Index

Page numbers in italics refer to Figures. Page numbers in bold refer to Tables.

Abenaki Basin 335
Abenaki Graben 332
Adjuntas Formation 9, 56, 42, 62, 110
Africa (west) passive margins 265
Airy isostasy 170
Alberta Gap 221–223, 225, 297, 471, 473
Alborz Mountains 563, 564, 567, 568, 569, 571, 575, 576
Alycarn Diapir 373
allochthonous salt, defined 81
Alpine Orogeny 433, 443, 612, 614
Amazonas Basin 133, 134, 136, 139, 140, 142
analogue modelling 5, 610
halokinesis in Gulf of Mexico methods 278–279
results 279, 280
significance of results 281–282
halokinesis in Hormuz Basin method 550–551
results folded belt 3D 553–557
folded belt XS 551–553
ridge–diapir transition 551
results discussed 557–559
halokinesis in Laurentian Basin
basin-scale methods
constraints
basin width 340–341
basement tilt 346–347
floor morphology 341–342
salt thickness 342–346
sedimentation rates 346
materials 336
scaling factors 336–339
set-up 339–340
results 347–349
results discussed 349–353
summary 353–354
pilot trial 336, 354–355
halokinesis in Levant Basin 459
methods 459–460
results 462–465
results discussed 465–467
halokinesis in Polish Basin 381, 382
methods 397–399
operation 399–400
scaling parameters 398
results
post extension 400–401
post inversion 402
results discussed 405–407
halokinesis in Santos Basin 485, 486
methods 195–197
results 197–201
Angola, Lower Congo Basin, seismic section 53
Angola margin 153, 154, 161, 261
Angola–Gabon Basin 133
angular unconformities 7
anticlines, salt-cored 246–247, 371, 373, 437
Argo salt 333, 335
Arzip Formation 162, 178
Armorican Shelf 364
Assal, Lake (Djibouti), evaporites 163
Atlantic Ocean, passive margin salt flow 207, 245, 265
Atlantic Ocean (north) see Canada
Atlantic Ocean (south)
Cretaceous events 162, 209–210
inboard extensional structures
Albian Gap 221–223
extensional anticlines 216–217
fallen salt walls 217–218, 221
flip-flop salt walls 216, 218
salt rollers 213–216
outboard contractional structures 223–229
salt flow model
gravity 234
isostasy 233
tilting 229–233
viscosity 233–234
overburden 229
stratigraphy 212
thermal subsidence 210–213
see also see Angola margin; Campos Basin; Espirito Santo Basin; Santos Basin; South Atlantic salt basin
Atlas fold–thrust belt 579
Aurora Formation 36, 42, 62, 110
Australia see Flinders Ranges; MacLeod Basin; Willouran Ranges
Avon Thrust 595, 596, 600
Avedis Chain 177
Azerbaijan, Shah Deniz Field 132
Banquereau synkinematic wedge 335
Barra Velha Formation 161
Barre de Chine (Haute Provence)
evaporites 600–601
structural style 598–600
overturning discussed 607–614
overturning interpreted 601–607
Basque Pyrenees 9, 18
Pozza de la Sal Diapir fault data 525
geological setting 522
joint patterns 522–523, 524, 525
map 522
modelling stress field 525
results 527
results discussed 527–530
seismic section 523
Basque Shelf 364
Biscay, Bay of 363
see also Parentis Basin
bischofite 209
Blue Anchor Formation 533, 534, 535, 537, 538, 539, 542
Blue Lias Formation 533, 534
Bonney Sandstone 84, 85, 94–96, 98
bottom currents 18
Bouguer gravity anomaly, Medjez-El-Bab salt structure (Tunisia) 584–585
box folds 246
Braunschweig-Gifhorn fracture zone 261
Brazil
Irara Field 132
Tupi Field 132
Brazil basins
core-scale and petrographic data 139–142
history of exploration 136–137
onshore and offshore 134, 136
petroleum exploration trends 142–149
southern area

