Index

Note: Page numbers in *italics* denote figures. Page numbers in **bold** denote tables.

algae, Bonamargy Friary 98
Alps, Friuli-Venezia Giulia 198, 200, 202, **203**
alum, alveolar weathering 21
Andelsbuch tufa 144, **145**, 146
petrophysical properties 147–150
anisotropy, calcarenous Tufa 136
Apulia, calcarenite 129–139
properties 133–138
Aquileia 201
arkose, Charles Bridge restoration 2, 2, 3, 4
Ashino tuff, sodium sulphate weathering 45–48, **49**, 54
ashlar, Oxford 106
Austria, calcareous tufa 143–151
Bath stone 103, 105, 106
bauxite, Vitulano marbles 221–222, **225**, 226
biological colonization **90**, 91–92, 98
black crusts 25–26
gypsum **90**, 91
Paris Basin limestone 26–33
Bohdíkov marble 176, **177**, 179, 180, **181**
Bohemian Cretaceous Basin sandstone, **13**, **15**
Bohemian Massif, graphitic marbles 175–182
Bonamargy Friary, sandstone decay 88–98
background stress 89–92, 96
complex pathways 93–94, 96
exceptional stress **90**, 92–93, 94, 95, 96, 97
box-work
Bonamargy Friary **90**, 93
Oxford 109
Božanov arkosic sandstone 4
Brann marble 176, **177**, 178, 179, 180, **181**
Bratislava, Leitha limestone 166–173
breccia
Friuli-Venezia Giulia 201, 202, **203**
Vitulano marbles 221–222
see also Hötting Breccia; Piasentina stone
Buckland, Reverend William (1784–1856), Corsi Collection 190–191
Budapest, travertine 5–6, 6
building stone
Apulia 129–139
Austria 143–151
availability of 1–7
choice of 101–102
Oxford 106–109
Czech Republic, database 211–216
Friuli-Venezia Giulia 197–207
Portugal 153–161
Cabo Ortegal, serpentinite 81–85
Caen stone, Lepine limestone as substitute for 2 calcarenite, Apulia 129–139
classification 130–133, **134**
properties 133–138
Calcarenite de Gravina Formation 129, 130
Calcareniti di Andraano Formation 129
Calcareniti di Porto Badisco Formation 129
Calcareaous Massif, Estremadura 155
calcin 30, 32
calcite veins 81
calcium
Bonamargy Friary **90**, 92, 94
Saxony sandstone 15–16
calcium carbonate, spring tufa 143
Campania, decorative stones, Vitulano marbles 219–230
Camposauro Massif, Vitulano marbles 221, 222
carbonateous matter, graphic marble, Raman microspectrometry 175–182
Carboniferous, arkose, Charles Bridge 2, 3, 4
Carnian Alps 198, **202**, **203**
Caserta Royal Palace, Vitulano marbles 220, 221
‘castellieri’ civilization 199
Cautano marbles 219
cement, Apulian calcarenite 133, 136
Charles Bridge, Prague, restoration 2, 2, 3, 4
chlorides, Saxony sandstone 14–16, 19
Clauzetto stone 202
climate change, Bonamargy Friary 93–98
Clipsham stone 103, **105**, 106, 109
compatibility evaluation
limestone 2, 5–6, 111–117
tuff 122–126
Compton, Spencer Joshua Alwyne, Lord (1790–1851), Corsi Collection 189
conductivity
hydraulic, Apulian calcarenite 135, **136**, 137
conglomerate carbonate, Hundsheim 168–169, **169**, 170, 171, 172
Friuli-Venezia Giulia 202
conservation intervention
Bonamargy Friary **90**, 93
limestone compatibility evaluation 111–117
Oxford 107–109
Coral Rag 105, 106
Corallian Group 102–103, 105
Corsi, Faustino (1771–1845) 186–188
enduring reputation 191–193
nomenclature 187
Cotswold stone 103, **104**, 105, 106
Courville limestone, black crusts 27, 29–31, 32
cracks, Teplá trachyte 76, 78
Cretaceous, sandstone alveolar weathering 11–22
Charles Bridge 2, 3, 4
Czech Republic graphic marbles 175–182
historical building stones, database 211–216
Teplá Monastery fire damage 73–78
limestone
 bioclastic, Courville 27, 29–31, 32
calciclastic, Portugal 153–161
compatibility evaluation 111–117
 crinoidal, Euville 27, 31
detritic, sodium sulphate weathering 35–42
dolomitic, Carnian Alps 201, 202, 203
 Friuli-Venezia Giulia 202, 203, 204–205
Jurassic, Oxford 102–105
 Leitha, Bratislava 166–173
 lumachelle, Wolfsthal 168, 169, 170, 171, 172
 oolitic Oxford 102–105
 Savonnieres 27–29, 31–32
 travertine as substitute 5–6
Wolfsthal 168, 169, 170, 171, 172
Oxford 101–110
