Index

Page numbers in italic denote figures. Page numbers in bold denote tables.

Abu Dhabi platform 133, 135–137
accommodation space
regional control 11, 14–15
Sarvak Formation 209–211
TSPs 17, 20–36
Adam Foothills outcrops 164, 168
Adayah Formation 48, 51
Adnet reef 293, 294, 313
African Plate 10
Afro-Arabian Plate 27–31
Neotethys border 18, 20–23
age dating, Dezful Embayment 252–253
Agoudim Formation 67, 68, 69–77
Ahmadi Member 359, 360, 365
Ahwaz Sandstone Member 223, 238, 239, 240
Akhdar Group 293, 294
Albian
Bangestan Group 255–263
Basque-Cantabrian platform 317–340
algal facies, Miocene, Ermenek Platform 275, 276, 277, 278, 279, 280, 282, 283, 285–286
algal mounds, Cretaceous, Oman 158
Aliaga outcrop 116, 117, 123
sequence stratigraphy 128, 129–131, 134
Aliaga-Miravete anticline 114, 116, 118
Allan/Muss Formation 48, 51, 58, 59
Alps, Southern
burial and thermal history 407
diagenetic fluids 409–410
dolomite cement precipitation 402, 403
modelling 410–411
timing 409
fluid inclusions 405–407
geology 398–400
stable isotopes 404, 409
stratigraphy 399
Aptian
Khami Group 353–355
platform-basin transition, Galve sub-basin 113–139
Aptian, Early, OAE 27, 132, 135
Aptian, Late
unconformity, TSPs 11, 13, 26, 28, 25–29
Aptian, Middle, transgression 25, 26
Apulian carbonate platform 31
Aquitanian, Asmari Formation 251–257
Arabian Plate 10
palaeogeography 222
tectonic setting 43, 45–46, 189
Triassic deposits 46–47
Arabian Platform, TSPs 18–36
aragonite dissolution 379–380
Artoles Formation 116, 118
chemostratigraphy 123
sequence stratigraphy 125
Asmari Formation 219, 220, 222, 223
anhydrites 233–236
biostratigraphy 240, 243–246
clinoforms 231
lithostratigraphy 236, 237, 238, 240
sedimentology 226–236
Sr isotope stratigraphy 240–245
Asmari Reservoirs 219, 257, 258, 259, 260
Atlantic Ocean, rifting 18–27
Austria, Adnet reef 293, 294
Austrian Event 29
Bab Basin 149, 150
Bab Member 149, 150
Bajocian, TST 29
reservoir heterogeneity and prediction 183, 184
top of incision-fill 171–172
Chaotic Unit 204, 205
Chattian, Asmari Formation 249–250, 252–253, 254, 255, 256
Chert Formation 116, 118
carbon isotope values 123, 125
depositional model 120
orbitolinids 122, 123
sequence stratigraphy 125
Chidan outcrop 225, 235–236
coral buildups 252
Sr isotope stratigraphy 241, 242, 243
climate, early Aptian 113
coral reefs
Aptian, Galve sub-basin 120, 121, J24, 137–138
Kimmeridgian, Iberian Basin 106
see also Trophbruch coral limestone
Cretaceous
channelized systems, Natih Formation
164–184
epeiric carbonate platform, Oman 146–160
near-base unconformity
TSPs 11, 12, 24, 26, 23–27
Cretaceous, Lower
Basque-Cantabrian platform 317–340
Galve sub-basin 113–139
Cretaceous Magnetic Quiet Zone 27
Cuadro marls 321
Cueto Misario section 327
Dachstein Platform 293, 294
Dariyan Formation
dolomitization 369
saddle dolomite 371, 372
stratigraphy 354–355
tidal shoal 373, 374
Dashtak Formation 27
Deccan Traps LIP 31
Dezful Embayment 219–260, 221
biostratigraphy 240–246
revised zonation 244, 245–246, 252–253
controlling factors 253–254
facies substitution diagram 226
lithostratigraphy 223
sedimentology 226–236
sequence stratigraphy
Miocene 250–252
model 256–257
Oligocene 246–250
previous interpretations 254–256
see also Asmari Formation
diagenesis
fluids, Alps and Apennines 409–410
hydrothermal stage 339
late burial 380, 382
meteoric
control mechanisms 311–313
intermediate burial 338–339
karst unconformities 291–313
phreatic 337–338
shallow burial 338
Ramales platform 324–331, 335–340
seaﬂoor marine 336–337
shallow burial 379–380
uplift-related 382
dissolution
aragonite 379–380
meteoric diagenesis 294, 296, 302, 305, 306
Ramales platform 324, 331, 333, 338–339
dolomite
cement precipitation
Alps and Apennines 397–412
modelling 410–411
timing 409
matrix replacement 363–371, 380, 402
Ramales platform 328, 330, 331, 339
saddle 371–378, 380, 381, 402
fracture-controlled
Canada and USA 391–392
Gulf of Suez 389–391
reservoir modelling 382, 384–387
Zagros fold belt 388–389
dolomitization 397
fracture-controlled
Anaran Anticline 343–393
regional comparision 388–392
Mahil Formation 298–299, 300, 302–304
El Garia Formation 35
El Perello sub-basin 115, 118
Ermene Platform 265–288, 266, 268–269
biostratigraphy and lithostratigraphy 270
comparison with other Miocene platforms 286–287
controlling factors 287–288
depositional models 280
facies associations 275, 276, 277–278, 281, 282
large scale evolution 285–286
sequence stratigraphy 278–283
stratigraphic architecture 269, 270–283
Langhian 271–283
Escucha Formation 116, 118
eustacy 11
accommodation space 16–18, 23–25, 29–31
cyclicity, ooid production 84
see also sea level change
evaporites
Arabian Plate, Triassic 46–47
Messinian Salinity Crisis 35
Palmyrides megacycles 49, 50, 51, 54, 56, 60
TSTs 18, 28
extinction 11, 21, 28