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3911860/9781862396111_backmatter.pdf by guest on 30 August 2019
INDEX

isostatic effects 233
tilting effects 229–233
viscosity effects 233–234
drape folds and folding 7, 21, 98, 99, 373
duck’s head structure 255, 256
Dzwonowo salt diapir 388, 389, 392
earthquakes, salt-related 571–573
El Gordo Diapir 9, 10, 35, 61, 109
El Papote Diapir 9, 10, 12, 15, 22, 23, 35, 61, 109
Elbe Fault System 410
en echelon structures 247–248, 265
extensional faulting 207, 245
extensional salt tectonics 247–248, 265
Eyvanekey plateau 563
Eyvankey plateau 563
Fars Province (Iran) 9, 18, 19, 546, 549
Fars Arc 546, 549
Fars Province (Iran) 9, 18, 548
fault inversion, Garmsar salt nappe 573, 576–577
faulting, extensional 207
flip-flop salt tectonics 3, 216, 218, 234, 245
flip-flop structures 3, 216, 218, 234, 245
flexural isostasy 171
flexural-slip folding 7
Frandoâno Formación 178
flexural-slip folding 7
fold-and-thrust belts
fold-and-thrust belts
fold types 265
en echelon 273
salt-cored 246–247
fracture pattern
La Popa Weld 109, 113
Poza de la Sal Diapir
fault data 525
groundwater setting 522
joint patterns 522–523, 524, 525
map 524
modelling stress field 525
results compared with field data 527
results discussed 527–530
seismic section 523
value of studies 521
France see Haute Provence; Parentis Basin
Fundy Basin 332
Gabon
salt structures 247, 251, 254, 255, 257, 258, 259
offshore 256–257
onshore 256
Garmsar salt nappe 563
groundwater setting 567–568
InSAR study
earthquakes and faults 571–573
method 563, 565, 566, 567
results
default inversions 573
regional structures 568–571
results discussed 573–575
fault inversions 576–577
folding 575–576
salt extrusion 575
map 564
Germany
flip-flop structures 261
Hänigsen diapir 611
Ghawar Field (Saudi Arabia) 131
gliding 3, 208, 209, 265
Glueckstadt Graben 410, 411, 412
Goleniów salt diapir 387, 388
gebrauns 265, 381, 384
gravitational cells 198
gavity
effect on salt flow 207, 234, 245, 265
analogue modelling 234–240
Great Kavir Desert (Iran) 34
Green Canyon 270, 271, 275, 276, 277, 278
Groningen Field 136
Guarita Formation 178
Guarita Formation 178
gypsum resource 1, 535, 538, 542, 543
halokinetic effects on submarine channels see Magnolia Field
evolution on passive margins 207
Hormuz salt basin 548–550
halokinetic sequence stratigraphy 2
halokinetic sequences
classified 8
composite 8, 22–24
modelling 19–21
stacked 22
tabular 8, 11, 12, 16, 19, 20, 21, 26, 27, 28
tapered 8, 12, 16, 18, 20, 21, 26, 27, 28
hook 8, 10, 11, 12, 28
wedge 8, 12, 13, 28
defined 7, 59, 71–72, 81, 97–98
La Popa Weld 34
regional examples, Patatwarta salt sheet 98–99
Hänigsen diapir (Germany) 611

By guest

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3911860/9781862396111_backmatter.pdf
<table>
<thead>
<tr>
<th>INDEX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Haute Provence (France)</td>
<td></td>
</tr>
<tr>
<td>sub-Alpine fold-and-thrust belt</td>
<td></td>
</tr>
<tr>
<td>Barre de Chine</td>
<td></td>
</tr>
<tr>
<td>structural style 598–600</td>
<td></td>
</tr>
<tr>
<td>overturning discussed 607–614</td>
<td></td>
</tr>
<tr>
<td>overturning interpreted 601–607</td>
<td></td>
</tr>
<tr>
<td>geological setting 595–598</td>
<td></td>
</tr>
<tr>
<td>map 596</td>
<td></td>
</tr>
<tr>
<td>stratigraphy</td>
<td></td>
</tr>
<tr>
<td>heel and toe structures 248</td>