 Paris Basin, black crusts 26–33
 sandy
 St Margarethe 169, 170, 171, 172
 Wolfsthal 168, 169, 170, 171, 172
 Vitulano marbles 224, 226
see also Caen stone; Istria stone; karst; Lepine limestone
Little Ice Age, Bonamargy Friary 90, 93, 94, 96, 97
Lysice marble 176, 177, 178, 179, 180, 181

magnesium sulphate
salt-hydration systems 50
 Saxony sandstone 14–16, 19, 20–21
weathering 46, 47, 48, 49–55
 Makabe granite, sodium sulphate weathering 45–48
 Friuli-Venezia Giulia 202, 203
 graphitic, Raman microspectrometry 175–182
 ‘green’ 81
 Vitulano 219–230
Marinoni, Camillo, Friuli Mineralogical Tour (1881) 205
microfracturing
 freeze-thaw action 90, 91
 thermally assisted 89–90
Miers (1858–1942), Corsi Collection 191
Milton stone 105
 mirabilite 35, 36, 40, 43–44, 50–51, 54–55
 Moca Creme limestone 153–161
 chemical composition 155–156
 petrophysical properties 156–161
 montmorillonite, Oya tuff 61
moraines, Friuli-Venezia Giulia 198, 199, 204
mortar
 lime, Bonamargy Friary 90, 92, 94, 95, 96
 modern
 Bonamargy Friary 90, 93, 95, 96
 Oxford 109
Neapolitan Yellow Tuff
 characteristics 122, 123, 124, 125
 as replacement for Römer tuff 122, 124, 125–126
 Neogene, Leitha limestone 166
 Netherlands, Römer tuff 120, 121
 nitrates, Saxony sandstone 14–16, 19
 nomenclature, work of Corsi 187
 nucleation 54–55
 Opificio delle Pietre Dure 189
 ophicalcite 83, 84–85
 Oxford, building stone diversity 101–110
 causes of change 106–109
 architectural style 106
 conservation 107–109
 industrial revolution 106–107
 university and colleges 107, 109
 Oya tuff 59–61, 60
 properties 61–62, 64, 65, 66
 weathering 59–71
 sodium sulphate 44–48, 49, 63, 66
 P-wave velocity, trachyte 76, 78
 Palmanova building stone 201, 205
 Paris Basin limestone
 black crusts 26–33
 sodium sulphate weathering 35–42
 Parliament House, Budapest, travertine 5–6, 6
 permeability, Apulian calcarenite 134–135, 136, 137
 Pietasenta stone 201, 202, 203, 204
 Piedra de Doelo serpentine 83–84, 85
 Pietra Caduta 133
 Pietra di Cursi 131, 132–133, 134–139
 Dolce 132, 132, 138
 Dura 138
 Gagginara 138
 Pietra Leccese Formation 129, 130, 130
 Filinkov marble 176, 177, 178, 179, 180, 181
 Pitacco, Luigi, Description of stones and marbles used in buildings in the province of Udine (1884) 205
 Poggioiarsini 132, 135, 137
pollution
 lignite power plants, Saxony 19
 lime burning, Saxony 19
see also black crusts
porosity 53–54
 porosimetry, mercury 45
 Apulian calcarenite 134
 Austrian tufa and breccia 146, 147, 149
 Leitha limestone 169–170
 Oya tuff 61
 Portuguese calciclastic limestone 158, 159
 Saxony sandstone 16–17, 18
 Tuffeau and Sebastopol stones 112
 porosity 45, 49
 Apulian calcarenite 133, 136–137, 136
 Austrian tufa and breccia 147–150
 fire damaged trachyte 76
 French limestones 27, 31, 32
 Leitha limestone 167, 169–170, 171
 Oya tuff 64, 65, 66, 70–71
 Portuguese calciclastic limestone 156–158
 Römer and Italian tuffs 124–125
 Saxony sandstone 16–17, 19
 Teplá trachyte 78
 Tuffeau and Sebastopol stones 112
 Vitulano marbles 227, 228, 229
 Portland concrete 4
 Portland stone 102–103, 105, 109
 Portugal, building stone 153–161
 potassium, Saxony sandstone 16
by guest
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3900939/9781862395817_backmatter.pdf
Prague
Charles Bridge restoration 2, 2, 3, 4
pre-emplacement factors 92
properties
hygric
Austrian tufa and breccia 144–146
Leitha limestone 167, 169–173
physical
Andelsbuch tufa 147–148
Apulian calcarenite 133–138
evaluation 4–5
Hötting Breccia 148–149
Oya tuff 61–62, 64, 65, 66
Portuguese calciclastic limestone 156–161
Römer tuff 120
salt weathering experiments 45, 53
Sebastopol stone 112
Thiersee tufa 146–147, 149–150
trochtyte, fire damage 76
Tuffeau stone 112
Vitulano marbles 223–224, 227, 228, 229
thermal, Apulian calcarenite 136, 137
provenance determination
Raman microspectrometry 175–182
work of Corsi 187–188