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3901530/9781862395770_backmatter.pdf
fauna see biostratigraphy
folding, Anaran Anticline 349, 353, 371
foraminifera
Albian, Ramales platform 322, 323, 324
Miocene, Ermenez Platform 275–283, 285–286
Forcall Formation 116, 118, 122, 125
depositional model 120
sequence stratigraphy 129, 130
fractures
dolomitization, Anaran Anticline 343–393
meteoric diagenesis 296
Mahil Formation 301, 305
Ramates platform 328, 333, 338
Tropfbruch coral limestone 302, 306, 310
Fuente Fría section 325, 327
Gachsaran Formation 233, 235, 236, 240, 252
Sr isotope stratigraphy 243
Gadvan Formation 353–354
dolomitization 366
saddle dolomite 371, 372
hydrocarbons 375
Galve sub-basin
Aptian platform-basin transition 113–139
biostratigraphy 123, 134, 137–139
chemostratigraphy 123, 125, 131, 133, 134
facies analysis 118–123, 119
geological setting, 115, 116, 118
HSTs 129–131
lithostratigraphy 118
LST 130
sea level change and deposition 133, 135–137
sequence stratigraphy 123–131, 136
TSTs 127, 129–131
Germany, Rogenstein 293–297
Ghirab Member 370
Gialo Formation 34
greenhouse gases 11, 21
Gulf of Suez, fracture-controlled dolomite 389–391
Gurpi Formation 233
Hammam Faraun Fault, fracture-controlled
dolomite 389–391
Hawar Member 148, 157
Hayan Block 43, 49, 54
heat flow, Alps and Apennines 407–408
Hercynian unconformity 18–19
High Atlas mountains
goehology and tectonics 66–67
oolitic carbonate ramp 65–85
high stand systems tracts (HSTs) 15, 129
High Zagros 189, 190, 221
hydrocarbon reservoirs
channelized systems 183–184
Oligo-Miocene, Dezful Embayment 219–260
Triassic, Palmyrides 43, 44, 60–61
TSTs 15
hydrocarbons, NW Dome 375
Iberian Basin, Upper Jurassic
epeiric carbonate ramp 89–108
geology 90, 91, 92, 93
INDEX
sedimentary evolution 93–103, 106–108, 107
sequence stratigraphy 92, 93–103, 94
Iberian Massif 90, 91
Ilam Formation 351, 360, 362–363
incisions see channel incisions
inclined ramp, carbonate deposition model 16
incusions, fluid
Central Apennines 405–407
Southern Alps 404–405, 406
intra-Oxfordian unconformity
TSPs 11, 12, 22, 24, 20–25
'Iran
Dezful Embayment 219–260
Sarvak Formation 187–214
Zagros Mountains
fracture-controlled dolomitization 343–393
geology 189–190
iron sulphides, Anaran Anticline 371, 372
Izeh outcrop 225
Sr isotope stratigraphy 241, 242, 253
Izeh Zone 220, 221
Jabal Akhdar outcrop 164
incision-fill 169, 172
Jabal Madar outcrop 164, 168
bioclastic tidal channels 172–173, 174, 175
channel incisions 169, 170, 171
Jabal Madmar outcrop 164, 168
bioclastic tidal channels 175, 176, 177, 178
channel incisions 169, 170, 171
Jabal Nadah outcrop 164
Jabal Qusaibi outcrop 164
bioclastic sandwave complex 177, 178, 179