<td></td>
</tr>
<tr>
<td>hook halokinetic sequence 2, 8, 10, 11, 12, 26, 28, 98</td>
<td></td>
</tr>
<tr>
<td>La Popa Weld 34, 39</td>
<td></td>
</tr>
<tr>
<td>Hormuz Formation 546</td>
<td></td>
</tr>
<tr>
<td>Hormuz salt basin 548–550</td>
<td></td>
</tr>
<tr>
<td>analogue modelling of halokinesis</td>
<td></td>
</tr>
<tr>
<td>methods 550–551</td>
<td></td>
</tr>
<tr>
<td>results</td>
<td></td>
</tr>
<tr>
<td>folded belt 3D 553–557</td>
<td></td>
</tr>
<tr>
<td>folded belt XS 551–553</td>
<td></td>
</tr>
<tr>
<td>ridge–diapir transition 551</td>
<td></td>
</tr>
<tr>
<td>results discussed 557–559</td>
<td></td>
</tr>
<tr>
<td>Horn Graben 410</td>
<td></td>
</tr>
<tr>
<td>hydrocarbon maturation, effect of salt 33</td>
<td></td>
</tr>
<tr>
<td>hydrology and palaeohydrology, La Popa Weld study see La Popa Weld</td>
<td></td>
</tr>
<tr>
<td>Iara Field (Brazil) 132, 133</td>
<td></td>
</tr>
<tr>
<td>Ibis Fault 364, 367, 370, 374</td>
<td></td>
</tr>
<tr>
<td>Ibis Ridge 367</td>
<td></td>
</tr>
<tr>
<td>Iguape Formation 178</td>
<td></td>
</tr>
<tr>
<td>Ilha Grande Gravitational Cell 198</td>
<td></td>
</tr>
<tr>
<td>India, Dhirubhai Field 132</td>
<td></td>
</tr>
<tr>
<td>Indiura Formation 23, 36, 62, 110</td>
<td></td>
</tr>
<tr>
<td>interferometric synthetic aperture radar (InSAR) 6, 563</td>
<td></td>
</tr>
<tr>
<td>Garmsar salt nappe study</td>
<td></td>
</tr>
<tr>
<td>method 563, 565, 566, 567</td>
<td></td>
</tr>
<tr>
<td>results</td>
<td></td>
</tr>
<tr>
<td>earthquakes and faults 571–573</td>
<td></td>
</tr>
<tr>
<td>fault inversions 573</td>
<td></td>
</tr>
<tr>
<td>regional structures 568–571</td>
<td></td>
</tr>
<tr>
<td>results discussed 573–575</td>
<td></td>
</tr>
<tr>
<td>fault inversions 576–577</td>
<td></td>
</tr>
<tr>
<td>folding 575–576</td>
<td></td>
</tr>
<tr>
<td>salt extrusion 575</td>
<td></td>
</tr>
<tr>
<td>Iran see Fars Province; Garmsar salt nappe; Kalut Basin; Kish Field;</td>
<td></td>
</tr>
<tr>
<td>Tabnak Field; Yadavaran Field; Zagros Mountains</td>
<td></td>
</tr>
<tr>
<td>isostatic responses and salt flow 170, 171, 233, 250, 306</td>
<td></td>
</tr>
<tr>
<td>isotope analysis see 813C; 818O; Sr</td>
<td></td>
</tr>
<tr>
<td>Itajai-Açu Formation 178</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Apennines 609</td>
<td></td>
</tr>
<tr>
<td>Crotone Basin 34</td>
<td></td>
</tr>
<tr>
<td>Itanhaém Formation 178</td>
<td></td>
</tr>
<tr>
<td>Itapema Formation 160</td>
<td></td>
</tr>
<tr>
<td>Jabal el Milh diapir (Yemen) 611</td>
<td></td>
</tr>
<tr>
<td>Jean Charcot Seamounts 176</td>
<td></td>
</tr>
<tr>
<td>joints see fracture pattern</td>
<td></td>
</tr>
<tr>
<td>Jureia Formation 178</td>
<td></td>
</tr>
<tr>
<td>Kalut Basin (Iran) 34</td>
<td></td>
</tr>
<tr>
<td>Kashagan field (Kazakhstan) 131, 132</td>
<td></td>
</tr>
<tr>
<td>Katangan copperbelt 34, 81</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan 18, 131, 132</td>
<td></td>
</tr>
<tr>
<td>Keathley Canyon 271, 275, 276, 277</td>
<td></td>
</tr>
<tr>
<td>Khuff Formation 131</td>
<td></td>
</tr>
<tr>
<td>Kish Field (Iran) 132</td>
<td></td>
</tr>
<tr>
<td>Kłodawa Salt Structure/diapir 261, 262, 388, 390, 391</td>
<td></td>
</tr>
<tr>
<td>analogue modelling methods 397–399</td>
<td></td>
</tr>
<tr>
<td>operation 399–400</td>
<td></td>
</tr>
<tr>
<td>scaling parameters 398</td>
<td></td>
</tr>
<tr>
<td>results</td>
