Index

Page numbers in *italics* denote figures. Page numbers in **bold** denote tables.

ABAQUS model 173–181
Amazon Fan DDWFTB geometry 173, 174
Aguacaliente fault, Costa Rica 19
Coulomb static stress transfer 25, 26
Coulomb stress and kinematics 28, 29
Akatore Fault, New Zealand 12
Alajuela Fault, Costa Rica
Coulomb static stress transfer 25–26
Coulomb stress and kinematics 29–32
Alpine Fault, New Zealand 7, 8, 9
stress trajectories 10
Amazon Fan DDWFTB
 ABAQUS model 173, 174, 179–180
 critical taper wedge theory 180
 Anderson, Ernest Masson (1877–1960), structure of faults and fractures 1–2, 215
Andersonian faulting 1–2, 13
crack patterns 203, 204, 205, 206, 207
anisotropic poroelasticity 210, 212
pore pressure/stress coupling 206–209
normal 1
 crack patterns 203, 204, 209, 210, 212
 strike-slip 1
 crack patterns 203, 205, 210, 212
 reactivation 13–14
 thrust 1, 39–42, 46, 48, 155
 crack patterns 203, 205
 initiation 39–40
 reactivation 40–42
wrench 1, 155
 Darfield earthquake 7–16
 initiation 13
 stress controls 13–15
 Western Tottori earthquake 14–15, 16
Anglesea-1 well 95, 97
Anisclo anticline 132, 137
anisotropy
 mechanical, foliated rocks 191, 192, 193, 194–195
 poroelasticity 204–205
 pore pressure/stress coupling 205–209
anticlines
 inversion, Otway Basin 93, 94, 95, 97
 thrust-related 131–139
Ardenne-Eifel sedimentary basin, Variscan Orogeny 54–57, 66
Arran, magmatic intrusion 123, 125
Australia, southern margin
 in situ stress fields 93
 uplift and deformation 91–108
Austroalpine Basement 190–191
Balliang 1977 earthquake 93, 99, 100
Baluopor fault system 134
Bam 2003 earthquake, dilatant strain 222
Banks Peninsula 9, 10
Baram Delta 172, 174, 179
Berea sandstone, elastic properties **202, 203**
Bight Basin 72
 fault reactivation risk 81, 87
 phases 73, 74
 regional stress regime 81, 82, 85
 stratigraphy 71, 73–75
Biot coefficient 204–205
Blue Whale supersequence 71, 73, 74
Boltona anticline
 compressional assemblage 137
décollements 137
deformation pattern 132–137
cross-cutting 136–137, 138
orientation 132–134
structural interpretation 134, 135, 136
extensional assemblage 137–138
geological framework 131–132
joints and veins 133, 134, 137–138
stress field fluctuation 138–139
borehole breakouts **160**
 Bight Basin 81
 Otway Basin 93
 and stress orientation
 Galleon-1 well 10, **12**
 Gulf of Mexico 143–145, 149–151
 Nile Delta 158–159, 161
Brenner Fault Zone 188, 189
Brenner Line LANF 188, 189
brittle fabrics 202–204
brittle failure
 shear 39–40
 reverse faults 46
tectonic inversion 52–53, 66–67
brittle faults 186–191, 194–195
 Brenner Line LANF 188
 Simplon Line LANF 188
 Sprechenstein–Mules Fault Zone 191
Bull Vein, reverse fault 47
Byerlee law 185, 195
Campanian–Maastrichtian, Ceduna Sub-basin
 inversion 76, 79
Canterbury Plains
 Darfield earthquake 7, 9
 stress field 12–13
 strain rate 12
Caribbean Plate 19–20
INDEX

décollements 39
Boltaña anticline 137
deformation
aseismic, Otway Basin 104–105
bedrock, effect of pore-fluid pressure 117, 122–123, 127
Boltaña anticline 132–137
orientation analysis 132–134
structural interpretation 134, 136
and folding 134, 136
Neogene, Otway Basin 91, 93–98, 105–108
strain rate 101–103
delta systems
Wire Delta 164–168
stress and faulting 163–164
delta-deepwater fold-thrust belts (DDWFTBs)
Ceduna Sub-basin 71, 72, 74, 75, 76, 77–78