bioclastic tidal channels 173
Jabal Salakh outcrop 164
Jabal Shams outcrop
bioclastic sandwaves 179, 180, 181
‘canyon’ 179, 180
channel incisions 169, 171
Jahabad outcrop 225
Sr isotope stratigraphy 241, 242
Jahrum Formation 223, 239, 240, 246, 249
Jihar Fault 45
joints, Anaran Anticline 349–353, 368
‘channel incisions 369, 370–371
'.Jurasic, earliest, unconformity, TSPs 11, 12, 19, 20, 21
Jurassic, Lower-Middle, carbonate ramp, High Atlas 65–85
Jurassic, Upper, epeiric carbonate ramp, Iberian Basin 89–108
Karoo-Ferrer LIP 22
karst
Dariyan Formation 354–355
Mauddad Member 356–357
Sarvak Formation 361–362
unconformities, meteoric diagenesis 291, 306
tkarstification, Tropfbruch coral limestone 302, 303, 306
Katool outcrop 225, 232, 233
tlithostratigraphy 236
Sr isotope stratigraphy 241, 242, 243
<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Index Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>246–250</td>
<td>Oligocene sequence stratigraphy, Asmari Formation</td>
</tr>
<tr>
<td>11, 13, 32, 34, 31–34</td>
<td>unconformity, TSPs</td>
</tr>
<tr>
<td>146–160</td>
<td>Oman, epeiric carbonate platform</td>
</tr>
<tr>
<td>147</td>
<td>geological setting</td>
</tr>
<tr>
<td>150–157</td>
<td>sea level change and deposition</td>
</tr>
<tr>
<td>236, 249, 253, 254, 255</td>
<td>Rupelian, Asmari Formation</td>
</tr>
<tr>
<td>231</td>
<td>stable isotope data</td>
</tr>
<tr>
<td>146</td>
<td>Oman, Mahil Formation</td>
</tr>
<tr>
<td>133, 135–137</td>
<td>Oman platform, sea level change and deposition</td>
</tr>
<tr>
<td>107–108</td>
<td>oncoids, Tithonian, Iberian Basin</td>
</tr>
<tr>
<td>65–85</td>
<td>Amellago ramp system</td>
</tr>
<tr>
<td>84–85</td>
<td>climate-driven cyclicity</td>
</tr>
<tr>
<td>29, 298–297</td>
<td>dissolution, Calvo¨rde Formation</td>
</tr>
<tr>
<td>291–313</td>
<td>effect of meteoric diagenesis</td>
</tr>
<tr>
<td>312–313</td>
<td>palaeoclimate, meteoric diagenesis</td>
</tr>
<tr>
<td>189–214</td>
<td>Sarvak Formation</td>
</tr>
<tr>
<td>93, 94</td>
<td>Oxfordian, Iberian Basin, epeiric carbonate ramp</td>
</tr>
<tr>
<td>95–100, 106</td>
<td>see also intra-Oxfordian unconformity</td>
</tr>
<tr>
<td>223, 231</td>
<td>stratigraphy</td>
</tr>
<tr>
<td>234–237, 238, 239</td>
<td>oxygen isotopes</td>
</tr>
<tr>
<td>409–410</td>
<td>oyster buildups, Miocene, Ermenek Platform</td>
</tr>
<tr>
<td>334–335</td>
<td>thermal modelling</td>
</tr>
<tr>
<td>320–324</td>
<td>Ramales platform</td>
</tr>
<tr>
<td>331, 333, 338–339</td>
<td>porosity development</td>
</tr>
<tr>
<td>323–324</td>
<td>sequence stratigraphy</td>
</tr>
<tr>
<td>319, 320, 321</td>
<td>stratigraphy</td>
</tr>
<tr>
<td>332–333, 334–335</td>