<td></td>
</tr>
<tr>
<td>post extension 400–401</td>
<td></td>
</tr>
<tr>
<td>post inversion 402</td>
<td></td>
</tr>
<tr>
<td>evolution 397</td>
<td></td>
</tr>
<tr>
<td>geological setting 395–396</td>
<td></td>
</tr>
<tr>
<td>map 396</td>
<td></td>
</tr>
<tr>
<td>numerical modelling methods 402–404</td>
<td></td>
</tr>
<tr>
<td>results 405</td>
<td></td>
</tr>
<tr>
<td>results compared 405–407</td>
<td></td>
</tr>
<tr>
<td>shape 396, 397</td>
<td></td>
</tr>
<tr>
<td>Kwanza Basin (Angola) 154, 207</td>
<td></td>
</tr>
<tr>
<td>cross section 219</td>
<td></td>
</tr>
<tr>
<td>extensional anticline 216</td>
<td></td>
</tr>
<tr>
<td>fallen salt walls 217–218, 219</td>
<td></td>
</tr>
<tr>
<td>modelling salt behaviour 229</td>
<td></td>
</tr>
<tr>
<td>salt thickness 211</td>
<td></td>
</tr>
<tr>
<td>La Casita Formation 110</td>
<td></td>
</tr>
<tr>
<td>La Peña Formation 36, 43, 62, 110</td>
<td></td>
</tr>
<tr>
<td>La Popa Basin (Mexico) 2, 9–16, 18, 22, 24</td>
<td></td>
</tr>
<tr>
<td>geological setting 34–35, 60–61, 108</td>
<td></td>
</tr>
<tr>
<td>map 61, 109</td>
<td></td>
</tr>
<tr>
<td>secondary salt weld 34</td>
<td></td>
</tr>
<tr>
<td>stratigraphy 36, 62, 110</td>
<td></td>
</tr>
<tr>
<td>see also Carroza Formation; La Popa Weld</td>
<td></td>
</tr>
<tr>
<td>La Popa Diapir 39, 60</td>
<td></td>
</tr>
<tr>
<td>La Popa Weld 9, 10, 11, 13, 14, 22, 23</td>
<td></td>
</tr>
<tr>
<td>cross section 111</td>
<td></td>
</tr>
<tr>
<td>cross-weld traverses 37–42, 43</td>
<td></td>
</tr>
<tr>
<td>description 34</td>
<td></td>
</tr>
<tr>
<td>fluid inclusion analysis 119–122</td>
<td></td>
</tr>
<tr>
<td>fluid sources 123</td>
<td></td>
</tr>
<tr>
<td>fracture abundance 109</td>
<td></td>
</tr>
<tr>
<td>palaeohydrological impact 123–127</td>
<td></td>
</tr>
<tr>
<td>plan-view geometry 37</td>
<td></td>
</tr>
<tr>
<td>timing of weld formation 122–123</td>
<td></td>
</tr>
<tr>
<td>veins 109, 111, 113</td>
<td></td>
</tr>
<tr>
<td>isotope analysis 112–113, 115</td>
<td></td>
</tr>
<tr>
<td>813C 118</td>
<td></td>
</tr>
<tr>
<td>818O 117</td>
<td></td>
</tr>
<tr>
<td>Sr 115, 116, 119</td>
<td></td>
</tr>
<tr>
<td>petrography 112, 114</td>
<td></td>
</tr>
<tr>
<td>weld development</td>
<td></td>
</tr>
<tr>
<td>initiation 46–49</td>
<td></td>
</tr>
<tr>
<td>modelling 49–51</td>
<td></td>
</tr>
<tr>
<td>model evaluation 51–53</td>
<td></td>
</tr>
<tr>
<td>precursor salt wall 45–46</td>
<td></td>
</tr>
<tr>
<td>summary 53–54</td>
<td></td>
</tr>
<tr>
<td>Lagoa Feia Formation 160</td>
<td></td>
</tr>
<tr>
<td>Landes Fault 364, 368, 369, 370, 374</td>
<td></td>
</tr>
<tr>
<td>Landes High 364, 365</td>
<td></td>
</tr>
<tr>
<td>Landes Plateau 361, 364</td>
<td></td>
</tr>
<tr>
<td>Landes Shelf 361, 364</td>
<td></td>
</tr>
<tr>
<td>Laurentian Basin</td>
<td></td>
</tr>
<tr>
<td>geological setting 334–336</td>
<td></td>
</tr>
<tr>
<td>map 332</td>
<td></td>
</tr>
<tr>
<td>seismic section 333</td>
<td></td>
</tr>
<tr>
<td>stratigraphy 333</td>
<td></td>
</tr>
<tr>
<td>lentils 35, 108</td>
<td></td>
</tr>
<tr>
<td>Levant Basin</td>
<td></td>
</tr>
<tr>
<td>analogue modelling of deformation 459</td>
<td></td>
</tr>
<tr>
<td>methods 459–460</td>
<td></td>
</tr>
<tr>
<td>results 462–465</td>
<td></td>
</tr>
<tr>
<td>results discussed 455–467</td>
<td></td>
</tr>
<tr>
<td>evaporite stratigraphy 450–451</td>
<td></td>
</tr>
<tr>