fault orientation analysis 79–80
sediment wedge movement 171–173
ABAQUS modelling 173–181
Gulf of Mexico 142–151
hydrocarbons 75, 79
stress regimes 141–142
structural geometry 75
detachments
delta-deepwater fold-thrust belts
sediment wedge movement 171–173
ABAQUS modelling 173–181
stress 3
diffusion see dilatancy-diffusion hypothesis
dilatancy
and pore-fluid pressure 217–219
suction pump 219–220
dilatancy-diffusion hypothesis 215, 217–228
upsampling 215, 223–228
complexity and predictability 222–223
in space 223–226
in time 226
dilatant strain 221–222
dipmeter logs
Galleon-1 borehole 10
Gulf of Mexico 144–145
Nile Delta 158
drilling-induced tensile fractures 160
Gulf of Mexico 143–145, 149–150
Nile Delta 158–159, 161
Otway Basin 93
Dugong supersequence 73, 75
Dunstan Fault, New Zealand 12
dykes
and magma chamber overpressure 119, 123–125, 127
work of Anderson 2
see also ring-dykes
earthquakes
nucleation and Andersonian model 2
Otway Basin 98–99
precursors 215–216, 220–221
prediction, dilatancy-diffusion hypothesis 222–223
reverse-slip dip compilation 42–44
Effective Medium Theory 205
elasto-plasticity 111, 118, 127
Eratosthenes Seamount, gravity-gliding 164, 165
Escázu Fault, Costa Rica
Coulomb static stress transfer 25
Coulomb stress and kinematics 28–29, 30
Euherella Formation 104, 105
Europa, Andersonian-type structures 2
evaporites, Nile Delta 156–168
exhumation, Otway Basin 95, 96, 97, 107–108
strain rate 101–103, 105–107
extension fractures 51
Eyre Sub-basin 72, 73
fabric tensors, porous rock 203
Fault Analysis Seal Technology 81
faulting
Boltaña anticline 133–134, 135, 136–137
magma chamber overpressure 121, 122
non-Andersonian 3, 4, 155–156, 185–186
Nile Delta 164–168
normal
Andersonian 203, 204, 209, 210, 212
low-angle non-Andersonian 3, 155–156, 166, 185
Brenner Line 188
Simplon Line 186–188
work of Anderson 1
reverse
Otway Basin 99, 107
Port Campbell Limestone 98
reverse-slip
Darfield 2010 earthquake 8, 15
dip compilation 42–44, 48
mineralized 47, 48
misorientation 45, 48, 185–186
non-optimal 44–47
pore-fluid overpressuring 47–48
optimal 44–47
rupturing 40–49
strike-slip
Andersonian, crack patterns 203, 205, 210, 212
Greendale Fault 7–8, 14, 15, 16
highly oblique non-Andersonian 155–156
large-displacement and stress 15
reactivation 13–14
work of Anderson 1
see also faulting, wrench, Andersonian
thrust
Andersonian 39–42, 46, 48
crack patterns 203, 206, 210, 212
‘staircase systems’ 43, 45, 48
work of Anderson 1
wrench
Andersonian
Darfield earthquake 7–16
initiation 13
stress controls 13–15
Western Tottori earthquake 14–15, 16
work of Anderson 1
see also misorientation; reactivation
faults
brittle 186–191, 194–195
mineralization 47
misoriented 185–186
orientation analysis, Ceduna Sub-basin 79–80
reactivation
Bight Basin, risk 81
Ceduna Sub-basin 81, 83–85
risk 85–87
weakness 185–186, 194–195
work of Anderson 1–2
Flinders Ranges 100, 104, 106, 107
Flinn plot, modified 203, 207
fluid overpressure see pore-fluid overpressure
focal mechanisms
centroid moment tensor 42
Costa Rica stress fields 21–22
stress inversion, South Island, New Zealand 8, 10, 13
fold-thrust belts 39
see also delta-deepwater fold-thrust belts
folding, and deformation patterns 134, 136
foliation
anisotropic slip tendency analysis 192–194
Brenner Fault Zone 188, 189