pseudomorphosis, gypsum-calcite 31
Purbeck Formation 102–103
quarries
abandonment 2, 5, 7, 198
Apulia 129–130, 131
Austrian tufa 145
Fair Head, sandstone 88
Friuli-Venezia Giulia 199, 201
inventories 205–207
graphic marbles, Czech Republic 175–176, 177
Hötting Breccia 144
Hungary, travertine 6
Leitha limestone 167, 168, 169
Oxford building stone 102–105, 104, 106, 107
Oya tuff 61, 62
Portugal, calciclastic limestone 158, 160, 161
sodium sulphate 35–42, 43–56
Friuli-Venezia Giulia 203, 204
see also Záměl glauconitic sandstone
Indian, sodium sulphate weathering 45–48, 49, 52–53, 53, 54
Posta type 13
see also Tago sandstone
sanidine, Teplá trochtyte 75, 76
sandstone
alveolar weathering, Saxony 11–22
Charles Bridge restoration 2, 2, 3, 4
Cotta type 13, 14, 16, 18, 19, 20
Fair Head
Bonamargy Friary, NE Ireland, decay 88–98
properties 88, 89, 96
response to stress 96, 97, 98
Friuli-Venezia Giulia 203, 204
see also Záměl glauconitic sandstone
Indian, sodium sulphate weathering 45–48, 49, 52–53, 53, 54
Posta type 13
see also Tago sandstone
saturation
Apulian calcarenite 133, 136, 137
Austrian tufa and breccia 147–150
saturation coefficient 45
Savonnières limestone, black crusts 27–29, 30, 31–32
Saxony, alveolar weathering 11–22
Sebastopol stone, compatibility evaluation 111–117
Semi-rijo limestone 153–161
chemical composition 155–156
physical properties 156–161
serpentinite, Cabo Ortegal 81–85
mineralogy 81–82
varieties 82–85
serpentinization 81
Silesian marble 175–176
silica dissolution 90
slaking
Oya tuff 61, 62–63, 66, 67, 68–69, 71
see also wetting/drying cycles
Smirke, Sydney (1798–1877), Corsi Collection 190
sodium, Saxony sandstone 14–15, 19, 21
starkeyite 50–51
Saxony sandstones 15, 19
strength
Apulian calcarenite 133, 136, 137–138
Portuguese calciclastic limestone 156
surface, Fair Head sandstone 96, 97
tensile
Oya tuff 61, 64, 71
Teplá trachyte 77
Tuffeau and Sebastopol stone 112
Vitulano marbles 223, 227, 228, 229
stress, sandstone, Bonamargy Friary 89–98
sulphates
black crusts 25–33
Saxony sandstone 14–15, 19, 21
supersaturation 19, 36, 43, 50, 51, 52, 54
tufa 143
surface, roughening 90, 91
tafoni 19
Taynton stone 103, 105, 106, 109
temperature change, microfracturing 89–90
Teplá monastery, trachyte, fire damage 73–78
thenardite 35, 36, 40, 43–44, 50, 53
Oya tuff 61, 63
see also sodium sulphate
thermal expansion
Fair Head sandstone 89–90
Vitulano marbles 224, 227, 229
Thiersee tufa 144, 145, 146
physical properties 146–147, 149–150
Tišnov marble 176, 177, 178, 179, 180, 181
trachyte, fire damage, Teplá monastery 75–78
travertine 5–6
Italian, sodium sulphate weathering 45–48
tridymite, Teplá trachyte 76
tufa, calcareous
Apulia 129, 131–133, 134–139
spring, Austria 143–151
Andelsbuch 144, 145, 146
properties 147–150
Thiersee 144, 145, 146
properties 146–147, 149–150
tuff see Ashino tuff; Neapolitan Yellow tuff; Oya tuff; Rhenish tuff; Tufo Etrusco; Tufo Romano
Tuffeau stone, compatibility evaluation 111–117
Tufo Etrusco 122, 123, 124
Tufo Romano 122, 123, 124
as replacement for Weiberner tuff 125
Udine, building stone 201, 202, 204, 205
Utrecht, Römer tuff 120, 121
Vallemontana marble 204
Verde Pirineos serpentinite 83, 84, 85
Vernadia stone 204
Vienna Basin, Leitha limestone 167
Vitulano marbles 219–230
geology 221–222
petrography 224, 225, 226, 228
properties 223–224, 227, 228, 229
uses 228, 230
wackestone, Vitulano marble 225, 226
water absorption capacity 45
Leitha limestone 167, 170, 172
Vitulano marbles 223, 227, 228, 229
weathering 4–5, 165
alveolar 11–12, 19, 21
Bonamargy Friary 91, 92
Saxony 12–22, 12
black crust 25–26
Paris Basin limestone 26–33
sodium sulphate 35–42
see also salt weathering
Weathering Susceptibility Index, Oya tuff 71
Weiberner Tuff, Netherlands 119, 120
wetting/drying cycles 19, 20, 21, 50, 63, 66
see also slaking
Wheatley limestone 105
Žulová marble 176, 177, 178, 179, 180, 181