<td>geological setting 450</td>
<td></td>
</tr>
<tr>
<td>map 451</td>
<td></td>
</tr>
<tr>
<td>seismic and structural surveys</td>
<td></td>
</tr>
<tr>
<td>methods 452–453</td>
<td></td>
</tr>
<tr>
<td>results 453</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Gal B 453–455, 456
Gal C 455–456, 457, 458, 460, 461
results interpreted 456–459
shortening measurement 459
Levoberezhnoye Field (Russia) 132
Lion, Gulf of 135
listric faults 386, 440, 447
loading 245
Logan Canyon Formation 333, 336
Longgang Field (China) 132
Lousann salt province 134, 137, 138, 269, 270, 277, 278
Louisiana shelf (USA) 9, 17
Lower Saxony Basin 410
Lubień salt diapir 389, 390, 391
MacLeod Basin (Australia), evaporites 163
Magnolia Field (Gulf of Mexico) channel evolution 293
description
stage 1 294–295
stage 2 295
stage 3 295
interpretation 295–298
facies analysis 293
facies architecture 298–299
geological setting 291–293
summary of halokinetic effects 299–300
Mahogany Field (Mexico) 137, 138
Marambaia Formation 178
Marianowo salt pillow 388
maturation 1
Mediterranean Sea, evaporite deposition 163
Medjez-El-Bab salt structure (Tunisia) evidence for salt glacier 585, 586–590
evolution 588, 590
geological setting 579–581
gravimetric survey 584–585, 587
lithostratigraphy 586
map 580
outcrop and structure 581–584
megaflaps 24, 25, 26, 27
Mercia Mudstone Group 533, 534, 535, 537, 538, 543
Merluza Field 143, 144
Messinian salt see Levant Basin
Mexico see La Popa Basin
Mexico, Gulf of deep water sequences 16–18, 24, 26, 27
flip-flop structures 257, 261
map 266
petroleum prospectivity and salt tectonics 131, 133, 137, 138
salt flow and extrusion 277–278
analogue modelling
methods 278–279
results 279, 280
significance of results 281–282
summary 282–284
salt structures reviewed 265–266
seismic sections 540, 606
shelf break migration 267, 268–269
shelf stability 267
slope domain kinematics 271
deforestation zones 273–274
minibasin orientation 271–273
shallow salt flow 275
shear sense 275–277
slope domain structures 269
minibasins 269–270
salt nappes 271
thrust-and-fold belt 270–271
source rock maturation 1
transfer zones 267
see also Magnolia Field
Mica salt body 17
mid-Atlantic ridge 209
Mid-Polish Trough 382, 384
salt tectonics
axial features 389–392
NE flank 384, 386–387
SW flank 387–389
Milankovitch cycles 163, 165, 171
Minas Viejas Formation 9, 35, 110
minibasins, Gulf of Mexico 269–270
Mississippi Canyon 261
Mississippi Fan Fold Belt 266, 270
modelling salt behaviour
pinned inflation model 99–100, 101
see also analogue modelling; Atlantic Ocean south; numerical
modelling
Mogilno salt diapir 392
Mohican Formation 333, 335
monoclines 447
Morocco, Essaouira Basin evaporites 163
Muerto Formation 9, 12, 13, 23, 36, 41, 44, 62, 110
fracture abundance 113
namakiers see salt glaciers
Naskapi Formation 333, 336
Netherlands see Southern Permian Basin
Niger Delta 135
nitrate resource 1
normal faults
effect on salt migration 245, 250
en echelon 273
Polish Basin 381, 386
salt-cored see salt roller
North African salt province 579
see also Medjez-El-Bab salt structure (Tunisia)
North German Basin 133, 135, 261, 410, 411
North Sea Basin 133, 134, 135, 261
see also Southern Permian Basin
Norwegian–Danish Basin 410, 411, 412
numerical modelling, salt tectonics 235
methods
design and configuration 304–306
material properties 306–308
numerical 308–309