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone mylonites 186, 187
Sprechenstein–Mules Fault Zone 190, 191
as weakening mechanism 186
footwall
Brenner Line 188
DDWFTBs 75
Simplon Fault Zone 186, 188
Sprechenstein–Mules Fault Zone 191
formation micro-imaging 145, 159
formation micro-scanning 145
fracture susceptibility, and anisotropic poroelasticity 209–211
fractures
compressional tectonic inversion 63–65
curved 4
extension 51
polymodal 4
friction, coefficient of 175–176, 178, 179–180
Galleon-1 borehole breakout 10–11, 12
Gavarnie thrust sheet 131, 132
Gawler Craton 72, 74
Glen Rosa, Arran, magmatic intrusion 123, 125
Glockner Nappe 188
INDEX

Gnarlyknots-1 well 71, 72
gravity anomalies, Otway Basin 107
gavity-gliding, Nile Delta 164, 167
Great Sumatra Fault 155
Greendale Fault, New Zealand 7–8, 14, 15, 16
Gulf of Mexico
delta-deepwater fold-thrust belts 142–151
geological setting 142–143
stratigraphy 143
stress deflections
 salt diapirs 146–148, 150–151
 numerical modelling 148–149
stress orientation 143–146
analysis, petroleum wells 145–146, 149–150
borehole breakouts 143–145, 149–150
Gutenberg–Richter Law 217, 219, 221, 222
Hammerhead DDWFTB 71, 73, 74–75, 76, 77–79
hanging wall
 Brenner Line 188
 Ceduna Sub-basin 78
 DDWFTBs 75
 Sprechenstein–Mules Fault Zone 191
High-Ardenne Slate Belt
 geological setting 53–54
 palaeostress analysis 57
 vein sets 52, 54–57
Hikurangi Margin, strain rates 12
Himalaya, thrust fault rupture 42–43
Honshu, NE inversion province
 fluid overpressure 48
 reverse fault rupture 43, 44, 49
Hope Fault, New Zealand 7, 9
hydrocarbon fields
 pore-pressure/stress coupling 206
 upscaling permeabilities 223–226
hydrocarbon prospectivity, Ceduna Sub-basin 71, 79
hydrocarbon traps
delta-deepwater fold-thrust belts 75
 Ceduna Sub-basin 79
 reactivation risk 85–87
 Otway Basin 93, 95
Indo-Australian plate 92, 93
intrusion, dyke
 magma chamber overpressure 123–125, 127
 work of Anderson 2
inversion 39
 Ceduna Sub-basin 76, 78–79
 compressional tectonic 44, 45, 48, 49, 51
 3D reconstructions 57–67
 BFM plots 52–53
 horizontal stress component 58
 stress-state evolution 53–67
 vein sets, High-Ardenne Slate Belt 54–57
inversion anticlines, Otway Basin 93, 94, 95, 97
Irazú volcano 28
Izmit 1999 earthquake, dilatancy-diffusion hypothesis 222
Jaris fault 29, 31
Jerboa-1 well 71, 72
Kashmir 2005 earthquake 42, 48
Lake Ellesmere 9, 10
L’Aquila 2009 earthquake, precursors 216, 221, 223
Law of Effective Stress 201–202, 204–205, 207, 210
leak-off pressure testing 93
Liachar Thrust, brittle faults 195
Locharbriggs sandstone 227
Louann Salt 142–143
 stress regime 148–149, 150
Lower Penninic Nappes 186, 187
magma, eruption, and magmatic pressure 119
magma chambers
 overpressure and bedrock failure 111–127
 dyke intrusion 119, 123–125, 127
 engineering mechanics solutions 115–117
 failure geometry 126–127
 fault connection 121, 122
 numerical modelling 117–119, 120, 123
 pore-fluid pressure 117, 122–123, 124
 rheology 119
 secondary chamber 122, 126
 shear failure 113–115
 chamber wall 120–122, 123, 127
 structures 123–124, 125
 tensile failure
 classical solution 112–113
 Grosfils’ solution 113
 surface development 119–120, 121, 123, 127
Main Himalayan Thrust 42
Marlborough fault system, stress trajectories 10
Merapi volcano, magmatic pressure 119
Messinian evaporites 156, 157–158, 157