<td>stable isotope data</td>
</tr>
<tr>
<td>307, 308–309</td>
<td>stable isotopes</td>
</tr>
<tr>
<td>287</td>
<td>Rhaetian, Upper, Tropfbruch coral limestone</td>
</tr>
<tr>
<td>320–324</td>
<td>porosity</td>
</tr>
<tr>
<td>337–338</td>
<td>Rhaetian, Palmyrides megacycle D</td>
</tr>
<tr>
<td>382, 384–387</td>
<td>reservoir modelling, Anaran Anticline</td>
</tr>
<tr>
<td>338–339</td>
<td>hydrothermal stage</td>
</tr>
<tr>
<td>339</td>
<td>uplift</td>
</tr>
<tr>
<td>320–324</td>
<td>Rupelian, Asmari Formation</td>
</tr>
<tr>
<td>302–304</td>
<td>stable isotope data</td>
</tr>
<tr>
<td>307, 309</td>
<td>unconformities</td>
</tr>
<tr>
<td>294–297</td>
<td>meteorite diagenesis</td>
</tr>
<tr>
<td>301</td>
<td>stable isotope data</td>
</tr>
<tr>
<td>318</td>
<td>cementation</td>
</tr>
<tr>
<td>18–25</td>
<td>rifting</td>
</tr>
<tr>
<td>320–324</td>
<td>reservoir modelling, Anaran Anticline</td>
</tr>
<tr>
<td>293, 294</td>
<td>meteorite diagenesis</td>
</tr>
<tr>
<td>308–309</td>
<td>stable isotope data</td>
</tr>
<tr>
<td>120, 121, 130, 138</td>
<td>rudists</td>
</tr>
<tr>
<td>14</td>
<td>Creataceous</td>
</tr>
<tr>
<td>159</td>
<td>Oman epeiric carbonate platform</td>
</tr>
<tr>
<td>194, 200, 203, 205</td>
<td>rugose topography, carbonate deposition model</td>
</tr>
<tr>
<td>246, 249, 253, 254, 255, 256</td>
<td>Rupelian, Asmari Formation</td>
</tr>
<tr>
<td>115, 118</td>
<td>Salzedella sub-basin</td>
</tr>
<tr>
<td>164</td>
<td>Samail Ophiolite</td>
</tr>
<tr>
<td>177, 178, 179</td>
<td>sandwaves</td>
</tr>
<tr>
<td>179, 180, 181</td>
<td>Jabal Qusaibah</td>
</tr>
</tbody>
</table>
| 9781862395770_backmatter.pdf | by guest on 09 June 2019
Valmaseda Formation 320, 321, 338
Vercors platform interior domain, sea level change and deposition 133, 135–137
Villerroya de los Pinares Formation 116, 117, 118
biostratigraphy 122, 123, 124
carbon isotope excursion 125
depositional model 120
sequence stratigraphy 129, 130, 131, 134

Wadi Aday, Mahil Formation 298–305
Wadi Mi’Aidin, tidal channel fill 172
Well-2, Asmari, Pabdeh, Jahrum formations, lithostratigraphy 239, 240
Well-5, Asmari Formation, lithostratigraphy 238, 240
Well-9, Asmari Formation, Sr isotope stratigraphy 242, 253
Well-12, Asmari Formation, Sr isotope stratigraphy 242

Well-13
Asmari Formation
biostratigraphy 237
lithostratigraphy 236, 237, 240
West Caicos, oolitic system, comparison with Amellago ramp system 84

Yenimahalle Formation 270

Zagros fold belt, fracture-controlled dolomite 388–389
Zagros Foredeep 35
Zagros Mountains 344, 345
fracture-controlled dolomitization 343–393
géology 189–190, 220, 221, 222
zebra fabrics, Anaran Anticline 371–374, 373, 374, 377
zinc ore, Ramales platform 331