stratigraphy incorporation 309–310
results
scenario 1 310–312, 313, 314
scenario 2 312, 315–317, 318, 320
scenario 3 317, 319, 321, 323, 324, 326, 327
results discussed 321–327
regional studies
Central European Basin System 413
basin fill
Cenozoic 413
Cretaceous 414
Jurassic 415–418
Permian 419–421
Triassic 418–419
model results discussed 422–425
overview 421–422
water depth 413
Klodawa structure methods 403–404
results 405
results discussed 405–407
Poza de la Sal Diapir
method 525
results 527
results discussed 527–530
South Oman Salt Basin
methods 508
adaptive remeshing 512
INDEX

numerical modelling, salt tectonics (Continued)

salt displacement 510
set-up 508–510
stringer breaking 510–512
results 512–515
results discussed 515–518
summary 328–329
8180, La Popa weld veins 112–113, 115, 117

Oladdie Diapir counter-regional weld 34
Oman see South Oman Salt Basin
Onion Creek Diapir (Utah) 18
Orpheus Graben 332
overburden effects on salt flow 207, 208, 209, 229, 245, 250, 303

palaeohydrology see hydrology and palaeohydrology
Paradox Basin (Utah) 18, 34, 59, 163, 261
Parana Basin 35–60
Parentis Basin
basement structures 374
bathymetry 365, 366
cross-section 365
geological setting 362–365
history of exploration 361
map 362
Pyrenean orogen effects 374–375
salt diapir growth 370–372
salt-related structures 365–366
eastern 367–368
western 368–369
seismic dataset 365, 367, 368, 369, 370, 371
stratigraphy 366
summary history 373, 375–376
Parentis Field 361
Parras Basin 35, 60
Parras Formation 9, 12, 23, 35, 36, 41, 42, 62, 110
fracture abundance 113
particle image velocimetry (PIV) 5
passive downbuilding diapirs 246
passive margins
salt flow 207, 245, 265
see also Angola; Brazil; North African salt province
Patawarta Diapir 82, 84, 85, 87
depositional sequence stratigraphy 96–97
halokinetic sequences 97–99
stratigraphy
Bonney Sandstone 94–96
Wonoka Formation 88–94
summary of data 99–100
depositional environment 100–102
structural analysis 102
unroofing sequence 96
Patawarta salt sheet 26
Pelotas Basin 209
Penarth Group 533, 534
Perdido fold belt 266, 270
Persian Gulf, petroleum prospectivity and salt tectonics 131
petroleum prospectivity and salt tectonics 131, 133, 135–138
modelling 149–153, 155
physical modelling see analogue modelling
Piqarras Formation 160
pinned inflation model 99–100, 101
Poiseuille flow 169, 303, 465, 466
Poland, flip-flop structures 261
Polish Basin 410, 412
geological setting 382–384, 395–397
Klodawa Structure
analogue modelling
methods 397–399

operation 399–400
scaling parameters 398
results
post extension 400–401
post inversion 402
evolution 397
map 396
numerical modelling
methods 402–404
results 405
results compared 405–407
shape 396, 397
salt tectonics of mid-Polish Trough
axial 389–392
flank, NE 384, 386–387
flank, SW 387–389
summary 392–393
potash resource 1
Potrerrillos Formation 9, 10, 11, 12, 15, 16, 23, 35, 36, 40, 41, 42, 44, 62, 109, 110
fracture abundance 113
Pound Subgroup 84
Poza de la Sal Diapir
default fault 525
geological setting 522
joint patterns 522–523, 524, 525
map 523
modelling stress field 525
results 527
results discussed 527–530
seismic section 523
Pricaspian Basin (Kazakhstan) 18
Puffin Diapir 373
Pyrenean orogen 363–364, 374–375
radial gravitational flow 207
radioactive waste repository 1
rafting and raft tectonics 1, 207, 278
ramp, defined 81
reactive diapir, defined 245