 and stress orientation 161–163, 165
Mexican Ridges Fold Belt 143
microcracks 202–203
Middle America Trench 19
mineralization 47, 48
Miocene–Pliocene, southern Australian margin 2, 91–108
misorientation 185–186
 reverse faults 45, 46, 48
Mississippi Fan Fold Belt 143
Mohr–Coulomb diagrams 51–52, 60, 62, 63, 64, 65
 cracks and pore-fluid pressure 208, 210, 211
Mohr–Coulomb failure, anisotropic foliated rock
191, 192
Montsec thrust 131, 132
Mules Tonalitic Lamella 190–191
Mulgarra fault system 77–78
reactivation 74, 78–79
mylonites. phyllosilicate 196
Brenner Fault Zone 188, 189
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191
Nazca Plate 19, 20
Neogene, deformation, exhumation and uplift,
Otway Basin 91, 93–98, 101–108
Nerita-1 well 93, 95, 96
New Zealand, South Island
compressional inversion 44
Darfield earthquake 7–10
and regional stress 15
regional stress 8, 10–13
strain rate 11–12
Nile Delta
geological setting 156–158
gravity-gliding 164, 167
stress orientation 158–159
present-day 159, 161–163
Messinian evaporites 161–163
non-Andersonian faulting 164–168
non-Andersonian faulting 155–156, 185–186
supra-salt, Nile Delta 164–168
North Eifel, Variscan Orogeny 54, 55, 57
Ossola–Tessin tectonic window 186, 187
Ostler Fault, New Zealand 12
Otway Basin
in situ stress fields 93
inversion anticlines 93, 94, 95
Neogene deformation, exhumation and uplift 91, 93–98
strain rate 101–103, 105–108
present-day seismic strain rate 99–101
and geological evidence 103–104
reverse faulting 98, 99
seismicity 98–99
Otway Ranges 94, 97
Outer Hebrides Thrust Zone 40
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardennen Slate Belt 55
and tensile failure 113
Pacific–Australia plate boundary 7, 8
Padthaway Ridge, uplift 106, 107
paleoearthstress indicators 42, 51
High-Ardennen Slate Belt 57
South Island New Zealand 12
Panamá microplate 20
Parovoz finite-differences code 117–118, 123
Perdido Fold Belt 143
Periodic fault system 189–190
petroleum wells, and stress orientation analysis
149–150
phyllodolites, mylonitic 196
Brenner Fault Zone 188
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191
Nazca Plate 19, 20
New Zealand, South Island
compressional inversion 44
Darfield earthquake 7–10
and regional stress 15
regional stress 8, 10–13
strain rate 11–12
Nile Delta
geological setting 156–158
gravity-gliding 164, 167
stress orientation 158–159
present-day 159, 161–163
Messinian evaporites 161–163
non-Andersonian faulting 164–168
non-Andersonian faulting 155–156, 185–186
supra-salt, Nile Delta 164–168
North Eifel, Variscan Orogeny 54, 55, 57
Ossola–Tessin tectonic window 186, 187
Ostler Fault, New Zealand 12
Otway Basin
in situ stress fields 93
inversion anticlines 93, 94, 95
Neogene deformation, exhumation and uplift 91, 93–98
strain rate 101–103, 105–108
present-day seismic strain rate 99–101
and geological evidence 103–104
reverse faulting 98, 99
seismicity 98–99
Otway Ranges 94, 97
Outer Hebrides Thrust Zone 40
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardennen Slate Belt 55
and tensile failure 113
Pacific–Australia plate boundary 7, 8
Padthaway Ridge, uplift 106, 107
paleoearthstress indicators 42, 51
High-Ardennen Slate Belt 57
South Island New Zealand 12
Panamá microplate 20
Parovoz finite-differences code 117–118, 123
Perdido Fold Belt 143
