–148
power spectrum 56–58, 59
precipitation
Israel 137–138, 139
prediction 111
and recharge 4
simulation, LARS-WG 84, 85
Sotirio 68, 69
variability
Campania 28–31, 32, 41, 42, 43, 44–45
Grand Forks 81, 82–83, 85, 88
southern Italy 39–40, 41–46, 49–50
in water balance studies 118
protozoa, water-related 150, 154, 158
qanats 6
radiation, solar, simulation, LARS-WG 84, 85
rainfall see precipitation
rain gauge network 27, 28, 30
rainwater, harvesting 6, 75, 146, 160, 161
Rajasthan, western, groundwater recharge 121–134
Razlog karst basin 16, 17, 21
rebound, groundwater 6
recharge, groundwater 4–5, 25, 112
applications 162–164
artificial 158, 170
Bulgaria, karst springs 20–23
Campania 33–35
desert areas 113, 114, 116–117, 11
management 158
modelling, Grand Forks aquifer 84–89, 95–97
Old Hakra aquifer 101–103
Rajasthan, isotope studies 121–134
unconfined aquifers 79
use of wastewater 150, 152, 158–167
controls and regulations 154, 156–157, 164, 166
deep injection 159, 160, 162
direct and indirect 150, 152, 159, 162
disadvantages 159, 162
environmental impact 163–164, 165
on-surface 159, 160, 162
social problems 163
southern Europe 145, 164, 167
technical problems 163
techniques 160, 161, 170–17
Yperia Krini spring 68, 71–2
reclamation see wastewater, reclamation
reconstruction, climate 2–3
recycling see wastewater, reclamation

INDEX 185

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/4239667/9781862395367_backmatter.pdf by guest on 28 April 2019
Regional Circulation Models 2, 3
Rila–Rhodopes massif 14, 15, 16
risk, wastewater reuse 158, 159
rivers, baseflow
input from aquifer 79, 91, 93
input to aquifers, modelling 91–92, 93, 95
runoff
impact of global warming 111
urban, impact on water resources 147–148
as water supply, southern Europe 148–149
Salento aquifer, groundwater availability 46–50
salt see brine; desalination; sodium
sampling, waste water 164, 166
sand dams 160, 161
Saraswati River, palaeochannel 124
scenarios, global warming 2, 3, 111
Europe 40
Grand Forks aquifer 95–97
seawater
desalination 146, 149
intrusion into aquifers 147
sewerage, southern Europe 147–148
shipping, pollution 148
Sibari plain, groundwater and climate change 46–50
society
acceptance of groundwater recharge 163
vulnerability to climate change 2, 169–170
Fertile Crescent 138, 140–143
Yperia Krini spring 72–74
sodium, Old Hakra aquifer 100–101
soil, Grand Forks aquifer 84, 86, 87, 88
soil aquifer plant treatment 160, 161
soil aquifer treatment 160
solar cycles see sun, variability
Spain, Vega de Granada aquifer 53–61
spectral analysis
climatological cycles 53
Vega de Granada alluvial aquifer 55–57
springs
discharge variability, Campania 35–36
Fertile Crescent 139, 141, 142
karst
Bulgaria 15–23
Campania 26–27, 35–36
Yperia Krini 63–75
stream release 160, 161, 170
Student t-test 45
sun, variability 1, 2, 28, 39
sunspot cycle 57, 58
Sutlej River 99, 106, 107
Tavoliere aquifer, impact of climate change 46–50
Tell es-Sultan see Jericho
Temperature 46
prediction 111
simulation, LARS-WG 84, 85
Sotirio 66, 67
variability
Campania 32–33, 45
Grand Forks 81, 82, 82, 85
southern Italy 40, 45, 46
INDEX
Thar Desert 99–108, 121–127, 122
tourism, southern Europe, water demand 145, 147–148
transportation, water 146, 148, 149, 150
tritium tracers 102, 178
desert water dating 113, 114, 116, 117
Rajasthan 123, 125, 127, 128, 129, 130
Tunisia, Chott fresh water 113
underground storage 160, 161
UNESCO-GRAPHIC project 25
UNESCO, GWES 174
Upper Thracian valley, groundwater
variability 21, 22, 23
urbanization, impact on water resources 147
see also wastewater reclamation
vadose zone
climate change information 4
Grand Forks aquifer, modelling 84, 86, 87, 88
Vega de Granada alluvial aquifer
climatic cycles 57–61
hydrogeology 53–54
spectral analysis 55–57
Veleslino, Yperia Krini spring 63, 66, 72–73
viruses, water-related 150, 153–154, 158, 163
wadi el Qilt springs 141
wastewater
groundwater recharge 158–159, 160, 161, 162
southern Europe 145, 150, 164, 167
pathogens 150, 153–154, 154, 158
pollution 147–148, 155, 158
reclamation 145, 149, 150, 151–152, 153–154, 156–158
quality 150, 151–152, 153–154, 154, 155, 158
regulations 154, 156–157
risk assessment and management 158, 159
technology 157–158
water, surface mean turn-over time 111, 112
water balance
meteorological 117–118
southern Europe 146
water budget, modelling 93, 95
water quality, reclaimed wastewater 150–154
water resources, southern Europe
conventional 146, 151–152
non-conventional 146, 148–150, 151–152
water table, depth, Grand Forks aquifer 87, 88
water treatment
desalination 149
wastewater reclamation 150, 151–152
technology 157–158
weather generation, stochastic 83–84, 88
wells
Fertile Crescent 140–141
injection 170
observational, Bulgaria 21–23
WGEN 83, 84, 88
Yperia Krini spring 63–75
Zone Budget (ZBUD) 93, 95