Reconcavo Basin (Brazil) 136
Red Sea, salt flow 170
Riyadh Group 131
Rolla salt pillow 287, 388
roller see salt roller
rolling hinge models 609
rollovers 265
Russia, oilfields 132
Sabina Basin 35, 60
Sable Basin 332, 335
salt, defined 1, 209
salt deflation, defined 278
salt diapirs 18, 19, 34, 39, 60, 261, 262, 373, 392
analogue model 551, 552
Bristol Channel Coast 539, 543
El Gordo Diapir 9, 10, 35, 61, 109
El Puplote Diapir 9, 10, 12, 15, 22, 23, 35, 61, 109
formation 245, 246–248, 265, 271
Hänigsen diapir 611
Parentis Basin 370–372
Polish Basin 387, 389, 390, 391, 392
see also Klodawa Salt Structure; Patawarta Diapir; Poza de la Sal Diapir
salt drainage 168–170, 209
see also drainage
salt flow 107
see also analogue modelling
salt glaciers (namakiers) 5, 172, 234
model for North African salt province 579
see also Medjez-El-Bab
salt loading 170
INDEX

salt nappes 265, 271, 278
see also Garmsar salt nappe
salt pillows 387, 388, 436
salt rollers 213–216, 246, 247–248, 250, 253
salt sheets 26
salt stock 438, 439
salt withdrawal, defined 278
salt wings 26
salt-cored normal fault *see* salt roller
Santos Basin (Brazil) 133, 137, 139, 142
Albian Gap 207, 221–223, 225, 471, 473
analogue modelling of deformation 485, 486
anhydrites 162
cross-section restoration
methods 189–191
results 192–195
attachment zones 474–475, 476, 478, 479, 480
evaporite cycle 165
evaporite deposition 163, 172
exploration trends 143–149
extensional anticlines 216
flip-flop structures 256–257
formation 175
geological setting 175–176
geometry in 3D 475, 482–483
halokinesis 179
halokinetic analogue modelling
methods 195–197
results 197–201
map 472
modelling salt flow 229
outboard contractional structures 226
Paraiba basalt 160
physiography 176–177
post-salt overburden 225
salt basin 166, 168
salt thickness 211
salt-cored normal faults 215
seismic sections 224, 226, 227, 228, 252, 476, 477, 478, 479, 480, 481, 606
seismic survey
methods 179
results 180–185, 186, 187
results discussed 187–189
source rock maturation 1
stratigraphy 178, 474–475
structural styles 475
tectonosedimentary evolution 177, 179
Santos Formation 178
Santos Hinge Line 161, 165
São Paulo Plateau 176, 177, 224, 225, 471, 472, 473, 475
São Paulo Ridge 176, 177, 210
Saudi Arabia
Ghawar Field 131
Nīban Field 132
scar failure 18
Scotian Basin 332
seals and sealing behaviour 1, 33, 107
sequence stratigraphy *see* halokinetic sequence stratigraphy
Sergipe Basin (Brazil) 136, 139, 140, 143
Serra da Mantiqueira mountain chain 176, 177
Serra do Mar mountain chain 176, 177
Seynmy Field (Russia) 132
Shah Deniz Field (Azerbaijan) 132
shear sense, Gulf of Mexico 265, 273, 274, 275–277
Shelbourne Basin 332, 335
shelf behaviour, Gulf of Mexico 266–269
shortening 245, 265, 361, 483–486
Sieverstedt diapir 261, 262
Siegbree Escarpment 270, 275, 276, 306
Solinóis Basin (Brazil) 134, 136, 139
Solokha–Dykanka Rampart 343, 435, 437, 438
source maturation 1
South Atlantic salt basin
gravity driven processes 245
petroleum prospectivity and salt tectonics 131
South Oman Salt Basin
chronostratigraphy 506
geological setting 504, 506
goomechanical modelling
methods 508
adaptive remeshing 512
salt displacement 510
set-up 508–510
stringer breaking 510–512
results 512–515
results discussed 515–518
summary 328–329
map 505
salt tectonic evolution 506, 508
seismic section 507
Southern Grand Banks Fracture Zone 332