Periodic fault system 189–190
petroleum wells, and stress orientation analysis
149–150
phyllodolites, mylonitic 196
Brenner Fault Zone 188
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191
Nazca Plate 19, 20
New Zealand, South Island
compressional inversion 44
Darfield earthquake 7–10
and regional stress 15
regional stress 8, 10–13
strain rate 11–12
Nile Delta
geological setting 156–158
gravity-gliding 164, 167
stress orientation 158–159
present-day 159, 161–163
Messinian evaporites 161–163
non-Andersonian faulting 164–168
non-Andersonian faulting 155–156, 185–186
supra-salt, Nile Delta 164–168
North Eifel, Variscan Orogeny 54, 55, 57
Ossola–Tessin tectonic window 186, 187
Ostler Fault, New Zealand 12
Otway Basin
in situ stress fields 93
inversion anticlines 93, 94, 95
Neogene deformation, exhumation and uplift 91, 93–98
strain rate 101–103, 105–108
present-day seismic strain rate 99–101
and geological evidence 103–104
reverse faulting 98, 99
seismicity 98–99
Otway Ranges 94, 97
Outer Hebrides Thrust Zone 40
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardennen Slate Belt 55
and tensile failure 113
Pacific–Australia plate boundary 7, 8
Padthaway Ridge, uplift 106, 107
paleoearthstress indicators 42, 51
High-Ardennen Slate Belt 57
South Island New Zealand 12
Panamá microplate 20
Parovoz finite-differences code 117–118, 123
Perdido Fold Belt 143
Periodic fault system 189–190
petroleum wells, and stress orientation analysis
149–150
phyllodolites, mylonitic 196
Brenner Fault Zone 188
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191
Nazca Plate 19, 20
New Zealand, South Island
compressional inversion 44
Darfield earthquake 7–10
and regional stress 15
regional stress 8, 10–13
strain rate 11–12
Nile Delta
geological setting 156–158
gravity-gliding 164, 167
stress orientation 158–159
present-day 159, 161–163
Messinian evaporites 161–163
non-Andersonian faulting 164–168
non-Andersonian faulting 155–156, 185–186
supra-salt, Nile Delta 164–168
North Eifel, Variscan Orogeny 54, 55, 57
Ossola–Tessin tectonic window 186, 187
Ostler Fault, New Zealand 12
Otway Basin
in situ stress fields 93
inversion anticlines 93, 94, 95
Neogene deformation, exhumation and uplift 91, 93–98
strain rate 101–103, 105–108
present-day seismic strain rate 99–101
and geological evidence 103–104
reverse faulting 98, 99
seismicity 98–99
Otway Ranges 94, 97
Outer Hebrides Thrust Zone 40
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardennen Slate Belt 55
and tensile failure 113
Pacific–Australia plate boundary 7, 8
Padthaway Ridge, uplift 106, 107
resistivity image logs 144–145
Nile Delta 158–159
Rhenohercynian foreland fold-and-thrust belt 53
ridge-push, Ceduna Sub-basin 78–79
Riku-u 1896 earthquake 44
ring-dykes 111
Rosetta fault trend 156

salt diapirs
DDWFTBs 75
stress deflection
Gulf of Mexico 146–148, 150–151
numerical modelling 148–149
San Andreas Fault 1, 155, 166, 185, 223
coefficient of friction 176
San Francisco 1906 earthquake 1
Santonian, Ceduna Sub-basin inversion 76, 78–79
scaling, dilatancy-diffusion hypothesis 215, 223–228
Schiehallion, Dalradian schist lineations, work of Anderson 2
sediment wedge movement
DDWFTBs 171–173
ABAQUS modelling 173–181
coefficient of friction 175–176, 178, 179–180
pore-fluid pressure 174–175, 177–178, 179
sediment rigidity 175, 178, 180