Southern Permain Basin 262, 382, 383
geological setting 493
map 490
seismic section 491, 494, 495, 498
seismic survey
methods 493
results
folding and offsets 495–497
pre-salt and top salt 493–494
Z3 stringer 494–495
results discussed 497–499
summary 499
Spain *see* Basque Pyrenees; Tabernas–Sorbas Basin
Spindletop Dome (Texas) 1
spreading, defined 209
Sr isotopes, La Popa weld veins 115, 116
stratigraphy
impact in numerical modelling of salt tectonics 308–309
methods 309–310
results
scenario 1 310–312, 313, 314
scenario 2 312, 315–317, 318, 320, 321
scenario 3 317, 319, 321, 323, 324, 326, 327
results discussed 321–327
summary 328–329
stretching 265
stringers 503, 510, 511, 512, 513, 515, 516, 517
submarine channels, effects of halokinesis *see* Magnolia Field
Sverdrup Basin (Canada) 34, 81
Synthetic Aperture Radar (SAR) imagery 563
Tabernas–Sorbas Basin (Spain) 291
Tabnak Field (Iran) 132
tabular halokinetic sequence 8, 11, 12, 16, 19, 20, 21, 26, 27, 28, 72, 98
La Popa Weld 39, 73
tachyhydrite 209
tapered halokinetic sequence 8, 12, 16, 18, 20, 21, 26, 27, 28, 72, 98, 99
La Popa Weld 39, 42, 72, 73, 74
Taquari–Vassouras salt mine 139
Taraiises Formation 110
Teisseyre–Tornquist Zone 382
thermal conductivity 1

(by quest)
thermal subsidence 265, 306
thickening 265
thrust fault 26, 478
thrust and fold belt, Gulf of Mexico slope domain 270–271
thrust weld 34
thrusted salt structures 246, 247
thrusted salt structures 246, 247
thrusts 265
tilt blocks 265
tilting and salt flow 207, 208, 229–233
Titan minibasin 291
Tornquist Zone 410
transgression
Alborz Mountains 574, 576
Gulf of Mexico 273, 274
transstension
Alborz Mountains 574, 576
Gulf of Mexico 273, 274
traps 1
Tunisia see Medjez-El-Bab salt structure
Tupi Fault 162, 163
Tupi Field (Brazil) 132, 133, 146
seismic section 162
turbidity currents 18
Ukraine see Dnieper–Donets Basin
Umberatana Group 83, 84
unconformities, halokinetic 7, 18
USA 9, 17, 18
see also Paradox Basin (Utah)
veins
La Popa Weld
gochemical study 109, 111, 113
isotope analysis 112–113, 115
δ13C 118
δ18O 117
Sr 115, 116, 119
petrography 112, 114
Viento Formation 9, 18, 23, 36, 39, 41, 62, 72, 109, 110
fracture abundance 113
viscosity and salt flow 233–234, 245, 304
analogue modelling 235–240
numerical modelling 309, 310–312, 313, 314, 328
Walker Ridge 270, 271, 275, 276, 277, 278
walls see salt walls
Walvis Ridge Volcanic High 163–164
Watchet Discontinuity 535, 539, 540
Watchet–Coethestone–Hatch Fault 533, 534, 535, 543
Wearing Dolomite 84, 85
wedge halokinetic sequence 2, 8, 12, 13, 28, 98, 99
La Popa Weld 34, 39, 73
Wessex Basin (UK) 533, 543
Whale Basin 332
Wilcolo Sandstone 84
Willouran Ranges (Australia) 25, 34
Wilpena Group 83, 84, 85
wing structure 255, 256, 257
Wittingen diapir 261, 262
Wonoka Formation 84, 85, 88–94, 98
Yadavaran Field (Iran) 132
Yemen, extruded salt diapir 611
yo-yo faults 248
Zagros Mountains 18, 81
fold-and-thrust belt 546
geological setting 546, 548
halokinesis 548–550
analogue modelling
method 550–551
results
folded belt 3D 553–557
folded belt XS 551–553
ridge–diapir transition 551
results discussed 557–559
map 547
overturned flaps 608
Simply Folded Belt 546
tectonostratigraphy 546, 548
Zambia 81
Zechstein salt basin
petroleum prospectivity 131, 134, 135
stratigraphy 490
Zirab–Garmsar fault 563, 564, 569, 573
Zulugna Formation 110
Zwischenahn diapir 261