sediment wedge angle 176–177, 178–179, 180
critical taper wedge theory 171, 180–181
seismicity
and Andersonian model 2
Costa Rica 19, 28
Otway Basin 98–99
strain rate 99–101
and geological evidence 103–104
and stress transfer 24–25
shale diapirs, DDWFTBs 75
shear failure
brittle 39–40
reverse faults 46
magma chambers 113–115
overpressure 120–122, 123, 127
structures 123–124, 125
work of Anderson 1
Ship Shoal 3D seismic cube, salt diapirs 147–148, 149, 150
shortening, Neogene, Otway Basin 101–105, 107
Simplon Fault Zone LANF 186–188
Simplon Line 186–188, 187
slickenlnes, Boltaña anticline 133, 134
slickensides, High-Ardenne Slate Belt 57
slip tendency 22–24
anisotropic foliated rock 192–194
Costa Rica 32, 35
slip-line field theory 115, 116
slip-line intersection 126
Solitario Laccolith 123, 125
South Alpine Bressanone Granite 190
Southern Alps, strain rates 12
Sprechenstein-Mules Fault Zone 189–191
'staircase' systems 43, 45, 48
strain, dilatant 221–222
strain rate
Neogene deformation, Otway Basin 101–103, 105–108
present-day seismic
Otway Basin 99–101
and geological evidence 103–104
South Island, New Zealand 11–12
upscaling 226
stress
effective 201–202, 204–205, 207, 210
horizontal tectonic component 58
principal 59, 202
see also palaeostress indicators
stress fields
Costa Rica 21–22
locally perturbed 2–3
regionally homogeneous, fault nucleation 2
stress inversion, focal mechanisms, South Island
New Zealand 8, 10, 13
stress orientation analysis
Ceduna Sub-basin 83–85
Gulf of Mexico 145–146
and borehole stability 149–151
salt diapirs 146–149, 150
Nile Delta 158–159
present-day 159, 161–163
and Messinian evaporites 163
stress regimes
Bight Basin 81, 82
Otway Basin 93
South Island, New Zealand 8, 10–13
work of Anderson 1
stress-state evolution
compressive tectonic inversion
3D reconstruction 51, 53–67
extensional NE–SW basin model 61–63, 64
extensional NW–SE basin model 61, 64–65, 66
relaxed basin model 59–61, 64
‘wrench’ regime 59–60, 61, 62, 63, 64, 65, 66–67
Taiwan Accretionary Prism, critical taper wedge theory 180
Taurern Window, phyllosilicates 188
Temsa fault trend 156
tensile failure
classical solution 112–113
Grosfils’ solution 113
INDEX

magma chamber overpressure 119–120, 121, 123, 127
Parovoz code 118
tensile fractures 4
drilling-induced
 Gulf of Mexico 143–145
 Otway Basin 93
Tiger supersequence 71, 73, 74, 75, 77–79
Tohoku 2011 earthquake 223
Tonalitic Lamella see Mules Tonalitic Lamella
Torquay Sub-basin, Neogene exhumation 94, 95, 96, 97
ultracataclasite
 Brenner Fault Zone 188, 189
 Simplon Fault Zone 187, 188
unconformity, Late Miocene-Early Pliocene, Otway Basin 95
uplift, Neogene, Otway Basin 97, 106, 107–108
Uttarkashi 1991 earthquake 42

Variscan Orogeny, High-Ardennes Slate Belt 54–57, 66

veins
 High-Ardennes Slate Belt 54–57, 59, 64–65
 bedding-normal 54–55, 57, 63–64, 65
 bedding-parallel 55, 56, 57, 64, 65
 as stress-state indicators 51, 53, 57
Virilla fault, Costa Rica 29, 30, 31
volcanism, Costa Rica 20

Warrachurunah-2 well 96, 97
weakness 185–186, 195
Western Tottori earthquake, Andersonian wrench faulting 14–15, 16
White Pointer DDWFTB 71, 73, 74, 75, 76, 77–79
Wind River Thrust 40
Wobegong supersequence 73, 75
World Stress Map
 Andersonian stress provinces 2
 Costa Rica 20, 22
 ranking system 11, 145, 146, 159, 160

Young’s Modulus 175, 178, 180